
Lecture 4. Further results.

An obstruction to a full solution of KLS. As we have seen above, the KLS conjecture
would be implied by the following statement: in the isotropic log-concave case the expected
operator norm of cov(X | X +

√
sG) remains of order 1 for all s. Unfortunately such an

estimate cannot be true as we shall see now.
Let X = (X1, . . . , Xn) be a random vector whose coordinates are iid and such that 1+Xi

is an exponential variable of parameter 1. This is clearly an isotropic log-concave vector on
Rn.

Proposition 1. We have E∥cov(X | X +
√
sG)∥ = O(1) for all s ≥ C log n. On the other

hand, if s ≤ log n then E∥cov(X | X +
√
sG)∥ ≥ cs.

Note that from the tensorization property of the Poincaré inequality, we have CP (X) =
CP (X1), in particular the Poincaré constant of X does not depend on n. Recall also that we
always have the bound E∥cov(X | X +

√
sG)∥ ≤ s (acually this is true almost surely, not

only in expectation). This examples shows that this bound can be essentially sharp on a time
range [0, s0] with s0 → ∞, namely s0 = log n. In particular at time s0 we have

E∥cov(X | X +
√
s0G)∥ ≥ c log n

so the expected norm of the conditional covariance is not bounded for all times. In view of
this example, the best one could hope for is

E∥cov(X | X +
√
sG)∥ = O(1), ∀s ≥ C log n (1)

and for every log-concave isotropic X. Notice that there is still a gap between this and the
bound that we obtained in our theorem (in which log n is replaced by log2 n). If true the
estimate (1) would imply the bound

Cn = O((log n)1/4),

for the KLS constant. This seems to be the limit one could reach within this framework.
Going below this mark would have to rely on different arguments.

The proof of the proposition only relies on some analysis in one dimension. Indeed since
the coordinates of X and G are all independent it is clear that the conditional law of X
given X +

√
sG is just the n-fold product of the law of X1 condition on X1 +

√
sG1. So

the conditional covariance is diagonal with iid entries, The norm is just the maximum of this
entries. So all we need to estimate is the expected maximum of n iid variables.

As a preliminary step, we need to compute the variance of a truncated Gaussian.

Lemma 2. Let g be as standard Gaussian variable, then

var(g | g ≥ x) ≈ 1

1 + x2+
.

Proof. The quantity var(g | g ≥ x) is clearly a positive continuous function of x, and it is also
clear that it tends to 1 as x tends to −∞. Now we look at its behaviour near +∞. We use a
lemma about log-concave measures in 1D, which was already mentioned by Bo’az. Namely,
for a log-concave random variable on the line we have

∥f∥2∞ · var(X) ≈ 1,
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where f is the density of X. Applying this to the conditional law of g given g ≥ x (which is
indeed log-concave), we get

var(g | g ≥ x) ≈
(
ex

2/2

∫ ∞

x
e−y

2/2 dy

)2

,

for every positive x. Now it is well-known that the right-side is equivalent to x−2 as x tends
to +∞.

Proof of Proposition 1. The conditional law of X1 given X1+
√
sG1 is just a truncated Gaus-

sian. After some elementary computation we get

var(X1 | X1 +
√
sG1) = s · v(

√
s− 1√

s
Y1 −G1) (2)

where Y1 = X1 + 1 and v is the function given by

v(x) = var(G1 | G1 ≥ x).

Note that Y1 is an exponential variable independent of G1, hence

P(Y1 ≥ s,G1 ≥ 0) =
1

2
e−s.

Since the function v is bounded away from 0 on R−, if Y1 ≥ s and G1 ≥ 0 then

var(X1 | X1 +
√
sG1) ≥ cs.

As a result

P(var(X1 | X1 +
√
sG1) ≥ cs) ≥ 1

2
e−s.

By independence we get

P(∥var(X | X +
√
sG∥) ≥ cs) ≥ 1− (1− 1

2
e−s)n

If s ≤ log n, the right-hand side is at least 1−e−1/2. This implies E∥var(X | X+
√
sG∥)∥ ≥ c′s

by Markov inequality.
For the other inequality, since v(x) ≲ x−2 for large x, equation (2) and the union bound imply
in particular that if C is a sufficiently large constant

P(∥cov(X1 | X1 +
√
sG1)∥ ≥ C) ≤ P(Y1 ≥

s

4
) + P(G1 ≥

√
s

4
) ≤ 2e−cs.

