
Lecture 1. Poincaré, Cheeger, and some other inequalities.

Cheeger’s inequality. Let µ be a probability measure on Rn, or more genrally on some
metric space (X, d) equipped with its Borel σ-field. The isoperimetric problem for µ asks the
following questions: Among sets of given measure, which sets have minimal perimeter? There
are several possible notions of perimeter. For our purposes, the most convenient one is the
exterior Minkowski content, defined as follows: for every measurable subset A of the ambient
space we let

µ+(A) = lim inf
ε→0

µ(Aε\A)
ε

.

where Aε is the ε-neighborhood of A, namely the set of points whose distance to A is at most
ε. The exact answer to the isoperimetric problem is only known in a handful of very specific
cases. For instance, for the uniform on the sphere equipped with the geodesic distance,
spherical caps (i.e. geodesic balls) are the solution. This is usually attributed to P. Lévy
(1922). The answer is also known on Gauss space, and this time affine halfspaces solve the
isoperimetric problem. This was proved in 1975 by Sudakov and Tsirelson, and independently
by Borell [5]. In general solving exactly the isoperimetric problem is hopeless and we content
ourselves with a more modest task, such as finding lower bounds on the perimeter of a set A
in terms of its measure. When this lower bound is linear, we say that µ satisfies Cheeger’s
inequality.

Definition 1. We say that µ satisfies Cheeger’s inequality if there is a constant C such that

min(µ(A), 1− µ(A)) ≤ Cµ+(A), (1)

for every measurable set A. The smallest C such that this holds true is called the Cheeger
constant, and we denote it ψµ below.

Cheeger’s inequality can be seen as an L1-Poincaré inequality. Indeed we have the follow-
ing result.

Lemma 2. Inequality (1) is equivalent to the following:

min
c∈R

∫
X
|f − c| dµ ≤ C

∫
X
|∇f |dµ, (2)

for every Lipschitz function f .

Remark. In the right-hand side the quantity |∇f(x)| should be interpreted as the local Lips-
chitz constant of f , namely

|∇f(x)| = lim sup
y→x

|f(x)− f(y)|
d(x, y)

.

This only make sense in a metric space with no isolated points. Actually we will only inves-
tigate the case X = Rn equipped with its usual Euclidean metric from now on.

Remark. It is well known that the infimum in the left-hand side is attained at any median
for f , i.e. any real c such that both µ(f ≤ c) and µ(f ≥ c) are at least 1/2.
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Proof. We only give a proof sketch, and refer to Bobkov and Houdré [4] (for instance) for
more details. The derivation of (2) from (1) relies on the co-area formula: for any Lipschitz
f we have ∫

X
|∇f | dµ ≥

∫
R
µ+(f > t) dt.

In most cases this inequality is actually an equality, but we only need this inequality, which
admits a soft proof, again see [4]. Applying Cheeger’s inequality to the right-hand side then
yields (2). For the converse implication, given a set A, we apply (2) to some suitable Lipschitz
approximation of the indicator function of A. A bit more precisely, we pick εn → 0 such that

lim
µ(Aεn\A)

εn
→ µ+(A),

we pick another positive sequence (δn) tending to 0 (for instance δn = 1/n) and we observe
that the sequence (fn) given by

fn =

(
1− 1

(1− δn)εn
· d(x,Aδnεn)

)
+

satifies 0 ≤ fn ≤ 1 for every n, fn → 1A pointwise, and lim sup
∫
|∇fn| dµ ≤ µ+(A). Apply-

ing (2) to fn and letting n tend to +∞ yields (1) after some computation.

From this version of Cheeger’s inequality it is relatively straightfoward to see that Cheeger’s
inequality is stronger than the Poincaré inequality. Recall from the first lecture of Bo’az that
we say that µ satisfies Poincaré if there is a constant C such that

varµ(f) ≤ C

∫
Rn

|∇f |2 dµ

for every Lipschitz function f . Also we let CP (µ) be the best constant C such that this holds
true.

Proposition 3 (Cheeger 1970). Let µ be a probability measure on Rn satisfying the Cheeger
inequality. Then µ satisfies Poincaré, and we have

CP (µ) ≤ 4ψ2
µ.

