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Flat sections of Lie group

Take the product bundle over CP1 with the fiber G,
(CP1 ×G , π,CP1), (G is a reductive Lie group).
Consider the flat section s

s ∶CP1 → G

x ↦ Ψ(x)

we associate the meromorphic connection :

∇Ψ = 0 , ∇ = d −D(x)dx (1)

where:

D(x) ∈ g⊗C(x).

g is the Lie algebra of the group G.
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The flat section can be written in some faithful representation of G
as :

d

dx
Ψ(x) = D(x)Ψ(x) Ψ(x) ∈ G . (2)

Example (Airy differential system)

For G = SL(2,C) (g = sl(2,C)), and

D(x) = (0 1
x 0
)

The flat section Ψ is given in terms of two linearly independent
solutions of the Airy differential equation:

f
′′ − xf = 0 (3)

Ψ(x) = (Ai(x) Bi(x)
Ai ′(x) Bi ′(x)) ∈ G = SL(2,C).
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Example (Gaussian Unitary Ensemble (GUE))

Let N > 0 be positive integer. For G = GL(2,C) (g = gl(2,C)), and

D(x) = (x −1
N 0

)

The flat section is given by:

Ψ(x) = (HN−1(x) H̃N−1(x)
HN(x) H̃N(x)

)

where HN(x) is the Nth Hermite polynomial, and H̃N is the Nth

Hermite function (which is not a polynomial of x). Both HN and
H̃N are solutions of the equation:

f ′′(x) − xf ′(x) +Nf (x) = 0.
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Adjoint Flat sections
Consider now a flat section M in the adjoint bundle with an adjoint
connection:

∇adj = d − [Ddx , .], ∇adjM = 0.

In other words:
d

dx
M(x) = [D(x),M(x)].

The connection ∇ acts in the adjoint bundle by the commutator.
We have the following lemma:

Lemma
Let Ψ a flat section of the group bundle. Every adjoint flat section
M must be of the form:

M(x) = Ψ(x)EΨ(x)−1 = AdΨ(x) E

where E ∈ g is constant.
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Correlators
Take a faithful representation of the group G into GL(r ,C), we
define the following functions:

Definition (Correlators)

Let Ψ(x) a once for all chosen flat section of the group bundle. Let
M(x .E) = Ψ(x)EΨ(x)−1 a flat section of the adjoint bundle,
parametrized by E ∈ g. We define:

W1(x .E) = TrD(x)M(x .E)

and for n ≥ 2

Wn(x1.E1, . . . , xn.En) = ∑
σ∈S1−cycle

n

(−1)σ
Tr∏n

i=1 M(xσi(1).Eσi(1))
∏n

i=1(xi − xσ(i))

where S1−cycle
n is the subset of Sn of permutations having just

1-cycle.
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Correlators

with X = x .E ∈ CP1 × g, is a pair of a point and a Lie algebra
element, i.e. a Lie algebra weighted point.
These funcions were first introduced in [BE09] (for random matrix
theory), and then used in [BDY16b; BDY16a](for integrable
systems, KDV, intersection numbers). They are useful functions in
many applications (random matrix theory, integrable systems...).

Example (Correlators W2, W3)

W2(X1,X2) =
1

(x1 − x2)2
TrM(X1)M(X2)

W3(X1,X2,X3) =
TrM(X1)[M(X2),M(X3)]
(x1 − x2)(x2 − x3)(x3 − x1)

We can now using these definitions exhibit the differential equations
satisfied by these Wns
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ODEs for Correlators
Let’s try to find the ODE for W1, we have:

W1(x) = TrD(x)M(X )
W ′

1(X ) =Tr (D′(x)M(X ) +D(X ) [D(x),M(X )]) = Tr (D′(x)M(X ))
W ′′

1 (X ) = Tr (D′′(x) + [D′(x),D(x)])M(X )
dk

dxk
W1(X ) = TrDk(x)M(X )

where:
Dk+1 = D′k + [Dk ,D], D0 = D

For each k , Dk(x) ∈ g⊗C(x). Since g is finite dimensional, at
most dim g of them can be linearly independent over the field C(x).
Therefore, there exist some rational coefficients αk(x) such that

dim g

∑
k=0

αk(x)Dk(x) = 0.

