

Conformal Anomalies: theory and applications

Conformal anomaly, nonlocal effective action and the metamorphosis of the running scale

A.O.Barvinsky

Theory Department, Lebedev Physics Institute, Moscow

with Wlad Wachowski

June 5, 2024, Université de Tours, Facultés des Sciences et Techniques Parc de Grandmont, Tours

Plan of talk

Trace anomaly effective action debate (Deser-Duff-Schwimmer-Mottola)

Anomaly action from conformal gauge fixing (Riegert-Fradkin-Tseytlin and Fradkin-Vilkovisky gauges)

Covariant curvature expansion and trace anomaly action

Applications: renormalized stress tensor on conformally related spacetime, Casimir energy on static Einstein Universe, cosmological initial conditions

RG running of the cosmological and gravitational couplings and metamorphosis of their running scale to their higher-dimensional "partners"

Conundrum of higher derivative quantum gravity (modification of betafunctions in quadratic gravity?)

A.B., A. G. Mirzabekian and V. V. Zhytnikov, gr-qc/9510037

A.Mirzabekian, G.A.Vilkovisky, V.Zhytnikov, Phys.Lett. B369 (1996) 215-220, arXiv:hepth/9510205

A.B.& W. Wachowski, Phys.Rev.D 108 (2023) 4, 045014, arXiv:2306.03780

Conformal anomaly debate

Trace (Weyl invariance) anomaly in curved spacetime

$$
\langle T^{\mu}_{\mu} \rangle \equiv \frac{2}{g^{1/2}} g_{\mu\nu} \frac{\delta \Gamma_A}{\delta g_{\mu\nu}} = \frac{1}{16\pi^2} \left(\alpha C_{\mu\nu\alpha\beta}^2 + \beta E + \gamma \Box R \right),
$$

$$
E = R_{\mu\nu\alpha\gamma}^2 - 4R_{\mu\nu}^2 + R^2
$$

Riegert , Fradkin, Tseytlin (1984), Antoniadis , Mottola (1992), Antoniadis, Mazur, Mottola (1994)

$$
-\frac{1}{32\pi^{2}}\left(\frac{\gamma}{6} + \frac{\beta}{9}\right) \int d^{4}x \, g^{1/2}R^{2}(g)
$$
\n
$$
= \Box^{2} + 2R^{\mu\nu}\nabla_{\mu}\nabla_{\nu} - \frac{2}{3}R\Box + \frac{1}{2}(\nabla^{\mu}R)\nabla_{\mu}
$$
\nwhere \Box^{2} is the function (1594)

Paneitz $\Delta_4 = \Box^2$ *operator* 3^{10} 3^{10} 3^{10}

> *Objections: S.Deser, A.Schwimmer (hep-th/9302047),* Γ *^{<i>A*} *vs* (Weyl) log (box) (Weyl) *S.Deser (hep-th/9911129) , double pole inconsistency*

> > *S.Deser, M.J.Duff and C.J.Isham*

Ambiguity in the conformal split

 $\Gamma[g] = \Gamma_A[g] + \Gamma^{\text{conf}}[g], \quad \Gamma^{\text{conf}}[g] = \text{conformally invariant}$

 $\Gamma_A[g] = \frac{1}{64\pi^2} \int d^4x g^{1/2} \left[\alpha C_{\mu\nu\alpha\beta}^2 + \frac{\beta}{2} \left(E - \frac{2}{3} \Box R \right) \right] \frac{1}{\Delta_A} \left(E - \frac{2}{3} \Box R \right)$

Conformal gauge fixing

Orbit of the conformal
\n
$$
g_{\mu\nu} = e^{2\sigma} \bar{g}_{\mu\nu}, \quad \frac{\delta \Gamma[e^{2\sigma} \bar{g}]}{\delta \sigma} = g^{1/2} \langle T^{\mu}_{\mu} \rangle \Big|_{g = e^{2\sigma} \bar{g}}
$$
\n
$$
\Gamma[g] - \Gamma[\bar{g}] = \frac{1}{16\pi^2} \int d^4 x g^{1/2} \left\{ \left[\alpha C^2_{\mu\nu\alpha\beta} + \beta \left(E - \frac{2}{3} \Box R \right) \right] \sigma - 2\beta \sigma \Delta_4 \sigma \right\}
$$
\n
$$
- \frac{1}{32\pi^2} \left(\frac{\gamma}{6} + \frac{\beta}{9} \right) \int d^4 x \left(g^{1/2} R^2(g) - \bar{g}^{1/2} R^2(\bar{g}) \right) \equiv \Delta \Gamma[\bar{g}, \sigma]
$$
\nWess-Zumino action