Remark. Maybe it is unfortunate but our convention for the Cheeger constant and Poincaré
constant do not have the same homogeneity. The Cheeger constant of a probability measure
on Rn is 1-homogeneous, if we scale µ by a factor λ then the Cheeger constant is multiplied
by λ. One the other hand the Poincaré constant is 2-homogeneous.

Proof. Assume f is Lipschitz and bounded, and has its median at 0. Applying (2) to f2+ we
get ∫

Rn

f2+ dµ ≤ ψµ

∫
Rn

|∇f2+| dµ = 2ψµ

∫
Rn

f+|∇f+| dµ

Applying Cauchy-Schwartz we get∫
Rn

f2+ dµ ≤ 4ψ2
µ

∫
Rn

|∇f+|2 dµ = 4ψ2
µ

∫
Rn

|∇f |21{f>0} dµ

We can do the same with f− and adding up the two inequalities yields the result.

The converse inequality is not true in general, one can cook up examples on the line.
However it turns out that if we restrict to log-concave measures then the converse is true.
This is a result of Buser from 1982, to which we will come back later on in this lecture.
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Semigroup tools. Let µ be a probability measure on Rn. We do not need log-concavity
for now but let us assume that µ is supported on the whole space and has a smooth density
ρ. Letting V = − log ρ be the potential of µ, the Laplace operator associated to µ is the
differential operator given by

Lµ = ∆−∇V · ∇,

initially defined on the space of compactly supported smooth functions. For such functions,
an integration by parts gives∫

Rn

(Lµf)g dµ = −
∫
Rn

∇f · ∇g dµ.

This shows in particular that Lµ is symmetric and that −Lµ is a monotone (unbounded)
operator on L2(µ). Moreover this operator is known to be essentially self-adjoint, in the sense
that its minimal extension is self-adjoint. By a slight abuse of notation we still call Lµ this
extension. A bit more explicitly, we call D the space of functions f ∈ L2(µ) for which there
exists a sequence (fn) of smooth compactly supported functions such that fn → f and (Lµfn)
converges. The limit of Lµfn does not depend on the choice of the converging sequence (fn)
(this is an immediate consequence of the symmetry of Lµ) and we set Lµf = limLµfn. The
fact that this new Lµ is self adjoint is not quite immediate, not every monotone operator
is essentially self adjoint. This has to do with elliptic regularity, we refer to [1, Corollary
3.2.2] for the details. From the integration by parts above we can see that if (fn) and (Lµfn)
converge then also ∇fn converges. This means that the domain D contains H1(µ) and that
the integration by parts ⟨Lµf, g⟩ = −⟨∇f,∇g⟩ remains valid for every f, g in the domain.
Here the inner product is the one from L2(µ), and when we apply it to tensors it has to
be interpreted coordinate wise. Being self-adjoint and monotone (negative) the operator Lµ

admits a spectral decomposition

Lµ = −
∫ ∞

0
λ dEλ. (3)

The semigroup associated to Lµ is then defined as

Pt = etLµ =

∫ ∞

0
e−tλ dEλ.

For fixed t the operator Pt is a self-adjoint bounded operator in L2(µ) and we have the
semigroup property Pt ◦ Ps = Pt+s. If f is a fixed function of L2(µ) the function F (t, x) =
Ptf(x) is the solution to the parabolic equation{

F (0, ·) = f

∂tF = LµF,

at least in a weak sense.
We now move on to the probabilistic representation of the semigroup (Pt). Consider the
diffusion (Xt) given by

dXt =
√
2 · dWt −∇V (Xt) dt, (4)

where (Wt) is standard Brownian motion. Then (Xt) is a Markov process, and (Pt) is the
corresponding semigroup. Namely for every test function f we have

Ptf(x) = Exf(Xt)
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where the subscript x next to the expectation denotes the starting point of (Xt). This allows
to prove inequalities for the semigroup (Pt) using probabilistic techniques.

Lemma 4. If µ is log-concave then Lipschitz functions are preserved along the semigroup,
and moreover ∥Ptf∥Lip ≤ ∥f∥Lip for every f and every t > 0.