Hence, by the union bound again,

P(∥cov(X | X +
√
sG)∥ ≥ C) ≤ 2ne−cs.

Since ∥cov(X | X +
√
sG)∥ ≤ s almost surely this implies

E∥cov(X | X +
√
sG)∥ ≤ 2ns · e−cs + C.

This becomes O(1) as soon as s exceeds a sufficiently large multiple of log n.
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Concentration of measure.

Definition 3. Let (X, d, µ) be a metric measured space. The concentration function of µ is
defined by

αµ : r 7→ sup {1− µ(Sr) : µ(S) = 1/2}
where Sr is the r-neighborhood of the set S.

In some very specific models such as the uniform measure on the sphere or the Gaussian
measure the exact value of the concentration function is known. In general it is hopeless to
compute it exactly and we are happy with an upper bound for αµ. The most interesting types
of upper bound for us are the case of Gaussian concentration and of exponential concentration.

Definition 4. We say that µ satisfies Gaussian concentration if there exist constants C0, C1

such that

αµ(r) ≤ C0 · exp
(
− r2

CG

)
, ∀r ≥ 0.

We say that µ satisfies exponential concentration if there exist constants C0, C1 such that

αµ(r) ≤ C0 · exp
(
− r

Cexp

)
, ∀r ≥ 0.

Remark. The prefactor C0 is usually of order 1. Once it has has been fixed, the best constant
inside the exponent is called the Gaussian or exponential concentration constant.

Once again, the situation is well understood for uniformly log-concave measures. They
satisfy a Gaussian concentration property with constants not depending on the dimension.

Proposition 5. Let µ be a t-uniformly log-concave measure. Then for every measurable set
S and every r ≥ 0 we have

µ(S)(1− µ(Sr)) ≤ exp(−c · tr2), ∀r ≥ 0,

where c is a universal constant. In particular the Gaussian concentration constant of µ is
O(t−1/2).

Proof. Recall the classical Prékopa-Leindler inequality, which asserts that if f, g, h satisfy the
inequality √

f(x)g(y) ≤ h(
x+ y

2
)

for every x, y ∈ Rn then √∫
Rn

f(x) dx

∫
Rn

g(x) dy ≤
∫
Rn

h(x) dx.

If µ is t-uniformly log-concave then its potential V satisfies

V (
x+ y

2
) ≤ V (x) + V (y)

2
− t

8
|x− y|2.

Given a set S and θ > 0, one can then see that the hypothesis of Prékopa-Leinder applies to
the functions f(x) = 1S(x)e

−V (x), g(y) = eθd(y,S)−V (y) and h = e−V+cθ2/t for some suitable
constant c (details left as an exercise). From the conclusion of Prékopa, we get

µ(S) ·
∫
Rn

eθd(x,S) dµ ≤ ecθ
2/t.

The conclusion then follows from Chernov inequality.
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One can be a bit more precise. As we already mentioned in the Gaussian case we know the
exact value of the concentration function αγn . Indeed, an integrated version of the isoperi-
metric inequality of Sudakov-Tsirelson / Borell asserts that γn(Sr) is maximized when S is a
halfspace. In particular

αγn(r) = 1− Φ(r), ∀r ≥ 0.

where Φ is the distribution function of the standard Gaussian variable. Moreover, a deep result
of Bakry and Ledoux [2] asserts that if µ is t-uniformly log-concave then the concentration
function of µ is bounded from above by that of the Gaussian variable of variance 1/t. This
implies in particular that

αµ(r) ≤ 1− Φ(
√
t · r), ∀r ≥ 0.

Since 1 − Φ(r) ≤ 1
2e

−r2/2 for r ≥ 0, this implies Gaussian concentration. However this only
improves upon Proposition 5 at the level of the value of the universal constant c, which is
irrelevant for our purposes.