Choice of gauge selecting the representative of the equivalence class

$$
\chi[\bar{g}] \equiv \chi[g \, e^{-2\sigma}] = 0 \quad \Rightarrow \quad \sigma = \Sigma_{\chi}[g] \quad \Rightarrow \quad \bar{g}_{\mu\nu} \equiv g_{\mu\nu} \, e^{-2\Sigma_{\chi}[g]} = \text{conformal invariant}
$$
\n
$$
\Gamma[\bar{g}] + \frac{1}{32\pi^2} \Big(\frac{\gamma}{6} + \frac{\beta}{9}\Big) \int d^4x \, \bar{g}^{1/2} R^2(\bar{g}) = \text{conformal invariant}
$$

Decomposition of the total action in conformal and anomalous parts

$$
\Gamma[g] = \Gamma_{\chi}[g] + \Gamma[\bar{g}] \Big|_{\bar{g}_{\mu\nu}[g]}, \quad \bar{g}_{\mu\nu}[g] \equiv g_{\mu\nu} e^{-2\Sigma_{\chi}[g]}
$$
\n
$$
\underbrace{\qquad \qquad \text{conformization"}}
$$

Parameterization of anomalous actions by conformal gauges χ *:*

$$
\Gamma_{\chi}[g] = \frac{1}{16\pi^2} \int d^4x g^{1/2} \left\{ \left[\alpha C_{\mu\nu\alpha\beta}^2 + \beta \left(E - \frac{2}{3} \Box R \right) \right] \Sigma_{\chi} - 2\beta \Sigma_{\chi} \Delta_4 \Sigma_{\chi} \right\} -\frac{1}{32\pi^2} \left(\frac{\gamma}{6} + \frac{\beta}{9} \right) \int d^4x g^{1/2} R^2
$$

Exactly ``solvable" gauges:

Riegert-Fradkin-Tseytlin gauge

analogue of the Faddeev-Popov operator

$$
\chi_{\text{RFT}}[\bar{g}] = \bar{E} - \frac{2}{3}\bar{\Box}\bar{R} = 0
$$

$$
g^{1/2}\left(E - \frac{2}{3}\Box R\right) = \bar{g}^{1/2}\left(\bar{E} - \frac{2}{3}\bar{\Box}\bar{R}\right) + 4\bar{g}^{1/2}\bar{\Delta}_{4}\sigma, \quad g_{\mu\nu} = e^{2\sigma}\bar{g}_{\mu\nu}
$$

$$
\bar{g}^{1/2}\bar{\Delta}_{4} = g^{1/2}\Delta_{4}
$$

$$
\Sigma_{\text{RFT}} = \frac{1}{4\Delta_{4}}\left(E - \frac{2}{3}\Box R\right) = -\frac{1}{6\Box}R + O[R^{2}]
$$

Fradkin-Vilkovisky gauge

$$
\chi_{\text{FV}}[\bar{g}] = \bar{R} = 0
$$

$$
\bar{R} \sim \left(\Box - \frac{1}{6}R\right)e^{-2\sigma} = 0 \Rightarrow \Sigma_{\text{FV}} = -\ln\left(1 + \frac{1}{6\Box - R/6}R\right) = -\frac{1}{6\Box}R + O[R^2]
$$

$$
\Sigma_{\text{RFT}} = \Sigma_{\text{FV}} + O[R^2]
$$

Comparison of anomaly actions in different gauges

$$
\Gamma_{\chi_1} - \Gamma_{\chi_2} = \frac{1}{16\pi^2} \int d^4x g^{1/2} \Big(\Sigma_{\chi_1} - \Sigma_{\chi_2} \Big) \Big[\alpha C_{\mu\nu\alpha\beta}^2 + \beta \Big(E - \frac{2}{3} \Box R \Big) - 2\beta \Delta_4 \Big(\Sigma_{\chi_1} + \Sigma_{\chi_2} \Big) \Big]
$$

