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Introduction

Motivation and plan of the talk

General relativity predicts two different types of spacetime singularities: inside
black holes and at the beginning of time

The Event Horizon protects the outside world from black hole singularities
[Penrose’s cosmic censorship hypothesis (1969)]

Johan Jarnestad/The Royal Swedish Academy of Sciences

Penrose’s Weyl curvature hypothesis (1979) protects the smoothness of the big
bang singularity, which is assumed to be conformally regular
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Introduction

These issues have been traditionally dissociated in discussions of the specific
and detailed structure of the Standard Model of particle physics

Matter: spin-1/2 fields N1/2 = 15 Weyl fermions (for each generation);
Interactions: spin-1 fields N1 = 8 + 3 + 1 = 12 for the gauge bosons;
Gauge group: SU(3)×SU(2)×U(1). Each generation is free of gauge anomalies
3 generations
Higgs: spin-0 field N0 = 4 scalar fields (complex Higgs doublet)
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Introduction

In this talk, we will try to combine concepts related to GR (black holes event
horizons, Weyl curvature hypothesis) with the properties of the field content of the
SM

The link between both areas is local conformal symmetry

gµν(x)→ Ω2(x)gµν(x)

ψ(x)→ Ω−3/2(x)ψ(x) , Aµ(x)→ Aµ(x) · · ·

In a first approximation, ignoring interactions and masses, the Standard Model
is a conformally invariant theory
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Semiclassical Einstein equations and event horizons

Semiclassical Schwarzschild geometry and conformal fields

Let us first recall the well-known description of the Schwarzschild black hole

ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2dΩ

It is the (static) spherical vacuum solution of Einstein’s equations

Gµν = 8πTµν = 0

Things get much more complicated when a quantum field is added to the problem

The vacuum expectation values 〈Tµν〉 of a conformal field in the static (Boulware)
vacuum state behave [Christensen-Fulling 1977, Candelas 1980]

〈B|Tµν |B〉 ∼r→2M −
(
2N1 + 7

2
N1/2 +N0

)
30 212π2M4

~
(1− 2M/r)2
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−1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3


〈B|Tµν |B〉 ∼r→∞ O(r−5)
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Semiclassical Einstein equations and event horizons

We observe that the static state leads to a divergence of the stress tensor at the
event horizon

〈Tµν〉 ∼r→2M −
(
2N1 + 7

2
N1/2 +N0

)
30 212π2M4

~
(1− 2M/r)2


−1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3


This is the main argument often used to exclude the horizon as a physical portion
of the static (Boulware) state

However, the above claim is circular in the sense that it assumes the existence of
a horizon that persists in the quantum corrected, backreacted geometry

Therefore, in order to make progress, we must study the backreaction problem
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Semiclassical Einstein equations and event horizons

At a primary level, we can assume the semiclassical Einstein equations

Rµν −
1

2
Rgµν = 8πG〈Tµν〉

Solving these equations is a daunting task because we do not have sufficient
analytical control over the general vev [Renormalization in curved space is very
complex]

〈Tµν(gρσ)〉

[Candelas-Howard; Brown-Ottewill; Anderson-Hiscock-Samuel; Levi-Ori; Taylor-Breen-Ottewill, ...]

To make progress, we will assume that the classical stress-energy tensor of the
assumed fundamental fields is traceless as a consequence of conformal
invariance

However, the trace of 〈Tµν〉 is not zero [Capper-Duff 74, Deser-Duff-Isham 76]

〈Tµµ 〉 = ~(c C2 − a E + d �R) ,

where C2 is the square of the Weyl curvature, and E is the Euler density

The problem is still very difficult and it requires some approximations...
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Semiclassical Einstein equations and event horizons

S-wave approximation for the quantized field

Approximation: impose spherical symmetry for the quantized field ϕ

ds2 = gabdx
adxb + e−2φdΩ2

ϕ = ϕ(xa)

Tab =
T

(2)
ab

4πr2
=

1

4πr2
(∇aϕ∇bϕ−

1

2
gab(∇ϕ)2)

[very popular in the ’90: Callan-Giddings-Harvey-Strominger] referred as 2d dilaton gravity

The approximated back-reacted geometry can be obtained by solving the
semiclassical Einstein equations sourced by the effective 2d stress-energy tensor

〈T (2)
ab 〉

The most relevant part of 〈T (2)
ab 〉 is determined by the corresponding trace

anomaly [C is the central charge]

〈T a(2)
a 〉 =

C~
24π

R(2) ,
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Semiclassical Einstein equations and event horizons

S-wave approximation

The trace anomaly is sufficient to reconstruct 〈Tab〉 with the boundary condition
[static (Boulware) vacuum]