Then we can state the following theorem:
9/46



Theorem

W1(x) satisfies a linear differential equation of order dimg, with
polynomial coefficients αk(x):

dim g

∑
k=0

αk(x)
dk

dxk
W1(x .E) = 0. (4)

The coefficients αk(x) are determined by

dim g

∑
k=0

αk(x)Dk(x) = 0 where D0 = D , Dk+1 = D′k+[Dk ,D].

(5)
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Example (Airy)

D0(x) = (
0 1
x 0
) , D1(x) = (

0 0
1 0
) , D2(x) = (

−1 0
0 1

)

D3(x) = (
0 −2
2x 0

)

The linear relation is:

1
2
D3 = 2xD1 −D0,

The ODE is:
1
2
W ′′′

1 = 2xW ′
1 −W1.

The 3 linearly independent solutions to this equation are:

W1(x .E)

with E any linear combination of the 3 Chevaley–basis vectors.
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GUE

Example (GUE)

We have g = gl(2) with dimgl(2) = 4:

D0(x) = (
x −1
N 0

) , D1(x) = (
1 0
0 0
) , D2(x) = (

0 −1
−N 0

)

D3(x) = (
−2N x
−Nx 2N

) , D4(x) = (
0 4N − x2 + 1

4N2 −Nx2 −N 0
) .

The linear relation is

D4 = (x2 − 4N)D2 + xD1 −D.

The ODE is:

W ′′′′
1 = (x2 − 4N)W ′′

1 + xW ′
1 −W1.
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ODE for W2

We have:
dk

dxk1
W2(X1,X2) = TrDk(x1,X2)M(X1)

where

D0(x1,X2) =
M(X2)
(x1 − x2)2

Dk+1(x1,X2) =
d

dx1
Dk(x1,X2) + [Dk(x1,X2),D(x1)]

We can state the following theorem:

Theorem
W2(X1,X2) satisfies an x1–differential equation of order dimg, with
coefficients αk(x1;X2) polynomials of x1:

dim g

∑
k=0

αk(x1;X2)
dk

dxk1
W2(X1,X2) = 0.
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Example for Airy

α0(x1, x2) = −6x4
1 Ai

4 (x2) + 4x3
1 x2 Ai

4 (x2) + 16x3
1 Ai

2 (x2)Ai
′2
(x2)

+ 2x2
1 x

2
2 Ai

4 (x2) − 16x2
1 x2 Ai

2 (x2)Ai
′2
(x2) − 2x2

1 Ai
3 (x2)Ai

′

(x2)

− 10x2
1Ai

′4
(x2) − 4x1x2 Ai

3 (x2)Ai
′

(x2) + 12x1x2Ai
′4
(x2)

+ 8x1 Ai (x2)Ai
′3
(x2) + 6x2

2 Ai
3 (x2)Ai

′

(x2) − 2x2
2Ai

′4
(x2)

− 6x2 Ai
4 (x2) − 8x2 Ai (x2)Ai

′3
(x2) + 6Ai2 (x2)Ai

′2
(x2)

α1(x1, x2) = −4x5
1 Ai

4 (x2) + 8x4
1 x2 Ai

4 (x2) + 8x4
1 Ai

2 (x2)Ai
′2
(x2)

− 4x3
1 x

2
2 Ai

4 (x2) − 16x3
1 x2 Ai

2 (x2)Ai
′2
(x2) − 4x3

1 Ai
3 (x2)Ai

′

(x2)

− 4x3
1Ai

′4
(x2) + 8x2

1 x
2
2 Ai

2 (x2)Ai
′2
(x2) + 8x2

1 x2 Ai
3 (x2)Ai

′

(x2)

+ 8x2
1 x2Ai

′4
(x2) − 3x2

1 Ai
4 (x2) + 4x2

1 Ai (x2)Ai
′3
(x2)

− 4x1x
2
2 Ai

3 (x2)Ai
′

(x2) − 4x1x
2
2Ai

′4
(x2) + 6x1x2 Ai

4 (x2)

− 8x1x2 Ai (x2)Ai
′3
(x2) + 3x2

2 Ai
4 (x2) + 4x2

2 Ai (x2)Ai
′3
(x2)

− 12x2 Ai
2 (x2)Ai

′2
(x2) + 6Ai

′4
(x2)

(6)
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ODE for Wn n ≥ 2
There is a tensor Q0,n ∈ (g∗)⊗n, such that:

Wn(X1, . . . ,Xn) = Q0,n(M(X1),M(X2), . . . ,M(Xn))

whose coefficients are rational functions of x1, ..., xn. For gl(r ,C),
the expression of Q0,n can be written as:

Q0,n = ∑
σ∈S1−cycle

n

(−1)σ ∑
l1,...,ln

e1
l1lσ(1) ⊗⋯⊗ enlnlσ(n)

∏i(xi − xσ(i))
(7)

with ei ,j ∈ gl(r ,C)∗ and satisfy ei ,j(M) =Mi ,j for any M ∈ gl(r ,C).
Morevoer, we get,

dk

dxk1
Wn(X1, . . . ,Xn) = Qk,n(M(X1),M(X2), . . . ,M(Xn))

where
Qk+1,n =

d

dx1
Qk,n + [Qk,n,D(x1)]1.
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The space (g∗)⊗n has dimension (dimg)n, and so at most (dimg)n
such tensors can be linearly independent. This implies

Theorem

There exist some coefficients α̃k,n(x1; x2, . . . , xn) ∈ C[x1, . . . , xn],
such that

dim gn

∑
k=0

α̃k,n(x1, . . . , xn)
dk

dxk1
Wn(X1,X2, . . . ,Xn) = 0.

The (dimg)n linearly independent solutions are obtained by
choosing (E1,E2, . . . ,En) ∈ g⊗n.
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ODE for W2

Let’s apply the previous formalism to W2(X1,X2), for g = gl(r ,C),
M(X1) and M(X2) are both r × r matrices, we can write:

W2(X1,X2) =
r

∑
i ,j ,i ′,j ′=1

Mi ′,j ′(X2)Q0;i ′,j ′,i ,j(x1, x2)Mi ,j(X1)

with Q0(x1, x2) the r2 × r2 matrix

Q0;i ′,j ′,i ,j(x1, x2) =
δi ,j ′δi ′,j

(x1 − x2)2
.

Then we have:

dk

dxk1
W2(X1,X2) = Qk(M(X1),M(X2)).

Qk is a rational quadratic form, belongs to g∗ ⊗ g∗
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We have the recursion:

Qk+1 =
d

dx1
Qk + [Qk ,D(x1)]1

where the commutator acts only on the 1st factor of g∗ ⊗ g∗ The
space g∗ ⊗ g∗ has dimension (dimg)2 and thus there must exist
some polynomial coefficients α̃k(x1, x2) ∈ C[x1, x2], such that

(dim g)2

∑
k=0

α̃k(x1, x2)Qk(x1, x2) = 0.

This implies,

Theorem

W2 satisfies a polynomial ODE of order (dimg)2. There exist some
coefficients α̃k(x1, x2) ∈ C[x1, x2], such that

(dim g)2

∑
k=0

α̃k(x1, x2)
dk

dxk1
W2(X1,X2) = 0.
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Recursion relations

Let’s consider a compatible sequence of integrable systems indexed
by an integer N, i.e. we have a section Ψ(N)(x) of a Lie group G
principal bundle over CP1 with rational connections:

d

dx
Ψ(N)(x) = D(N)Ψ(N)(x),

That satisfies a recursion

Ψ(N+1)(x) =R(N)Ψ(N)(x),

where each R(N)(x) is rational in x.

Proposition (Compatibility relation /discrete Lax equation)

The ODE and recursion are compatible:

D(N+1)(x)R(N)(x) −R(N)(x)D(N)(x) = d

dx
R(N)(x)
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We also define adjoint flat sections

M(N)(x .E) = Ψ(N)(x)EΨ(N)(x)−1,

The adjoint flat section satisfies also a recursion and ODE:

Proposition (Recursion and ODE for the adjoint section)

M(N+1)(x) =R(N)(x)M(N)(x)R(N)(x)−1.
d

dx
M(N)(x) = [D(N)(x),M(N)(x)] .
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Recursion for W (N)
1

W
(N)
1 satisfies a recursion relation:

Theorem

W
(N)
1 (x .E) satisfies a linear recursion relation of order dimg, with

polynomial coefficients α(N)k (x), independent of E :

dim g

∑
k=0

α
(N)
k (x)W (N+k)

1 (x) = 0.

where
W
(N+k)
1 (x .E) = TrD(N)k (x) M(N)(x .E)

with

D
(N)
0 (x) = D(N)(x)

D
(N)
k (x) =

k−1
∏
i=0
R(N+i)(x)−1 D(N+k)(x)

k

∏
i=1
R(N+k−i)(x)
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Recursion for W (N)
n , n ≥ 2