$$
\delta_{\sigma} \Sigma_{\chi_{1,2}} = \sigma,
$$
\n
$$
\delta_{\sigma} \equiv 2 \int d^4 x \,\sigma(x) g_{\mu\nu}(x) \frac{\delta}{\delta g_{\mu\nu}(x)}
$$
\n
$$
\delta_{\sigma} \left[g^{1/2} \left(E - \frac{2}{3} \Box R \right) \right] = 4g^{1/2} \Delta_4 \sigma
$$
\n
$$
\int_{\delta_{\sigma} \left(\Gamma_{\chi_1} - \Gamma_{\chi_2} \right) = 0}
$$

$$
\Gamma_{\chi_{\rm{RFT}}} - \Gamma_{\chi_{\rm{FV}}} = \frac{1}{16\pi^2} \int d^4x g^{1/2} \left(\Sigma_{\rm{RFT}} - \Sigma_{\rm{FV}} \right) \left[\alpha C_{\mu\nu\alpha\beta}^2 + 2\beta \Delta_4 \left(\Sigma_{\rm{RFT}} - \Sigma_{\rm{FV}} \right) \right]
$$

$$
\Sigma_{\mathsf{RFT}} - \Sigma_{\mathsf{FV}} = \frac{1}{2} \frac{1}{\Delta_4} \Big(E - \frac{2}{3} \Box R \Big) + \ln \Big(1 + \frac{1}{6 \Box - R/6} R \Big) = \text{conformal invariant}
$$

Covariant curvature expansion \equiv Feynman diagram expansion

$$
\Gamma = \frac{1}{2} \operatorname{Tr} \ln F(\nabla), \quad F(\nabla) = \Box + P - \frac{1}{6}R,
$$

local power div
\n
$$
\Gamma = \overbrace{\Gamma_0 + \Gamma_1}^{I_0 + \Gamma_1} + \Gamma_2 + \Gamma_3 + O[\Re^4]
$$
\n
$$
\Gamma_n \sim \Re^n, \quad \Re = (R^{\mu}_{\nu\alpha\beta}, \mathcal{R}_{\mu\nu}, P), \quad [\nabla_{\mu}, \nabla_{\nu}] = \mathcal{R}_{\mu\nu}
$$

Quadratic order

S.Deser, M.J.Duff and C.J.Isham, Nucl. Phys. B111 (1976) 45

$$
\Gamma_2^{\text{dim reg}} = -\frac{\Gamma(2-\omega)\Gamma(\omega+1)\Gamma(\omega-1)}{2(4\pi)^{\omega}\Gamma(2\omega+2)} \int dx \, g^{1/2}(x) \, \text{tr} \left\{ R_{\mu\nu}(-\Box)^{\omega-2} R^{\mu\nu} \hat{1} \right\}
$$

$$
-\frac{1}{18} (4-\omega)(\omega+1) R(-\Box)^{\omega-2} R \hat{1} - \frac{2}{3} (2-\omega)(2\omega+1) \, \hat{P}(-\Box)^{\omega-2} R
$$

$$
+2(4\omega^2-1) \, \hat{P}(-\Box)^{\omega-2} \hat{P} + (2\omega+1) \hat{R}_{\mu\nu}(-\Box)^{\omega-2} \hat{R}^{\mu\nu} \Big\}, \qquad \omega = \frac{d}{2} \to 2
$$

A.0. Barvinsky and G.A.Vilkovisl

A.O.Barvinsky and G.A.Vilkovisky, Nucl.Phys. B 333 (1990) 471-511

Origin of logarithmic form factors

$$
\Gamma(2-\omega)(-\square)^{\omega-2} \Rightarrow \gamma(\square) = \ln\left(-\frac{\square}{\mu^2}\right)
$$

Origin of RFT action in quadratic order of curvature expansion

Conformal scalar field:
$$
P = 0
$$
, $\hat{\mathcal{R}}_{\mu\nu} = 0$, $\gamma = -\frac{1}{180}$, $\beta = \frac{1}{360}$, $\alpha = -\frac{1}{120}$

$$
I_2^{\text{renormalized}} = \frac{1}{2(4\pi)^2} \int dx \, g^{1/2}(x) \left\{ \frac{1}{60} \left[R_{\mu\nu} \gamma(-\Box) R^{\mu\nu} - \frac{1}{3} R \gamma(-\Box) R \right] + \frac{1}{1080} R^2 \right\}
$$