Again we are interested here in concentration properties of log-concave measures on Rn
and on the dependence on the dimension of the concentration function. Gaussian concen-
tration cannot be true in general (think of µ being the exponential measure) but there is no
obstruction to having exponential concentration with a dimension free constant for isotropic
log-concave measures, and this is in fact equivalent to the KLS conjecture. Indeed, it is well-
known that the Poincaré inequality yields exponential concentration, and more precisely that
for any probability measure µ on Rn satisfying the Poincaré inequality we have

αµ(r) ≤ C · exp

(
− r

L ·
√
CP (µ)

)
, ∀r ≥ 0,

where C and L are universal constants. See for instance [1, section 4.4.2] for the details.
Once again, in the log-concave case this implication can be reversed. Indeed, by E. Milman’s
theorem we know that

CP (µ) ≈ sup{varµ(f) : ∥f∥Lip = 1}.
Moreover by definition of αµ if f is a 1-Lipschitz function then

µ(f −mf ≥ r) ≤ αµ(r).

where mf is a median for f . By Fubini this tail bound implies

varµ(f) ≲
∫ ∞

0
rαµ(r) dr,

hence the inequality

CP (µ) ≲ ·
∫ ∞

0
r · αµ(r) dr, (3)

from which it follows that CP (µ) is at most the exponential concentration constant squared,
up to a universal factor. Therefore, the KLS conjecture amounts to the following bound

αµ(r) ≤ Ce−cr

for the concentration function of an isotropic log-concave measure, whereas the the current
best bound is equivalent to

αµ(r) ≤ C · exp
(
−c · r√

log n

)
. (4)

One of the points of this lecture is to show that one can go a bit beyond this estimate.
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Theorem 6. If µ is log-concave and isotropic then its concentration function satisfies

αµ(r) ≤ C exp

(
−c ·min

(
r,

r2

log2 n

))
, ∀r ≥ 0. (5)

Proof of Theorem 6. Fix a set S of measure 1/2 and write

1− µ(Sr) = E(1− µt(Sr)) ≤ E(1− µt(Sr))1{µt(S)≥1/4} + P(µt(S) ≤ 1/4),

where (µt) is the stochastic localization of µ. Since µt is t-uniformly log-concave, the first term
is at most 4e−ctr

2
, by Proposition 5. To handle the second term recall that the martingale

Mt := µt(S) satisfies

dMt =

(∫
S
(x− at) dµt

)
· dWt.

Applying Cauchy-Schwarz we obtain∣∣∣∣∫
S
(x− at) dµt

∣∣∣∣2 ≤ µt(S)∥At∥ ≤ ∥At∥.

Hence the inequality

⟨M⟩t ≤
∫ t

0
∥As∥ ds.

In particular if ∥As∥ ≤ 2 on [0, t] then ⟨M⟩t ≤ 2t. Therefore

P(Mt ≤
1

4
) ≤ P(Mt ≤

1

4
& ⟨M⟩t ≤ 2t) + P(∃s ≤ t : ∥As∥ ≥ 2).

We have seen in the previous lecture that the second term is at most exp(−(Ct)−1), provided
t ≤ (C log2 n)−1. On the other hand since M0 = µ(S) = 1/2, Freedman’s inequality (also
from the previous lecture) insures that

P(Mt ≤
1

4
& ⟨M⟩t ≤ 2t) ≤ exp

(
− 1

C1t

)
.

Putting everything together we get

µ(Sr) ≤ 4 exp(−c · tr2) + 2 exp(−(C2t)
−1)

for every t ≤ (C · log n)−2. Choosing t = min(r−1, (C · log n)−2) yields the result.

We should make some comments on this result. First of all, the rate provided by The-
orem 6 is not smaller than that of (4) on the whole halfline. In particular combining the
Theorem with (3) only leads to a log2 n bound for the Poincaré constant of an isotropic log-
concave measure (rather than log n). The reason for this is that we did not use the improved
Lichnerowicz estimate in the proof of this Theorem. That being said, the theorem yields in
particular the rate e−cr, which is predicted by the KLS conjecture, as soon as r is larger than
log2 n or so. As far as I know, this information cannot be inferred from bound Cn = O(log n)
alone. Let me also mention that one can prove the following variant of (5), in which the
concentration depends on the KLS constant Cn, namely

αµ(r) ≤ C exp

(
c ·min

(
r,

r2

Cn · log n

))
, ∀r ≥ 0. (6)
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This inequality is taken from Bizeul [3], as is most of the material of this lecture.
This concentration is reminiscent of Guédon-Milman [6] from 2011, where they proved

that every isotropic log-concave measure µ satisfies

µ
(
||x| −

√
n| ≥ r

)
≤ C · exp

(
c ·min

(
r,

r2

n2/3

))
, ∀r ≥ 0.