Theorem (Recursion equation for W (N)
n )

W
(N)
n (X1, ...,Xn) satisfies a linear recursion relation of order
(dimg)n, with coefficients α(N)k (x1, . . . , xn) ∈ C[x1, . . . , xn]:

(dim g)n

∑
k=0

α
(N)
k,n (x1, . . . , xn)W (N+k)

n (X1, . . . ,Xn) = 0.

where α(N)k,n are determined by:

Initial term ∶ Q̃(N)0,n (x1, ..., xn) = Q0,n(x1, ..., xn)

Recursion ∶ Q̃(N)k+1,n(x1, ..., xn) =

((AdRN+k (x1)⊗ ...⊗AdRN+k (x1)) Q̃(N)k,n ) (x1, ..., xn)

Linear relation ∶
(dim g)n

∑
k=0

α
(N)
k,n (x1, . . . , xn)Q̃(N)k,n (x1, . . . , xn) = 0.
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Applications
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One-Matrix model
The partition function Z is defined as:

Z = 1
N! ∫γN

∆(Λ)2e−TrV (Λ)dλ1...dλn

where
Λ = diag(λ1, ..., λN) ∈ γN

is the diagonal matrix Λ of eigenvalues,

dµ(Λ) = 1
N!Z

∆(Λ)2e−TrV (Λ)dΛ

is the eigenvalues induced measure, V is called the potential, dΛ is
the product measure on γN , and the Vandermonde determinant
∆(Λ) is defined as

∆(Λ) =∏
i<j

(λi − λj)

We choose integration domain such that the partition function is
well defined i.e. the integral is absolutely convergent.
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Example (Gaussian Unitary Ensemble (GUE))

The Gaussian Unitary Ensemble is the case γ = R and V (x) = 1
2x

2.
It is, thus, a probability law on RN :

dµ(Λ) = 1
Z (N)

∆(Λ)2e−
1
2 TrΛ2

dΛ

Z (N) is known to be proportional to the Barnes function

Z (N) = (2π)
N
2

N−1
∏
k=0

k!
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Wave function and orthogonal polynomials

We define the wave function as the expectation value of the
characteristic polynomial:

p(N)(x) = ∫
γN

dµ(Λ)det(x − Λ).

It is a polynomial of x of degree N. These polynomials form a
family of orthogonal polynomials for the measure e−V (x)dx on γ,
namely

∫
γ
dx p(N)(x)p(N′)(x) e−V (x) = h(N)δN,N′ .

These wave functions can be normalized such that:

ψ(N)(x) = e−
1
2V (x)

√
h(N)

p(N)(x)
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We also define the dual wave function:

ϕ(N)(x) = e
1
2V (x)

√
h(N)

∫
γ
dx ′e−V (x

′) p
(N)(x ′)
x − x ′

the matrix wave function can be written as:

Ψ(N)(x) = (ψ
(N−1)(x) ϕ(N−1)(x)
ψ(N)(x) ϕ(N)(x) )

Example (GUE)

p(N)(x) = HN(x) = Hermite polynomial

∫
R
HN(x)HM(x)e−

1
2 x

2
dx =

√
2πN!δN,M

h(N) =
√

2πN! , γ(N) =
√

h(N)

h(N−1)
=
√
N
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Resolvents and Cumulants

Definition (Resolvents)

Let
Ŵ
(N)
1 = ∫

γN
dµ(Λ)Tr 1

x − Λ
and in general

Ŵ
(N)
n (x1, ..., xn) =

δn,2

(x1 − x2)2
+ ∫

γN
dµ(Λ)

n

∏
i=1

Tr
1

xi − Λ

Definition (Cumulants/ Connected correlators)

We define the cumulants W
(N)
n by inverting the formula:

Ŵ
(N)
n (x1, . . . , xn) = ∑

µ⊢{x1,...,xn}

ℓ(µ)

∏
i=1

W
(N)
∣µi ∣
(µi) (8)

i.e. the sums over all partitions of the n variables, of products of
cumulants of each part.
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The system of equations (8) that define the cumulants is a
triangular system.

Example

For example W
(N)
1 = Ŵ (N)

1 and the n = 2 cumulant is the
covariance of resolvents:

W
(N)
2 (x1, x2) = Ŵ (N)

2 (x1, x2) −W (N)
1 (x1)W (N)

1 (x2).