\n
$$
= \frac{1}{2(4\pi)^2} \int dx \, g^{1/2}(x) \left\{ \frac{1}{120} C_{\mu\nu\alpha\beta} \gamma(-\Box) C^{\mu\nu\alpha\beta} + \frac{1}{1080} R^2 \right\} + O[\Re^3]
$$

\n
$$
\text{Weyl invariant} \qquad \text{up to } O[\Re^3]
$$

\n
$$
I_{\text{RFT}} \Big|_{\gamma=-\frac{1}{180}, \beta=\frac{1}{360}, \alpha=-\frac{1}{120}} = \frac{1}{2(4\pi)^2} \int dx \, g^{1/2}(x) \, \frac{1}{1080} R^2 + O[\Re^3]
$$

Cubic order

A.Barrvinsky, Yu.Gusev, G.Vilkovisky and V.Zhytnikov, University of Manitoba report (Winnipeg, 1993) 192 p., arXiv:0911.1168

$$
\Gamma_3 = \frac{1}{2(4\pi)^2} \int dx \, g^{1/2}(x) \sum_{M=1}^{29} \Gamma_M(-\square_1, -\square_2, -\square_3) \, I_M(x_1, x_2, x_3) \Big|_{x_1 = x_2 = x_3 = x},
$$

Curvature invariants

$$
I_M(x_1, x_2, x_3) \sim \nabla \dots \nabla \Re(x_1) \Re(x_2) \Re(x_3)
$$

Structure of formfactors

$$
\Gamma_M = A_M \Gamma + \sum_{1 \le i < k}^3 C_M^{ik} \frac{\ln(\square_i/\square_k)}{(\square_i - \square_k)} + B_M
$$

Fundamental one-loop form factor

$$
\Gamma = \int_{\alpha \ge 0} d^3 \alpha \frac{\delta (1 - \alpha_1 - \alpha_2 - \alpha_3)}{\alpha_1 \alpha_2 (-\Box_3) + \alpha_1 \alpha_3 (-\Box_2) + \alpha_2 \alpha_3 (-\Box_1)}
$$

\n
$$
(A_M, C_M^{ik}) = \frac{P_M(\Box_1, \Box_2, \Box_3)}{D^6 \Box_1 \Box_2 \Box_3}
$$

\n
$$
D = \Box_1^2 + \Box_2^2 + \Box_3^2 - 2\Box_1 \Box_2 - 2\Box_1 \Box_3 - 2\Box_2 \Box_3
$$

\n
$$
\text{Ssentially}
$$

\n
$$
\text{Ssentially}
$$

Tree structure form factors

$$
B_M = \frac{\tilde{P}_M(\Box_1, \Box_2, \Box_3)}{\Box_1 \Box_2 \Box_3}
$$

Cubic part of the Fradkin-Vilkovisky anomaly action expanded in curvature

¬

Conformal resummation: Fradkin-Vilkovisky anomaly action

Applications

1) Renormalized stress tensors on conformally related spacetimes

$$
\sqrt{g}\left\langle T^\alpha_\beta\right\rangle-\sqrt{\bar{g}}\left\langle \bar{T}^\alpha_\beta\right\rangle=2\bar{g}_{\beta\gamma}\frac{\delta}{\delta\bar{g}_{\alpha\gamma}}\Delta\varGamma[\,\bar{g},\sigma\,]
$$