〈T ab 〉 ∼r→∞ 0

We have all the ingredients to obtain the backreacted Schwarzschild geometry in
the s-wave approximation

The quantum corrected geometry has the properties of a non-symmetric
wormhole [Fabbri-Farese-N.-S.-Olmo-Sanchis, hep-th/0512167; PRD’06]
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Semiclassical Einstein equations and event horizons

Improved approximations

This picture is consistent with results obtained via the effective action [Berthiere,

Sakar, Solodukhin PLB’18], order-reduced semiclassical gravity
[Arrechea-Barcelo-Carballo-Rubio-Garay, PRD’23]
It is interesting to see the approximated form of the metric around the classical
horizon r = 2M . The perturbative solution in powers of ~ gives: (For simplicity we take

N0 = 1, N1/2 = 0, N1 = 0). [Beltrán-Palau-Del Rı́o-N.-S. PRD’23].

ds2 = −[1− 2M

r
− ~r

13440πM2(r − 2M)
+ · · · ]dt2

+ [1− 2M

r
− ~r

4480πM2(r − 2M)
+ · · · ]−1dr2 + r2dΩ2 .

The classical Schwarzschild coordinate singularity at r = 2M get shifted to the
value

r0 = 2M +O(lP )

g−1
rr (r0) = 0 gtt(r0) 6= 0

The static quantum-corrected spacetime is horizonless and does not define a
black hole geometry. An asymptotically flat branch connects the throat r = r0,
and a curvature singularity develops beyond it. [Cosmic censorship is broken]
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Semiclassical Einstein equations and event horizons

The weak point in the argument

We have assumed a time-independent background.

In a physical gravitational collapse, there is no way to avoid the time dependence
and thus the creation of particles.

At late times, and for a fixed Schwarzschild background, the stress-energy tensor
does not vanish at infinity [Unruh’s vacuum state]

〈U |Tµν |U〉 ∼r→∞
L

4πr2


−1 −1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 6= 0

L = Hawking’s Luminosity of the black hole

This implies regularity at the classical event horizon H+

〈U |Tµν |U〉 ∼r→2M regular

Quantum backreaction is then expected to maintain the trapped regions

We will come back to this issue later. Let us jump to the Big Bang
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Conformal symmetry and the Big Bang singularity

Conformal symmetry and the Big Bang singularity

The smoothness of the Big Bang singularity can be protected by imposing the
Weyl curvature hypothesis (Penrose 1979, P. Tod 2003)

The Big Bang singularity is assumed to be purely conformal: it can be reabsorbed
by a conformal transformation in the metric tensor

gµν(x)→ Ω2(x)gµν(x) ,

and invisible to conformally invariant matter
Penrose, 2011: There can, however, be an issue with regard to what is referred to
as a conformal anomaly, according to which a symmetry of the classical fields
(here the strict conformal invariance) may not hold exactly true in the quantum
context.
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Conformal symmetry and the Big Bang singularity

While the metric is conformally regular, the rescaled 〈Tµν〉

〈Tµν〉 → Ω−2〈Tµν〉+O(~)

is not longer regular at the Big Bang due to conformal anomalies

This is somewhat in tension with Penrose’s Weyl curvature hypothesis.

The easiest way to resolve this tension is to require exact conformal symmetry

∑
fundamental fields

〈Tµµ 〉 = 0

Furthermore [R.P.A.C. Newman 1993]: a perfect fluid spacetime, with 〈Tµµ 〉 = 0 which
evolves from a spacelike conformal singularity, having a vanishing Weyl tensor

Cµνρσ = 0 ,

is necessarily FLRW near the singularity

ds2 ∼τ→0 τ
2(−dτ2 + hijdx

idxj)
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Conformal symmetry and the Big Bang singularity

Trace anomaly in four dimensions

The contribution of the known fields of the Standard Model to 〈Tµµ 〉 (ignoring
masses and interactions) is given by

〈Tµµ 〉 = ~(c C2 − a E)

with

a =
1

360(4π)2
[N0+

11

2
N1/2+62N1] > 0 , c =

1

120(4π)2
[N0+3N1/2+12N1] > 0 ,

N1 = 12 (electroweak bosons and gluons)

N1/2 = 3× 15 (three generations of left-handed and right-handed leptons and
quarks)

N0 = 4 (real components of the Higgs doubled)

As free fields in curved spacetime, their contribution to the conformal anomaly is
always additive and cannot be forced to cancel
[We have ignored contributions of the form �R as they are intrinsically ambiguous and can be shifted by

local counterterms]
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Conformal symmetry and the Big Bang singularity

Trace anomaly in four dimensions

However, in sharp contrast to two-dimensional conformal invariance, it is now
possible to introduce a new field with negative contribution to c and a while
preserving unitarity