Proof. Let x, y ∈ Rn, and let (Xx
t ) and (Xy

t ) be two solutions of the SDE (4) using the
same Brownian motion, but starting at two different points x and y. This is called parallel
coupling. Then the process (Xx

t −Y x
t ) is an absolutely continuous function of t (the Brownian

part cancels out). Moreover, thanks to the convexity of V ,

d

dt
|Xx

t −Xy
t |2 = −2(Xx

t −Xy
t ) · (∇V (Xx

t )−∇V (Xy
t )) ≤ 0.

So the distance |Xx
t − Xy

t | is almost surely decreasing. Therefore its expectation is also
decreasing, and in particular

E|Xx
t −Xy

t | ≤ |x− y|.

Now suppose f is a Lipschitz function. Then from the previous inequality we get

|Ptf(x)− Ptf(y)| = |Ef(Xx
t )− Ef(Xy

t )| ≤ E|f(Xx
t )− f(Xy

t )| ≤ ∥f∥Lip · |x− y|,

which is the result.

I believe the next result is originally due to Varopoulos [15].

Proposition 5. Suppose µ is log-concave. Then for every bounded function f and every t > 0
the function Ptf is Lipschitz and moreover

∥Ptf∥Lip ≤ 1√
t
· ∥f∥∞.

Proof. Again we use a coupling argument. Suppose that f is a bounded function. Fix
x, y ∈ Rn, and let (Xx

t ) and (Xy
t ) be two processes solving the SDE (4) initiated at x and y

respectively. Then

|Ptf(x)− Ptf(y)| ≤ E|f(Xx
t )− f(Xy

t )| ≤ 2∥f∥∞ · P(Xx
t ̸= Xy

t ). (5)

It remains to choose a coupling for which the right-hand side is small. Parallel coupling is
awful here, as it actually prevents Xx

t and Xy
t from meeting. Instead, we choose the Brownian

increment forXy
t to be the reflection of that ofXx

t with respect to the hyperplane (Xx
t −X

y
t )

⊥.
If (Wt) is the Browian motion for Xx

t , the equation for Xy
t is thus

dXy
t =

√
2 ·
(
Id− 2v⊗2

t

)
dWt −∇V (Xy

t ) dt

where (vt) is the unit vector (Xx
t − Xy

t )/|Xx
t − Xy

t |. Actually we do so until the first time
(denoted τ) when the two processes meet. After time τ we just set Xy

t = Xx
t . We will not

justify properly here why this is well defined, but this coupling technique, usually referred
to as mirror coupling, is a relatively standard tool, see for instance [11]. Itô’s formula shows
that up to the coupling time τ the equation for the distance between the two processes is

d|Xx
t −Xy

t | = −2
√
2vt · dWt − vt · (∇V (Xx

t )−∇V (Xy
t )) dt.
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Itô’s term vanishes because the Brownian increment takes place in a direction where the
Hessian matrix of the norm vanishes. Once again, in the log-concave case the second term
from the right hand side is negative. Notice also that Bt :=

∫ t
0 vs · dWs is a standard (one

dimensional) Brownian motion. Therefore up to the coupling time τ we have

|Xt − Yt| ≤ |x− y| − 2
√
2Bt,

where (Bt) is some standard one diemnsional Brownian motion. Therefore

P(Xt ̸= Yt) = P(τ > t) ≤ P
(
∀s ≤ t : Bs <

|x− y|
2
√
2

)
.

By the reflection principle for the Brownian motion

P
(
∃s ≤ t : Bs ≥

|x− y|
2
√
2

)
= 2 · P

(
Bt ≥

|x− y|
2
√
2

)
= P

(
|g| ≥ |x− y|

2
√
2t

)
where g is a standard Gaussian variable. Hence the inequality

P(Xt ̸= Yt) ≤ Ψ

(
|x− y|
2
√
2t

)
,

where Ψ(r) = (2/π)1/2
∫ r
0 e−u2/2 du is the distribution function of |g|. Recalling (5) and taking

the supremum over x, y gives

∥Ptf∥Lip ≤ 1√
2t

· sup
a>0

{
Ψ(a)

a

}
· ∥f∥∞.