For n = 3 the cumulant is given by:

W
(N)
3 (x1, x2, x3) = Ŵ (N)

3 (x1, x2, x3) −W (N)
1 (x1)Ŵ (N)

2 (x2, x3)
−W (N)

1 (x2)Ŵ (N)
2 (x1, x3) −W (N)

1 (x3)Ŵ (N)
2 (x1, x2)

+ 2W (N)
1 (x1)W (N)

1 (x2)W (N)
1 (x3).
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There is a relation between cumulants and correlators:

Proposition (Correlators and Cumulants)

Let

E = (1 0
0 0
) , M(N)(x) = Ψ(N)(x)EΨ(N)(x)−1.

We have

W
(N)
1 (x) = TrΨ(N)

′(x)EΨ(N)(x)−1

W
(N)
2 (x1, x2) =

1
(x1 − x2)2

TrM(N)(x1)M(N)(x2)

and in general we have

W
(N)
n (x1, . . . , xn) =Wn(x1.E , . . . , xn.E)

The right hand side is the Wn for the correlators.

30/46



Recursion and ODE for the wave function

The orthogonal polynomials satisfy a 3 terms recursion relation:

xp(N)(x) = p(N+1)(x) + S(N)p(N)(x) + h(N)

h(N−1)
p(N−1)(x)

Which gives:

xψ(N)(x) = γ(N+1)ψ(N+1)(x) + S(N)ψ(N)(x) + γ(N)ψ(N−1)(x).

It implies that the matrix wave function satisfies a recursion
relation:

Ψ(N+1)(x) =R(N)(x)Ψ(N)(x) (9)

where

R(N)(x) =
⎛
⎝

0 1
−γ(N)
γ(N+1)

x−S(N)
γ(N+1)

⎞
⎠
,

is called the shift operator.
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Example (GUE)

Hermite polynomials satisfy

p(N+1)(x) = xp(N)(x) −Np(N−1)(x),

hence, matrix wave function satisfies a recursion relation, with

R(N)(x) =
⎛
⎝

0 1

−
√

N
N+1

x√
N+1

⎞
⎠

h(N) =
√

2πN!, γ(N) =
√

h(N)

h(N−1)
=
√
N, S(N) = 0

Now we have a recursion relation for the wave function matrix. In
order to apply our general method for the correlators to one-matrix
model, we need an ODE for Ψ(x). The following theorem makes
this possible.
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ODE for the wave function

Proposition (ODE for Ψ)

If V ′(x) is a rational function, then the orthogonal polynomials
satisfy an ODE with rational coefficients, which in matrix form can
be written

d

dx
Ψ(N)(x) = D(N)(x)Ψ(N)(x) (10)

where

D(N)(x) =
⎛
⎝

V ′(x)
2 0
0 −V ′(x)

2

⎞
⎠
+(wN−1,N−1(x) wN−1,N(x)

wN,N−1(x) wN,N(x)
)( 0 −γ(N)
γ(N) 0

)

where

wN,N′(x) =
1√

h(N)h(N′)
∫
γ
e−V (x

′
)dx ′ p(N)(x ′)V

′(x) −V ′(x ′)
x − x ′ p(N

′
)(x ′)

We have
TrD(N)(x) = 0

33/46



Example (GUE)

Hermite polynomials satisfy

d

dx
(p
(N−1)(x)
p(N)(x) ) = (

x −1
N 0

)(p
(N−1)(x)
p(N)(x) ) ,

which implies

d

dx
Ψ(N)(x) = D(N)(x)Ψ(N)(x),

where

D(N)(x) = (
1
2x −γ(N)
γ(N) −1

2x
)
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Recursion and ODE for W (N)
1 (x)

Theorem (Recursion)

At most 3 of the matrices D(N,0)(x), . . . ,D(N,3)(x) can be linearly
independent, therefore there exist some coefficients C (N,k)(x),
polynomials of x , such that

3

∑
k=0

C (N,k)(x)W (N+k)
1 (x) = 0

Theorem (ODE)

At most 3 of the matrices D̂(N,0)(x), . . . , D̂(N,3)(x) can be linearly
independent, therefore there exist some coefficients Ĉ (N,k)(x),
polynomials of x , such that

3

∑
k=0

Ĉ (N,k)(x) d
k

dxk
W
(N)
1 (x) = 0

D̂(N,0)(x) = D(N)(x) , D̂(N,k+1)(x) = d

dx
D̂(N,k)(x)+[D̂(N,k)(x),D(N)(x)]
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Examples

Example (Recursion and ODE of W (N)
1 in GUE)

The recursion is given by

(N + 2)W (N+3)
1 (x) − (x2 −N)W (N+2)

1 (x)
+ (x2 −N − 3)W (N+1)

1 (x) − (N + 1)W (N)
1 (x) = 0.