Generalization of Brown-Cassidy formula to conformally non-flat spacetime:

$$
\sqrt{g}\left\langle T_{\beta}^{\alpha}\right\rangle -\sqrt{\overline{g}}\left\langle \overline{T}_{\beta}^{\alpha}\right\rangle =\frac{\sqrt{g}}{8\pi^{2}}\left[\beta^{(3)}H_{\beta}^{\alpha}+\frac{\alpha}{18}\overbrace{(1)}^{(1)}H_{\beta}^{\alpha}+2\beta R^{\mu\nu}C^{\alpha}{}_{\mu\beta}+\frac{1}{2}g^{\alpha\beta}R_{\mu\nu}^{2}+\frac{1}{4}g^{\alpha\beta}R^{2}}\right]
$$
\n
$$
-\frac{\sqrt{\overline{g}}}{4\pi^{2}}\alpha\left(\overline{R}^{\mu\nu}+2\overline{\nabla}^{\mu\nu}\overline{\nabla}^{\nu}\right)\left(\sigma\overline{C}^{\alpha}{}_{\mu\beta\nu}\right)
$$
\n
$$
-\frac{\sqrt{\overline{g}}}{4\pi^{2}}\alpha\left(\overline{R}^{\mu\nu}+2\overline{\nabla}^{\mu\nu}\overline{\nabla}^{\nu}\right)\left(\sigma\overline{C}^{\alpha}{}_{\mu\beta\nu}\right)
$$

2) Transition to flat metric from a conformally flat one – covariant expression

$$
C_{\alpha\beta\mu\nu} = 0 \Rightarrow \bar{R}^{\alpha}_{\ \beta\mu\nu} = 0, \quad \bar{g}_{\mu\nu} = e^{-2\Sigma_{\text{RF}}[g]}g_{\mu\nu}\Big|_{C_{\alpha\beta\mu\nu} = 0}
$$

$$
\Sigma_{\text{RF}} = \frac{1}{4\Delta_4} \mathcal{E}_4
$$

covariant expression

3) Casimir vacuum energy E_{Vac} on static Einstein Universe

$$
ds_{EU}^2 = a_0^2 \left(d\eta^2 + d\Omega_{(3)}^2 \right) = e^{2\sigma} \left(d\rho^2 + \rho^2 d\Omega_{(3)}^2 \right) \equiv e^{2\sigma} ds_{\text{flat}}^2, \qquad \sigma = -\eta = \ln \frac{a_0}{\rho},
$$

\n
$$
F_{EU} - F_{\text{flat}} = \frac{3}{4} \left(\beta - \frac{\gamma}{2} \right) \int d\eta \implies E_{\text{vac}} = \frac{3}{4} \left(\beta - \frac{\gamma}{2} \right)
$$

\n
$$
\begin{array}{c}\n\text{in terms of the parameters} \\
\text{in terms of the parameters} \\
\text{of the trace anomaly}\n\end{array}
$$

Applications in the theory of microcanonical density matrix of the Universe: eradication of the vacuum no-boundary state, quasi-thermal initial conditions, origin of the Universe is a sub-Planckian phenomenon, the need of conformal higher-spin fields

The problem of running A and G

Running coupling constant = nonlocal form factor in effective action

$$
g \Rightarrow g(\mu), \quad \mu \frac{d}{d\mu} g(\mu) = \beta(g(\mu)),
$$

$$
-\frac{1}{4g^2(\mu)} \int d^4x F_{\mu\nu}^2 \Rightarrow -\int d^4x F_{\mu\nu}(x) \frac{1}{4g^2(\sqrt{-1/\mu^2})} F^{\mu\nu}(x)
$$

Tadpole (total derivative) nature problem for running Λ and G

$$
-\frac{\Lambda}{16\pi G} \int d^4 x \, g^{1/2} \Rightarrow -\frac{1}{16\pi} \int d^4 x \, g^{1/2} \frac{\Lambda(\square)}{G(\square)} \mathbf{1} = -\frac{1}{16\pi} \int d^4 x \, g^{1/2} \frac{\Lambda(0)}{G(0)}
$$

$$
-\frac{1}{16\pi G} \int d^4 x \, g^{1/2} R \Rightarrow -\frac{1}{16\pi} \int d^4 x \, g^{1/2} \frac{1}{G(\square)} R = -\frac{1}{16\pi} \int d^4 x \, g^{1/2} \frac{1}{G(0)} R
$$
not running

q

Renormalization group and metamorphosis of the running scale

The idea of RG:

 $S_{\{A\}}[\phi] = \sum_{\dim I, N} A_N \int d^d x I_N(\phi), I_N(\phi) = \partial ... \partial \underbrace{\phi ... \phi}_{N}, \dim \Lambda = d - \dim I$ *quantization and renormalization*

$$
\Gamma_{\{A(\mu)\}}[\phi] = S_{\{A(\mu)\}}[\phi] + \sum_{I} \int d^d x \,\mu^{d-\dim I} \Gamma_{\text{loop}}(\lambda(\mu) \,|\, -\frac{\partial}{\mu}) \, I(\phi)
$$
\n
$$
= S_{\{A(\mu)\}}[\phi] + \sum_{I} \int dp_1...dp_N \, \delta\left(\sum p\right) \mu^{d-\dim I} \, \Gamma_{\text{loop}}\left(\lambda(\mu)\,|\, -\frac{ip}{\mu}\right) \tilde{I}(p_1,...p_N)
$$
\nin momentum
representation
nonlocal form
factors

Dimensionless coupling

$$
\lambda(\mu) = \mu^{-\dim A} \Lambda(\mu)
$$

RG equation

$$
\mu \frac{d}{d\mu} \Gamma_{\{\Lambda(\mu)\}} [\phi] = 0 \Rightarrow \mu \frac{d}{d\mu} \lambda(\mu) = \beta (\{\lambda(\mu)\})
$$

Choice of scale in

\n
$$
\mu
$$

\nmomentum representation

$$
\mu \to P \equiv \sqrt{p_1^2 + \dots + p_N^2}
$$
 or $\sqrt{(p_1 + p_2)^2 + (p_3 + p_4)^2 + \dots}$
Mandelstam
variables

$$
\textit{Replacement}\,\mu\to P\;\;\textit{and UV limit}\,\{p\}\to\infty,\;\;\frac{\{p\}}{P}\to O(1)\;\;\Rightarrow\;\;\Gamma^\text{loop}_{\{A(\mu)\}}\ll 1
$$

Renormalized effective action in UV limit

$$
\Gamma \text{renorm}[\phi] \simeq S_{\{A(P)\}}[\phi], \quad P \to \infty
$$

Renormalization group and metamorphosis of the running scale

$$
S[g_{\mu\nu}] = \sum_{m,N} \Lambda_N^{(m)} \int d^dx \sqrt{g} \, \Re_N^{(d+m)}
$$

$$
\Re_N^{(m)} = \underbrace{\nabla \dots \nabla}_{m-2N} \overbrace{\Re \dots \Re}^N, \quad \dim \Re_N^{(m)} = m
$$

curvature invariants of dimension m

Covariant perturbation theory $g_{\mu\nu} = \tilde{g}_{\mu\nu} + h_{\mu\nu}$, $\tilde{R}^{\mu}{}_{\nu\alpha\beta} = 0$ G.A.Vilkovisky & A.B. *(1986-1990)*

$$
I_M^{(m)}(h) \propto \underbrace{\tilde{\nabla} \dots \tilde{\nabla} \overline{h(x)} \dots h(x)}_{m} \equiv I_M^{(m)}(h_1, h_2, \dots, h_M) \Big|_{x_1 = x_2 = \dots x_M = x}
$$

RG scale μ $\Lambda = \mu^{a-\text{dim }I} \lambda(\mu)$ dimensionless couplings

Effective action

$$
\text{F}[g_{\mu\nu}] = \sum_{I} \mu^{d-\text{dim }I} \int d^d x \sqrt{\tilde{g}} \gamma_I \Big(\{\lambda(\mu)\}, \frac{\tilde{\nabla}_1}{\mu}, \dots, \frac{\tilde{\nabla}_M}{\mu}\Big) I(h_1, \dots h_M) \Big|_{\{x\} = x}
$$
\n
$$
\text{nonlocal form factors}
$$
\n
$$
\mu \frac{d}{d\mu} \Gamma[g_{\mu\nu}] = 0 \to \mu \frac{d}{d\mu} \lambda(\mu) = \beta \Big(\{\lambda(\mu)\}\Big)
$$

Choice of scale

\n
$$
\tilde{D} \equiv \left(-\sum_{N=1}^{\infty} \tilde{\Box}_N \right)^{1/2}, \quad \tilde{\Box}_N \equiv \tilde{g}^{\mu\nu} \tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu} = 0,
$$
\n
$$
\tilde{D} I_N = \tilde{D}_N I_N, \quad \tilde{D}_N \equiv \left(-\sum_{M=1}^N \tilde{\Box}_M \right)^{1/2}, \quad \tilde{D}_0 = 0.
$$