The expression inside the sup is decreasing, so the sup equals the limit as a tends to 0,
which is (2/π)1/2. We thus get the desired inequality (even with a better constant than
announced).

The next corollary is taken from Ledoux [9].

Corollary 6. If µ is log-concave, then for every locally Lipschitz function f we have

∥f − Ptf∥L1(µ) ≤ 2
√
t · ∥|∇f |∥L1(µ).

Also for every set measurable set A we have

µ(A)(1− µ(A)) = varµ(1A) ≤
√
2t · µ+(A) + varµ(Pt1A).

Proof. Let f be a Lipschitz function and g be a smooth bounded function. Using the fact
that the semigroup is self adjoint, and the integration by part formula, we get

⟨f − Ptf, g⟩ = ⟨f, g − Ptg⟩ = −
∫ t

0
⟨f, LPsg⟩ dt =

∫ t

0
⟨∇f,∇Psg⟩ ds.

By the previous proposition,

⟨∇f,∇Psg⟩ ≤ ∥|∇f |∥L1(µ) · ∥Psg∥Lip ≤ 1√
s
∥|∇f |∥L1(µ)∥g∥∞.
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Integrating between 0 and t and plugging back in the previous display we get

⟨f − Ptf, g⟩ ≤ 2
√
t · ∥|∇f |∥L1(µ)∥g∥∞,

which is the result. For the second inequality, applying the first one to a suitable Lipschitz
approximation of the indicator function of A, as in the proof of Lemma 2, we get

∥1A − Pt1A∥1 ≤ 2
√
t · µ+(A).

Moreover, using reversibility, it is not hard to see that

∥1A − Pt1A∥1 = 2
(
varµ(1A)− varµ(Pt/21A)

)
.

Hence the result.

A result of E. Milman. We said earlier that the inequality CP (µ) ≤ Cψ2
µ can be reversed

in the log-concave case. Actually we will prove a much stronger statement, which is due to
E. Milman.

Definition 7. If µ is a probability measure on Rn, the function

Iµ : r ∈ [0, 1] 7→ inf{µ+(∂S) : µ(S) = r}.

is called the isoperimetric profile of µ.

With this definition Cheeger’s inequality can be rewritten

ψµ · Iµ(r) ≥ min(r, 1− r).

The following is a deep result from geometric measure theory.

Theorem 8. The isoperimetric profile of a log-concave measure is concave.

We will use this as a blackbox, we refer to the appendix of [12] for an historical account
and the relevant references. Another good reference for this is Bayle’s Ph.D. thesis [2] (if you
read french). This has important implications for us. Indeed, since the isoperimetric profile
is non negative, its concavity implies that

Iµ(t) ≥ 2 · Iµ(1/2)min(t, 1− t).

In particular the Cheeger constant of µ satisfies

ψµ ≤ 1

2 · Iµ(1/2)
. (6)

Therefore, for a log-concave measure, in order to prove Cheeger’s inequality, it is enough to
look at the perimeter of sets of measure 1/2. Combining this information with the results
from the previous section we arrive at the following.

Theorem 9. If µ is log-concave, then there exist a 1-Lischitz function f satifying

∥f∥2∞ ≈ varµ(f) ≈ ψ2
µ ≈ CP (µ).
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Here the symbol ≈ means that the ratio between the two quantities is comprised between
two universal constants. The theorem asserts in particular that the Cheeger constant and
the Poincaré constant are of the same order, which is the result of Buser that we mentioned
earlier. This result is essentially due to E. Milman [12]. The proof we give is very much
inspired by Ledoux’s proof of Buser’s inequality [9].

