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Introduction

I Canonical gauge theories are the Hamiltonian description
of theories that possess local symmetries.

I These theories have systems of first class constraints.

I The well-known examples of such theories are
electrodynamics, Yang-Mills, gravity, strings and
superstrings.

I The invariance of General Relativity with respect to
spacetime diffeomorphisms implies that the Hamiltonian
represents a linear combination of constraints and
vanishes.

H = 0.



I That means that non all initial values of fields and
momenta are allowed.

I If one uses the Dirac prescription for the quantization of
the system with constraints, then one obtains

Ĥ |Ψ〉 = 0,

known as Wheeler-DeWitt equation.

I This is time-independent Schrödinger-type equation.

I It looks like a disappearance of time or problem of time in
quantum gravity.

I The different established approaches to the
re-introduction of time are based on the identification of
some variables (degrees of freedom) with time parameter.

I In this way one can obtained the standard time-dependent
Schrödinger equation for quantum states living on a
properly constructed Hilbert space.



I In a recent preprint
A.K. Burns, D.E. Kaplan, T. Melia and S. Rajendran,
Time Evolution in Quantum Cosmology, arXiv:
2204.03043 [gr-qc]
a recipe for a solution of the time problem was suggested:
to do not respect the super-Hamiltonian constraint.

I In this case the Hamiltonian becomes non-vanishing and
the time reappears.

I However, it is not a method of quantization of gravity. It
is a different theory.

I If one relaxes some constraints, one obtains instead some
additional degrees of freedom.



I Different examples of such a creation of new degrees of
freedom due to relaxation of constraints are known.

I We have tried to develop a formalism describing such
models in a unified language.

I This formalism is rather cumbersome.

I I shall present some particular examples.



Fock and Stueckelberg approach

V.A. Fock in
V. Fock, Sobstvennoe vremya v klassichskoj i kvantovoj
mekhanike (in Russian), Izv. AN SSSR, Ser. Fizika, No 4-5,
551 (1937); republished in the book Raboty po kvantovoj
teorii polya (Works on Quantum Field Theory), publishing
house of Leningrad University (1957); also published as Die
Eigenzeit in der klassischen und in der Quantennechanik, Phys.
Zeit. d. Sowjetunion 12, 404 (1937),



and more explicitly,
E. Stueckelberg in
E. C. G. Stueckelberg, Remarque à propos de la création de
paires de particules en théorie de relativité, Helv. Phys. Acta
14, 588 (1941);
La signification du temps propre en mécanique ondulatoire,
Helv. Phys. Acta 14, 322 (1941).
La mécanique du point matériel en théorie de relativité et en
théorie des quants, Helv. Phys. Acta 15, 23 (1942),

proposed a relaxation of the relativistic particle mass-shell
constraint:

p20 − ~p2 = m2,

(which can be seen as a particle’s version of the
Wheeler-DeWitt equation, the role of diffeomorphism
invariance is played by time reparametrization invariance).



I That means that the particle’s motion is not restricted to
a timelike worldline.

I Its mass is determined by the initial values of its
four-momentum.

I The trajectories need no longer be timelike.

I This phenomenon Stueckelberg used to describe pair
creation and annihilation by identifying antiparticles with
particles going backward in Minkowski time.

I The idea of Fock and Stueckelberg may be seen as a
passage from the Jacobi action principle, which yields the
trajectories in a reparametrization-invariant way to the
Hamilton action principle, where there is a preferred time
parameter.

I It is equivalent to promoting the mass to a New degree of
freedom, which is conjugate to particle’s proper time, also
elevated to a new degree of freedom.



Smech =

∫ τ1

τ0

dτ(paq̇
a − H(pa, q

a)).

Gauging the time with an independent auxiliary field λ(τ),
one obtains

S̃mech =

∫ τ1

τ0

dτ(paq̇
a − λH(pa, q

a)).

The arbitrariness of τ is inherited from the arbitrariness of
λ(τ). One can define time internally by fixing τ to be a
function of the particle phase variables. This, together with
the Hamiltonian constraint H ≈ 0, means that two phase
variables are not independent. Thus, by gauging the time
translations, we exclude independent degrees of freedom.