The simplest way is provided by the so-called “dimensionless scalar field” ξ
obeying a 4th order field equation [Bogolubov et al. textbook, 1987]

�2ξ = 0

It is the simplest gauge invariant theory of spin 0:

ξ(x)→ ξ(x) + α(x) , �α = 0

An important property of this theory is that its physical content consists of a single
quantum state: the vacuum [Bogolubov et al. 87]

Two-point function: scale invariant (like a conventional scalar field in 2d)

〈ξ(x)ξ(y)〉 = −(4π)−1 log |κ2(x− y)2| ,
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Conformal symmetry and the Big Bang singularity

Trace anomaly in four dimensions

In curved spacetime, it can be uniquely extended to a conformally invariant theory

S = −1

2

∫
d4x
√
−g ξ44 ξ ,

where 44 is the unique conformally-invariant fourth order operator

44 = �2 + 2Rµν∇µ∇ν −
2

3
R� +

1

3
(∇µR)∇µ .

A nice feature of this field is that it contributes negatively to the conformal anomaly

a = − 28

360(4π)2
, c = − 8

120(4π)2
.

[Gusynin’89]

It opens the door for canceling the entire conformal anomaly !!!
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Conformal symmetry and the Big Bang singularity

Cancelling the conformal anomaly

Conformal anomaly cancelled for
Boyle-Turok, 2021; Miller-Volovik-Zubkov 2022

N1/2 = 4N1 , Nξ = 3N1 , N0 = 0

The Standard Model (including right-handed neutrinos, 3 generations, excluding
the Higgs)+36 dimension-zero scalars

N1 = 12 , N1/2 = 3× 16 , N0 = 0

N1 ≡W±, Z, γ, gluons
N1/2 ≡ eR, eL, νL, νR, uaL, uaR, daL, daR × 3 generations

N0 ≡ Higgs ∼ compositefield
Nξ ≡ 36 Dimension-zero scalars (to fix the vacuum; no new particles)
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Gravitational particle production and dark matter

Physical implication 1: gravitational particle creation and dark matter

So far, we have been neglecting the masses and the interactions of the basic
constituents

According to the seesaw mechanism [Minkowski 77], the mass matrix of the
neutrinos, after symmetry breaking, is given by (mD �MR)

M =

(
0 mD

mD MR

)
The dominant contribution is the Majorana mass MR, which is assumed to be
several orders of magnitude beyond the electroweak scale

The heavier νR is the natural candidate for dark matter (decoupled from all of the
other particles in the SM).
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Physical predictions: dark matter

Physical implication 1: gravitational particle creation and dark matter

It can only be produced gravitationally, via the mixing-frequency mechanism. The
predicted number density is [Beltran-Palau, Nadal-Gisbert, N.-S., Pla, 2023]

nk,h =
1

2
−
e−πκ sinh(2πκ)

√
κ

4π

(
e
−2iΘke

i π
4 Γ(iκ)Γ( 1

2 − iκ) + e
2iΘke

−i π
4 Γ(−iκ)Γ( 1

2 + iκ)
)

〈n(t)〉 = α(Θk)

(
MνR

t

)3/2

,

Low energy vacuum at the Big Bang Θk = 0. To match the observed dark matter
density [Beltran-Palau, Nadal-Gisbert, N.-S. and Pla, 2023]

MνR = 3× 108GeV

Low energy vacuum at late times (≡ vacuum proposed by Boyle-Finn-Turok
(2018))

MνR = 5× 108GeV
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Physical predictions: dark matter

Physical implications 2: black holes physics

The specialness of the 36 dimensionaless scalar fields ξ: no particles in
Minkowski space

〈0ξ|Tµν |0ξ〉Minkowski = 0

For asymptotically flat spacetime backgrounds (far from a classical black hole)

〈0ξ|Tµν |0ξ〉 ∼r→∞ 0

Vacuum “choice” for |0ξ〉 ∼ Boulware vacuum state

Vacuum choice for Standard Model fields |0SM 〉 ∼ Unruh state
This is somewhat analogous to the “hybrid quantum states” of 2d dilaton gravity,
in the language of Pataux-Sarkar-Solodukhin, PRD’23, PRL’23 [Pataux’s talk]
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Summary

Summary

Penrose’s Weyl curvature hypothesis (WCH) protects the smoothness of the big
bang singularity: it is conformally regular

It requires exact conformal symmetry (anomaly cancellation)

Anomaly cancelation has major implications for constraining the set of
fundamental fields

Implications 1: A natural candidate for dark matter νR, produced by gravitational
particle creation

Implications 2: A new scenario for quantum black holes [Work in progress]
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Summary

THANKS !!!
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