Proof. By (6) if A is a set of measure 1/2 that has near minimal surface, say up to a factor
2, then

µ+(A) ≤
1

ψµ
. (7)

Let t > 0. By Corollary 6, and since µ(A) = 1/2,

1

4
≤

√
2t · µ+(A) + varµ(Pt1A) ≤

√
2t

ψµ
+ varµ(Pt1A)

If t is a sufficiently small multiple of ψ2
µ we thus get varµ(Pt1A) ≥ 1

8 (say). On the other
hand, by Proposition 5,

∥Pt1A∥Lip ≤ 1√
t
≤ C

ψµ
,

for some constant C. Putting everything together we see that the function f = (ψµ/C) ·Pt1A

is 1-Lipschitz and satisfies
ψ2
µ ≲ varµ(f) ≤ ∥f∥2∞ ≲ ψ2

µ,

Hence ψ2
µ ≈ varµ(f) ≈ ∥f∥2∞. On the other hand since f is 1-Lipschitz, applying Poincaré

to f yields varµ(f) ≤ CP (µ). Since we always have CP (µ) ≤ 4ψ2
µ we indeed get the Buser

inequality ψ2
µ ≈ CP (µ).

In the last part of the proof, we upper bounded ∥∇f∥2 by the Lipschitz constant of f ,
which is very wasteful. So the theorem actually yields a lot more. It implies that it is enough
to bound the variance of Lipschitz functions to get Poincaré (or Cheeger). More precisely, we
get the following.

Corollary 10 (E. Milman [12]). For any log concave measure µ

ψ2
µ ≈ CP (µ) ≈ sup {varµ(f) : ∥f∥Lip ≤ 1} .

Bo’az will use this later on this weak, and also give another proof that avoids the concavity
of the isoperimetric profile blackbox. Let us point out though that this corollary does not
use the full strength of Theorem 9, it does not use the information about the L∞ norm of
f . So we actually have stronger form of the Corollary. Namely, in the log-concave case, to
get Cheeger, or Poincaré, it is enough to bound the variance of a bounded Lipschitz function
whose Lipschitz constant is 1, and whose L∞-norm is of the same order as its standard
deviation.
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Related material that I didn’t have time to cover.

Concentration of measure.

Definition 11. Let (X, d, µ) be a metric measured space. The concentration function of µ
is defined by

αµ : r 7→ sup {1− µ(Sr) : µ(S) = 1/2}

where Sr is the r-neighborhood of the set S.

In some very specific models such as the uniform measure on the sphere or the Gaussian
measure the exact value of the concentration function is known. In general it is hopeless to
compute it exactly and we are happy with an upper bound for αµ. The most interesting types
of upper bound for us are the case of Gaussian concentration and of exponential concentration.

Definition 12. We say that µ satisfies Gaussian concentration if there exist constants C0, C1

such that

αµ(r) ≤ C0 · exp
(
− r2

C1

)
, ∀r ≥ 0.

We say that µ satisfies exponential concentration if there exist constants C0, C1 such that

αµ(r) ≤ C0 · exp
(
− r

C1

)
, ∀r ≥ 0.

In the following the prefactor C0 is always of order 1 and regarded as irrelevant. The
constant that matters is the one inside the exponent. We call it the Gaussian or exponential
concentration constant.

We are interested here in concentration properties of log-concave measures on Rn. Gaus-
sian concentration cannot be true in general (think of µ being the exponential measure) but
there is no obstruction to having exponential concentration with a dimension free constant for
isotropic log-concave measures, and this is in fact equivalent to the KLS conjecture that Bo’az
introduced this morning. Indeed, it is well-known that the Poincaré inequality yields expo-
nential concentration, and more precisely that for any probability measure µ on Rn satisfying
the Poincaré inequality we have

αµ(r) ≤ C · exp

(
− r

L ·
√
CP (µ)

)
, ∀r ≥ 0,

where C and L are universal constants. We will skip the derivation of this from Poincaré
here, but this is not very hard, see for instance [1, section 4.4.2].
Once again, in the log-concave case this implication can be reversed. Indeed, by E. Milman’s
theorem (Corollary 10) the Poincaré constant of is a largest variance of a 1-Lipschitz function
(up to a constant). If f is 1-Lipshitz, by definition of the concentration function we have

µ(f −m ≥ r) ≤ αµ(r),

for every r > 0, and where m is a median for f . From this we obtain easily

varµ(f) ≤ 4

∫ ∞

0
rαµ(r) dr.
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Therefore, in the log-concave case

CP (µ) ≲
∫ ∞

0
r · αµ(r) dr. (8)

This implies in particular that the Poincaré constant of µ and the exponential concentration
constant squared are actually of the same order.