We can restore the eliminated degrees of freedom with the
Fock-Stueckelberg mechanism. Using the gauge condition
χ = λ− Λ, the Fock-Stueckelberg action reads

SFS =

∫ τ1

τ0

dτ(paq̇
a − λH(pa, q

a)− w(λ− Λ)),

and it leads to the constraints H + w ≈ 0, λ ≈ Λ. The
Hamiltonian constraint is relaxed, the symmetry under local
time reparametrization is lost and eliminated degrees of
freedom are restored.



Relativistic particle

H(q, p) =
1

2
g ab(q)papb + m(V (q)− E ).

The configuration space action is

Sparticle =

∫ τ1

τ0

dτ

(
gabq̇

aq̇b

2λ
− λm(V − E )

)
.

The variation with respect to λ gives

−gabq̇
aq̇b

2λ2
−m(V − E ) = 0.

Then

SJacobi = −
∫ τ1

τ0

dτ
√

2m(E − V )gabq̇aq̇b.



Using the Fock-Stueckelberg mechanism we are led from this
theory to

SHamilton =

∫ τ1

τ0

dτ
(m

2
gabq̇

aq̇b − V + E
)
,

where we have taken the gauge λ = 1
m

.
The new Hamiltonian is identical to the old one, but it is not
constrained to vanish.
It is conserved.
To transition back from the Hamilton action principle to the
Jacobi principle it is enough to restrict oneself to initial values
for which Hamiltonian vanishes.



Dirac non-linear electrodynamics

P.A.M. Dirac, A new classical theory of electrons, Proc. Roy.
Soc. London A 209, 291 (1951).

“In the theory of the electromagnetic field without charges,
the potentials are not fixed by the field, but are subject to
gauge transformations. The theory thus involves more
dynamical variables than are physically needed. It is possible
by destroying the gauge transformations to make the
superfluous variables acquire a physical significance and
describe electric charges.”



L = −1

4
F abFab ,

Fab = ∂aAb − ∂bAa.

Let us consider the gauge condition

χ =
1

2
(AaAa + k2) ≈ 0 ,

with k being a constant. It fixes the Lagrange multiplier A0:

A0 = ±
√

A2
1 + A2

2 + A2
3 + k2.

The Dirac Lagrangian is

L = −1

4
F abFab −

w

2
(AaAa + k2).

The field equations

∂aF
ab = wAb =: −Jb ,

with ∂aJ
a = 0 due to the antisymmetry of Fab.



The appearance of the four-current Ja signals the presence of
new degrees of freedom with respect to the parent theory.
We obtain a modification of the vacuum Gauss law:

div~E = −wA0 =: J0 =: ρ .

The Dirac treatment can be generalized by considering a
more general gauge condition.



Generalized unimodular gravity
The unimodular gravity was first considered by Einstein in
A. Einstein, Spielen Gravitationsfelder im Aufbau der
materiellen Elementarteilchen eine wesentliche Rolle?
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1919,
349 (1919).
It was further developed in
W. G. Unruh, A unimodular theory of canonical quantum
gravity, Phys. Rev. D 40, 1048 (1989) and
M. Henneaux and C. Teitelboim, The cosmological constants
and general covariance, Phys. Lett. B 222, 195 (1989).
The action in this theory is invariant with respect to
volume-preserving diffeomorhisms, which constitute a
subgroup of the group of the spacetime diffeomorphisms.
The cosmological constant arises as an integration constant.



One can see the origin of the unimodular gravity in other
terms.
In the Arnowitt-Deser-Misner formalism:

gµν =

(
NaN

a − N2 Nb

Nb hab

)
.

The lapse function N and the shift functions Na play the role
of Lagrange multipliers.
If one fixes the value of the lapse function as

N =
1√
h
, h = det hab,

one obtains the unimodular gravity.
Indeed,

N =
1√
h
⇒ det(|g |) = N

√
h = 1

accept only the volume-preserving diffeomorphisms.



Choosing a general function

N = Ñ(h),

we obtain the generalized unimodular gravity.

A. O. Barvinsky and A. Yu. Kamenshchik, Darkness without
dark matter and energy - generalized unimodular gravity,
Phys. Lett. B 774, 59 (2017).



We add to the action the term

λ(N − Ñ(h))

to fix the lapse function. The variation of this term gives a
contribution into the effective energy-momentum tensor,
corresponding to the appearance of dark matter without dark
matter:

T µν
eff =

2√
|g |

δ

δgµν

∫
d4x (−λ(N − Ñ(h)).