The ODE of order 3 is

(x + (4N − x2) d
dx
+ d3

dx3)W
(N)
1 (x) = 0
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Minimal models
Minimal models arise as limits of matrix models. They can also be
defined independently of matrix models, from integrable hierarchies,
KdV, KP, Toda, see [BBT03]. They are classified by two integers
(p,q), in short, the (p,q) minimal model can be formulated in
terms of a differential system of order q, with polynomial
coefficients whose degree is bounded by p.

Definition (Gelfand-Dikii polynomials)

We define by recursion the following differential polynomials
Rn(U) ∈ Q[U, U̇, Ü,

...
U , . . . ]

R0(U) = 2

Ṙn+1 = −2UṘn − U̇Rn +
1
4

...
R n

and we choose the primitive that is homogeneous (in U and ¨).
The first few are

R0 = 2 , R1 = −2U , R2 = 3U2−1
2
Ü , R3 = −5U3+5

2
UÜ+5

4
U̇2−1

8

....
U
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Minimal models

Definition (Lax pair)

Let

R(x , t) ∶= ( 0 1
x + 2U(t) 0

)

Define,

Bn(x ,U) ∶=
1
2

n

∑
j=0

xn−jRj(U)

Define

Dn(x , t) ∶= (
−1

2 Ḃn Bn

(x + 2U)Bn − 1
2 B̈n

1
2 Ḃn
)

Notice that R(x , t) and Dn(x , t) are traceless, so that they belong
to the Lie algebra sl(2,C).
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ODE with respect to time for W1

Proposition (Gelfand-Dikii)

We have

Ḋn(x , t) + [Dn(x , t),R(x , t)] = −Ṙn+1 (
0 0
1 0
)

the following proposition is a consequence of this equation, which
enables us to determine the two differential equations (with respect
to time and x) of the wave function Ψ,
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Proposition (Compatibility and wave function)

Let m ≥ 0 an integer. Let t⃗ = (t0, t1, t2, . . . , tm) a set of parameters
(called higher times). Let

D(x , t, t⃗) =
m

∑
k=0

tkDk(x , t).

D(x , t; t⃗) satisfies the Lax equation

d

dt
D(x , t; t⃗) + [D(x , t; t⃗),R(x , t)] = d

dx
R(x , t)

if and only if U is solution to the equation

m

∑
k=0

tkRk+1(U) = −t. (11)

In this case, there exists a matrix Ψ(x , t; t⃗) such that

d

dx
Ψ = DΨ ,

d

dt
Ψ =RΨ
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Example (m = 0 : Airy)

take t⃗ = (1), eq (11) reduces to:

−2U = −t

We have

R(x , t) = ( 0 1
x + t 0

) = D(x , t)

The matrix Ψ(x , t) = Ψ(x + t) satisfies the Airy equation, and is
worth:

Ψ(x , t) = Ψ(x + t) = (Ai(x + t) Bi(x + t)
Ai ′(x + t) Bi ′(x + t))

Proposition (ODE for W1)

W1 satisfies the following ODE of order 3:

W1 =
m

∑
k=0

tk ((2(x + 2U)Bk −
1
2
B̈k)Ẇ1 +

1
2
ḂkẄ1 −

1
2
Bk

...
W 1)
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Examples

Example (Airy m = 0, ODE W1)

W1 − 2(x + t)Ẇ1 +
1
2

...
W 1 = 0

Example (Painlevé 1, m = 1, ODE W1)

W1 − (2x2 + 2Ux −U2 + t)Ẇ1 +
1
2
U̇Ẅ1 +

1
2
(x −U)

...
W 1 = 0
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Conclusion

As conclusion we have shown how to exploit the ODE satisfied by
the wave function (flat section of a Lie group bundle) or
equivalently the adjoint ODE satisfied by M (flat section of the
adjoint Lie algebra bundle) to derive, in a systematic way, linear
ODE and recursions with polynomial coefficients for every
correlator Wn. This approach can be further generalized to non
trivial bundles, it is a general method that can be applied to every
Lax system, in particular systems that depend on other parameters
(time dependent wave function), these ODEs can be shown useful
in resurgence theory for example.
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