This is weaker than (5) in two ways, first of all the constant is much worse (n2/3 vs log2 n)
and the deviation inequality is only for the Euclidean norm, and not for every 1-Lipschitz
function, as in (5). This application of stochastic localization to concentration dates back to
Lee and Vempala [7]. Their main result in that paper is the bound Cn = O(n1/2) for the KLS
constant, but they also obtain the inequality

αµ(r) ≤ C · exp
(
c ·min

(
r,

r2

n1/2

))
. (7)

In contrast with (6), they do not loose a logarithm when they pass from the bound on the
KLS constant to the deviation inequality. Their argument is very delicate and clever but it
only works with a polynomial estimate for Cn and it does not allow to remove the logarithm
from (6) now that we have a logarithmic estimate for Cn. Here is an example of an application
of the theorem.

Corollary 7 (Paouris theorem [8]). Suppose µ is log-concave and isotropic then

µ(|x| ≥ r) ≤ exp(−cr), ∀r ≥ C
√
n,

where as usual c, C are universal constants.

Remark. The inequality can also be expressed in terms of moments. It asserts that if X is log
concave and isotropic on Rn then the moments of the Euclidean norm of X remain constant
for quite a while, namely

(E|X|p)1/p ≈ (E|X|2)1/2

for p as large as
√
n.

Proof. We apply the concentration estimate to the 1-Lipschitz function f(x) = |x|. We get
in particular

µ(|x| ≥ m+ r) ≤ e−cr,

provided that r ≥ C · log2 n, where m is a median for |x|. Since m ≤ 2
∫
|x| dµ ≤ 2

√
n, the

latest display is easily seen to imply the desired inequality.

Our main point here is that from the inequality (4) one can only recover the Paouris
inequality up to some logarithmic factor. That being said, the inequality (5) is an overkill
for this application, and the argument would go through using (7) instead, and as a matter
of fact this application to the Paouris inequality is taken from Lee and Vempala’s paper [7].
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Logarithmic Sobolev inequality and a variant of the KLS conjecture. A probability
measure on Rn is said to satisfy the logarithmic Sobolev inequality if there exists a constant
C > 0 such that

entµ(f) ≤
C

2

∫
Rn

|∇f |2

f
dµ

for every positive Lipschitz function f , where

entµ(f) =

∫
Rn

f log f dµ−
(∫

Rn

f dµ

)
log

(∫
Rn

f dµ

)
,

denotes the entropy of f . The best constant C is called the log-Sobolev constant, denoted
CLS(µ) below. The factor 1/2 is just a matter of convention. With this convention the log-
Sobolev constant of the standard Gaussian 1. This is a stronger inequality than Poincaré.
More precisely we have CP (µ) ≤ CLS(µ) for any µ. This is easily seen by applying log-Sobolev
to f = 1 + εg and letting ε tend to 0. Once again, the uniformly log-concave case is well
understood.

Theorem 8 (Bakry-Émery criterion). If µ is t-uniformly log-concave then CLS(µ) ≤ t−1.
The inequality is sharp, equality is attained for the Gaussian measure of covariance t−1 · Id.

There are many ways to prove this inequality, see for instance [5] for an overview. Again
we are interested in the log-concave case. However, in contrast with the Poincaré inequality,
not every log-concave measure satisfies log Sobolev. Indeed, it is well known that log-Sobolev
implies Gaussian concentration, with explicit control of the constants, this is called Herbst
argument. Again the inequality can be reversed in the log concave case, so that the log-
Sobolev constant and the Gaussian concentration constant are actually of the same order in
this case. This is again due to E. Milman. We say more about this in the uncovered material
section of the first lecture. In any case, to insure log-Sobolev, one has to impose another
condition on top of log-concavity, such as having bounded support. The following result is
due to Lee-Vempala [7].

Theorem 9. Suppose µ is log-concave, isotropic, and supported on a set of diameter D. Then
CLS(µ) ≤ C ·D.