It gives us a perfect fluid with the four-velocity

vµ =

(
1

Ñ
,−Na

Ñ

)
,

energy density

ε =
λ√
h

and pressure

p = 2
d ln Ñ

dh
ε = wε.



We should fix the acceptable forms of the new Lagrange
multiplier λ.
It is possible to do it requiring the conservation of the
energy-momentum tensor. As a result one can find such
expressions:

λ =
λ0

Ñ
√
h
,

ε =
w0

Ñ
√
h
,

p = 2
d ln Ñ

dh

λ0

Ñ
√
h
.



One can see that at

Ñ =
1√
h

we reproduce the expressions for the unimodular gravity, while
at

Ñ = 1,

we obtain dust without dust.

General analysis of the new degrees of freedom is rather a
complicated problem (A.O. Barvinsky, N. Kolganov, A. Kurov
and D. Nesterov, Dynamics of the generalized unimodular
gravity theory, Phys. Rev. D 100 (2019) 2, 023542).



Generalized unimodular gravity and Friedmann

universe
ds2 = N2(τ)dτ 2 − a2(τ)dl2,

where a is the scale factor and dl2 is the interval of the
three-dimensional Euclidean space.
The gravitational part of the action is proportional to∫

dτ
ȧ2a

N
,

where “dot” means the differentiation with respect to the
time parameter τ .
The variation with respect to the lapse function N gives the
term

− ȧ2a

N2
.



In the presence of a perfect fluid, variating the corresponding
part of the action one arrives to the first Friedmann equation,
which is nothing but the 00 component of the Einstein
equations or the super-Hamiltonian constraint

ȧ2

N2a2
=

1

a2

(
da

dt

)2

= ε,

where t is the cosmic time parameter. If the fluid satisfies the
equation of state

p = wε,

then the energy density behaves as

ε ∼ 1

a3(1+w)
.



Now, let us fix the gauge as

N = an

and consider an empty spacetime. Then the action is∫
dτ ȧ2a1−n.

The equation of motion is

d

dτ
(2ȧa1−n) + (n − 1)ȧ2a−n = 0.

Integrating this equation we obtain

ȧ2

a2
=

C

a3−n
.

The time parameter τ related to the lapse function N is
connected with the cosmic time t, corresponding to the special
lapse function N = 1, by means of the relation

d

dτ
=

d

dt

dt

dτ
= N

d

dt
.



The effective Friedmann equation:

1

a2

(
da

dt

)2

=
C

a3+n
.

The choice of the cosmic time gauge fixing N = 1, or n = 0
gives us the effective Friedmann equation for the universe filled
with some effective dust. The choice of the unimodular gauge
N = a−3, n = −3, gives us the universe filled with the
cosmological constant.
Generally, the exponent n is connected with the equation of
state parameter as

n = 3w .

If n = −1 one has a string gas. If n = 1, one has a radiation,
if n = 3, one has a stiff matter.



Note that for the case of the flat Friedmann universe

γ = a6.

Thus, the exponent r in

N = γr

is
r =

n

6
.



Bianchi identites, Einstein equations and generalized

unimodular gravity

Contracted Bianchi identity:

∇iR
i
j −

1

2
∂jR = 0.

For j = 0:

∂0

(
R0
0 −

1

2
R

)
= Γα0βR

β
α − Γα0αR

0
0 .

We have used the fact that the variation with respect to the
shift functions gives the equality

R0
α = 0.



After having done this variation with respect to the shift
functions, we can choose them equal to zero. Then

Γα0β =
1

2
γαδγ̇δβ,0.

Then
(γp),0 = pγpγαβγαβ,0 = 2pγpΓα0α.



Hence,

∂0

[
γp
(
R0
0 −

1

2
R

)]
= γp

[
Γα0β

(
Rβ
α −

1

2
δβαR

)
+ (2p − 1)Γα0α

(
R0
0 −

1

2
R

)]
.

If the lapse function N is a fixed function of the determinant
of the spatial metric γαβ, namely

N = γp−
1
2 = γ

w
2 ,

then we obtain the following modified spatial-spatial Einstein
equation:

Rβ
α −

1

2
δβαR + wδβα

(
R0
0 −

1

2
R

)
= 0.