Log-Sobolev and Talagrand. We have seen earlier that Poincaré is weaker than Cheeger
in general but equivalent to it within the class of log-concave measures. We’ll see now that
log-concavity also allows to reverse the hierarchy between the log-Sobolev inequality and the
transportation inequality. A probability measure µ on Rn is said to satisfy the logarithmic
Sobolev inequality if there exists a constant C > 0 such that

D(ν | µ) ≤ C

2
I(ν | ν)

for every probability measure ν, where D(ν | µ) and I(ν | µ) denote the relative entropy and
Fisher information, respectively

D(ν | µ) =
∫
Rn

log(
dν

dµ
) dν and D(ν | µ) =

∫
Rn

|∇ log(
dν

dµ
)|2 dν.

The best constant C is called the log-Sobolev constant, denoted CLS(µ) below. The factor
1/2 is just a matter of convention. With this convention the log-Sobolev constant of the
standard Gaussian 1. This is a stronger inequality than Poincaré. More precisely we have
CP (µ) ≤ CLS(µ) for any µ. This is easily seen by applying log-Sobolev to a probability
measure whose density with respect to µ is 1 + εf and letting ε tend to 0. Not every log-
concave measure satisfy log-Sobolev, simply because log-Sobolev implies sub-Gaussian tails,
so for instance the exponential measure (on R) does not statisfy log-Sobolev. A bit more
precisely, log-Sobolev implies Gaussian concentration: if µ satisfies log-Sobolev then for any
set S we have

µ(S)(1− µ(Sr)) ≤ exp

(
−c · r2

CLS(µ)

)
.

Again see [1] for a proof.
Recall that if µ, ν are probability measures on Rn, the quadratic transportation cost from

µ to ν is defined as

T2(ν, ν) = inf

{∫
Rn×Rn

|x− y|2 dπ
}
,

where the infimum is taken over every coupling π of µ and ν, namely every probability measure
on the product space whose marginals are µ and ν. Tomorrow Bo’az will speak about the
Monge transport cost, which is the L1 version of this.

Proposition 13 (Otto and Villani [14]). If µ satisfies log-Sobolev then for every probability
measure ν we have

T2(ν, µ) ≤ 2CLS(µ) ·D(ν | µ).

This transportation/entropy inequality is sometimes called Talagrand’s inequality, as it
was first established by Talagrand for the Gaussian measure (before the work of Otto and
Villani). Again in the log-concave case the implication log-Sobolev/Talagrand can be reversed.
Indeed, we have the following, also due to Otto and Villani.
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Proposition 14. If µ is log-concave then

D(ν | µ) ≤
√
T2(ν, µ) · I(ν | µ).

This is only a particular case of the Otto-Villani result, there’s also a version for semi-
log-concave measures, namely measures for which we have a possibly negative lower bound
on the Hessian of the potential. This inequality goes by the name HWI. The reason for this
name is not apparent from our choice of notations, but relative entropy is often denoted H,
and the transport cost T2 can also be denoted W2 or rather W 2

2 (for Wasserstein). From
the HWI inequality we see that the implication between log-Sobolev and Talagrand can be
reversed for log-concave measures: if we happen to know

T2(ν, µ) ≤ C2D(ν | µ)

for µ log-concave, then we get log-Sobolev for µ and CLS(µ) ≤ 2C2. We will not spell out the
proofs of the Otto-Villani results here and we refer to [14] (see also [3]).

We’ve seen above that the equivalence between Cheeger and Poincaré can be considerably
reinforced. This is also the case here, and this is yet again a result of E. Milman.

Theorem 15 (E. Milman [13]). For a log-concave measure µ we have equivalence between
Gaussian concentration and the log-Sobolev inequality, and moreover the log-Sobolev constant
and the Gaussian concentration constant are within a universal factor of each other.