Replacement $\mu \to \tilde{D}$ and UV limit $\tilde{\nabla} \to \infty$, $\frac{\nabla}{\tilde{D}_M} \to O(1)$ $\left[\mu^{4-\dim I}\gamma_I\big(\lambda(\mu)\left|\frac{\tilde{\nabla}_1}{\mu},...\frac{\tilde{\nabla}_N}{\mu}\right|\right]_{\mu\to \tilde{D}_N} \longrightarrow (\tilde{D}_N)^{4-\dim I}\gamma_I\big(\lambda(\tilde{D}_N)\left|O(1)\right\rangle \equiv (\tilde{D}_N)^{4-\dim I}\lambda_I(\tilde{D}_N)$

Covariantization:

$$
h_{\mu\nu} = -\frac{2}{\Box}R_{\mu\nu} + O[\mathbb{R}^2], \quad \tilde{\nabla}_{\mu} = \nabla_{\mu} + O[\mathbb{R}],
$$

$$
I_N^{(m)}(h_1, h_2, ... h_N) \to \frac{1}{\Box_1 ... \Box_N} \underbrace{\nabla ... \nabla}_{m} \mathbb{R}_1 ... \mathbb{R}_N + O[\mathbb{R}^{N+1}]
$$

Linear in curvature terms:

$$
D_1 = \sqrt{-1}
$$

$$
\int d^4x \sqrt{g} \sum_{m}^{\infty} \frac{(D_1)^{4-2m}}{\Box} \lambda_1^{(m)}(D_1) \underbrace{\nabla ... \nabla}_{2m} \Re(x) \sim \int d^4x \sqrt{g} \underbrace{\Gamma}_{m}^{\infty} c_m \lambda_1^{(m)}(\sqrt{-1}) R(x)
$$

Quadratic in curvature terms:

$$
D_2 = \sqrt{-\Box_1 - \Box_2},
$$

$$
\int d^4x \sqrt{g} F(\Box_1, \Box_2) \Re_1 \Re_2 = \int d^4x \sqrt{g} \Re_1 F(\Box, \Box) \Re_2
$$

Integration by parts

$$
\int d^4x \sqrt{g} \sum_m \lambda_2^{(m)}(D_2) \frac{(D_2)^{4-m}}{\Box_1 \Box_2} \nabla \dots \nabla \Re_1 \Re_2 \Big|_{x_1 = x_2}
$$

all factors in $\frac{(D_2)^{4-m}}{\Box \Box} \nabla ... \nabla$

completely cancel out due to integration by parts and Bianchi identities!

dimensionless RG form factors

Does not contribute – total derivative:

Running couplings of quadratic curvature terms:

Conundrum of higher derivative quantum gravity

Quadratic gravity action and propagator

$$
S \sim \int d^4x \sqrt{g}(-M^2 R + R^2) \sim \int d^4q h(q) (M^2 q^2 + q^4) h(-q) + \dots \Rightarrow \text{ propagator } \sim \frac{1}{M^2 q^2 + q^4}
$$

Modification of beta-functions by UV finite terms!

D.Buccio,J.Donoghue, G.Menezes, R.Percacci, arXiv:2403.02397

Conclusions

Nonlocal trace anomaly action from conformal gauge fixing --- RFT and FV anomaly actions

Recovery of anomaly action from covariant curvature expansion --- resolution of Deser-Duff-Schwimmer-Mottola debate?

Applications:

Renormalized stress tensor on conformally related spacetimes --- generalization of Brown-Cassidy formula;

Casimir energy on static Einstein Universe: CFT driven inflation --- microcanonical density matrix state of cosmology vs no-boundary wavefunction of the Universe (eradication of the vacuum no-boundary state, quasi-thermal initial conditions, origin of the Universe is a sub-Planckian phenomenon, the need of conformal higher-spin fields)

Metamorphosis of the running RG scale:

cosmological and Einstein terms to nonlocal form factors of their higher-order "partners" – long-distance modification of GR?

Enigma of higher-derivative gravity models (modification of beta-functions in quadratic gravity?)

Thank you!