Using this equation and the Bianchi identities, we obtain

∂0

[
γ

w+1
2

(
R0
0 −

1

2
R

)]
= 0.

Then

R0
0 −

1

2
R =

C (xα)

γ
w+1
2

,

where C (xα) is an arbitrary function of the spatial
coordinates.
This is 00 component of the effective Einstein equations.
Its right-hand is T 0

0 component of the energy-momentum
tensor of an effective fluid.

Tij = (ε + p)uiuj − gijp,

u0 =
1

N
.



The energy density of the effective fluid

ε =
C (xα)

γ
w+1
2

.

Then

Rβ
α −

1

2
δβαR = −wδβαε.

The right-hand side of this equation gives the pressure of the
perfect fluid with the equation of state parameter w .
Should additional bounds on the function C (xα) be imposed?



Starting from the energy-momentum tensor conservation law

∇iT
i
j = 0,

we arrive to the following equation:

wuiuj(∇iε) + (1 + w)εui(∇iuj)− w(∇jε) = 0.

Let us consider the case of the dust:

N = 1, w = 0, u0 = u0 = 1.

Then the equation above is reduced to

ui∇iuj = 0,

which is always true and does not give bounds on the
function C (xα).



When w 6= 0, we arrive to the equation

(1 + w)εu0(∇0uα)− w(∇αε) = 0.

It is satisfied if and only if

C (xα) = const.

Thus, in the case of the non-dust effective matter with
w 6= 0, the effective energy density is

ε =
C0

γ
w+1
2

.



Comments concerning Dirac non-linear

electrodynamics

In the Lagrangian

L = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ,

we substitute the zero component of the potential A0, which
is a Lagrange multiplier, by some given function

A0 = A0(~A2).

Thus, we have a Lagrangian, which depends only on three
components of the potential ~A.



The Euler-Lagrange equations for this Lagrangian:

L = −1

4
FijF

ij − 1

2
(∂0Ai − 2A′0A

j∂iAj)
2,

∂L

∂(∂kAi)
= −F ki + 2A′0A

iF 0k ,

∂L

∂(∂0Ai)
= −F 0i ,

∂

∂xk
∂L

∂(∂kAi)
= −∂kF ki + 2A′0A

i∂kF
0k + 2A′0A

i
,k ,

∂

∂x0
∂L

∂(∂0Ai)
= −∂0F 0i ,

∂L

∂Ai
= 2A′o∂kAiF

0k .



Finally,
∂0F

0i + ∂kF
ki = 2A′0A

i∂kF
0k .

In the standard Maxwell electrodynamics we have three
dynamical equations (including second time derivatives),
obtained by the variation of the Lagrangian with respect to
the spatial components Ai of the potential and one constraint,
obtained by the variation with respect to the time component
A0.

In Dirac electrodynamics we have three dynamical equations
and no constraints.

Instead we have effective sources.



Cosmological Consequences of Unconstrained Gravity

and Electromagnetism

L. Del Grosso, D.E. Kaplan, T.Melia, V. Poulin, S. Rajendran
and T. L. Smith,
Cosmological Consequences of Unconstrained Gravity and
Electromagnetism, arXiv: 2405.06374 [hep-ph].

What happens if the gravitational constraints and the Gauss
law are relaxed simultaneously?



The relaxation of the Gauss law implies the appearance of the
so called Shadow charge which works as a source of
electromagnetic fields.
However, it does not feel the electromagnetic field.
Thus, it is different from the standard electric charge.
It is well known that the equation of motion for charged
particles Lorentz force is independent with respect to Maxwell
equations.
Thus, the existence of two kinds of charges do not contradict
to the common wisdom.
The interplay between possible existence of dark matter and
shadow charge opens interesting phenomenological
opportunities.



Concluding remarks

I Generally, one can say that in a theory with gauge
symmetries or in a theory with first-class constraints, the
relaxation of some of these constraints implies the
appearance of new physical degrees of freedom.

I The relaxation of some of constraints gives birth to a new
classical theory different from the “parent” theory.

I It has nothing common with the problem of time in
quantum gravity.

I The study of the new physical degrees of freedom arising
in this new theory is an interesting mathematical problem.

I Is it possible to find the observational difference between
the predictions of alternative theories?