Proof. There are several proofs of this result in the literature, see [13, 10]. The proof sketch
that we give here is is taken from Gozlan, Roberto, Samson [8]. Before spelling it out, let
us first explain why Talagrand’s inequality implies Gaussian concentration. By some convex
duality principle T2 can be also expressed as a supremum, namely

T2(µ, ν) = sup
f

{∫
Rn

Q1/2f dµ−
∫
Rn

f dν

}
where the Qtf is the infimum convolution of f with some multiple of the distance squared:

Qtf(x) = inf
y∈Rn

{
f(y) +

1

2t
|x− y|2

}
.

It can also be shown that (Qt) is a semigroup of operators, namely we have QsQt = Qs+t.
There’s also some duality between the log-Laplace transform and the relative entropy:

log

∫
Rn

ef dµ = sup
ν
{
∫
Rn

f dν −D(ν | µ)},

where the supremum is taken over every probability measure ν. Using this, it is pretty easy
to see that Talagrand’s inequality

T2(ν, µ) ≤ 2CT ·D(ν | µ), ∀ν

is equivalent to ∫
Rn

exp(QCT
f) dµ ≤ exp

(∫
Rn

f dµ

)
, ∀f.
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Applying this to both QCT
f and −QCT

f , using the fact that (Qt) is a semigroup, and mul-
tiplying the two inequalities together we get∫

Rn

exp(QCT
(−QCtf) dµ ·

∫
Rn

exp(Q2CT
f) dµ ≤ 1.

But clearly Qt(−Qtf) ≤ −f so we obtain∫
Rn

exp(−f) dµ ·
∫
Rn

exp(Q2CT
f) dµ ≤ 1.

Applying to f = − log1A we get∫
Rn

exp

(
d(x,A)2

2CT

)
dx ≤ 1

µ(A)
,

for every set A. By Markov inequality this implies

αµ(r) ≤ 2 · exp
(
− r2

2CT

)
.

So Talagrand implies Gaussian concentration, and moreover the Gaussian concentration con-
stant is at most the constant in Talagrand, up to a factor 2. Now we want to reverse this, so
we assume

αµ(r) ≲ e−r2/CG .

I’m using this notation to emphasize the fact that I will not keep track of the dependence on
the prefactor in front of the exponential. It is easily seen to imply∫

Rn

exp(Q2CG
f) dµ ≲ exp(mf ).

for every f , where mf is a median for f . Again, applying this −Qf and Qf and multiplying
we get ∫

Rn

e−f dµ ·
∫
Rn

exp(Q2CG
f) dµ ≲ 1,

hence by Jensen’s inequality∫
Rn

exp(Q2CG
f) dµ ≲ exp

(∫
f dµ

)
.

In other words we get the dual version of Talagrand, but with some prefactor. In terms of
transport and entropy this gives

T2(ν, µ) ≲ CG(D(ν | µ) + 1).

So we have an additional additive constant in the right-hand side of Talagrand. So far we’ve
not used log-concavity, this would be true for any measure satisfying Gaussian concentration.
Now assuming log-concavity, we can plug this into HWI. We get

D(ν | µ) ≲ CG · I(ν | µ) + 1.

11



Again, we get some weak form of log-Sobolev with an additional constant term in the right-
hand side. This is sometimes called non-tight log-Sobolev inequality. To get rid of that
constant, observe first that we clearly have from the first theorem of E. Milman (see equa-
tion (8))

CP (µ) ≲ CG.

Moreover, non-tight log-Sobolev can be reformulated as

ent(f2) ≲ CG

∫
Rn

|∇f |2 dµ+

∫
f2 dµ,

where the entropy of a non negative function f is defined as

entµ(f) =

∫
Rn

f log f dµ−
(∫

Rn

f dµ

)
log

(∫
Rn

f dµ

)
.

Now there is a nice inequality by Rothaus, which states that for any f : Rn → R and any
constant c we have

entµ((f + c)2) ≤ entµ(f
2) + 2

∫
Rn

f2 dµ,

(look for the keyword Rothaus lemma in [1]). Using this inequality it is easy to see that our
non tight version of log-Sobolev and the bound that we have on CP (µ) altogether imply

entµ(f) ≲ CG

∫
Rn

|∇f |2 dµ,

which is a reformulation of the desired log-Sobolev inequality.
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