Let us remark that because of the equivalence between log-Sobolev and Gaussian con-
centration in the log-concave case, a log-concave measure supported on a set of diameter D
trivially has O(D2) log-Sobolev constant. Since the diameter of the support of an isotropic
measure is at least

√
n the theorem improves greatly upon the trivial bound in the isotropic

case. It should also be noted that for the uniform measure on the ℓ1 ball rescaled to be
isotropic, the diameter of the support and the log-Sobolev constant both are of order n.

Proof. This is actually an easy consequence of our concentration result Theorem 6. Indeed,
the latter asserts that if µ is log concave and isotropic then

αµ(r) ≤ C · exp
(
−c ·min(r,

r2

log2 n
)

)
, ∀r ≥ 0.

On the other hand if µ is supported on a set of diameter D then trivially αµ(r) = 0 if r > D.
On the interval [0, D] we have r ≤ r2/D, and since D ≥ c1

√
n ≥ c1 log

2 n, we finally obtain

αµ(r) ≤ C · exp
(
c′ · r

2

D

)
.
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The Gaussian concentration constant is thus O(
√
D), which implies the desired inequality by

E. Milman’s result.

Let us try to relax the bounded support assumption. We know that log-Sobolev implies
Gaussian concentration. In particular linear functions should have sub-Gaussian tails, at a
rate controlled by the log-Sobolev constant. Let us be a bit more precise.

Definition 10. Suppose f is a function having mean zero for µ. We denote by ∥f∥ψ2(µ) the

Orlicz norm of f associated to the Orlicz function er
2 − 1, namely the best constant C in the

inequality

µ(|f | ≥ r) ≤ 2 · exp
(
− r2

C2

)
.

The discussion above shows that for any probability measure and any direction θ we have

∥x · θ∥2ψ2(µ)
≲ CLS(µ).

It is natural to conjecture that this inequality could be reversed in the log-concave case. This
amounts to saying that the log-Sobolev constant is the largest ψ2-norm squared of a linear
function, very much like the KLS conjecture predicts that Poincaré constant of a log-concave
measure is up to a constant the largest L2-norm squared of a linear function.

Definition 11 (Log-Sobolev version of KLS constant, [3]). Let Dn be the largest log-Sobolev
constant of a log-concave measure for which every linear function has ψ2 norm at most 1.

Conjecture 12 (Log-Sobolev KLS conjecture, Bizeul [3]).

Dn = O(1).

It follows from some result of Bobkov [4] from 2007 that Dn = O(n). Using stochastic
localization, one can show the following.

Theorem 13 (Bizeul (2023)).
Dn = O(n1/2).

Proof. The idea is to combine Theorem 6 with a rather crude net argument. By E. Milman’s
theorem it is enough to prove that if µ log-concave is ψ2 with norm 1 in all directions, then
its concentration function satisfies

αµ(r) ≤ Ce−cr
2/

√
n. (8)

Note that the ψ2 norm is larger than the L2 norm, maybe up to a constant. So the covariance
of µ has operator norm O(1). The concentration function of µ thus satisfies

αµ(r) ≤ C exp

(
−cmin(r,

r2

log2 n
)

)
,

for every r > 0. Here there is a small gap which we can leave as an exercise: show that having
an upper bound for the concentration function of isotropic log-concave µ of the form αµ ≤ α∗
implies that if µ is log-concave but not necessarily isotropic then αµ(r) ≤ α∗(r/

√
∥cov(µ)∥).

We thus get an estimate that is smaller than our target concentration if r > cr2/
√
n, namely
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r < C
√
n. Therefore, it is enough to prove (8) when r is a sufficiently large multiple of

√
n.

Moreover, by Markov inequality we have

µ(|x| ≥ 2
√
n) ≤ 1

4n

∫
|x|2 dµ ≤ 1

4
.

So if S is a set of measure 1/2 then S intersects the ball of radius 2
√
n. If r ≥ 2

√
n this

implies easily that S2r ⊃ {|x| ≤ r}, hence

αµ(2r) ≤ µ(|x| > r).

So it is enough to prove that µ(|x| > r) ≤ e−cr
2/

√
n for r ≥ C

√
n. Now recall the ψ2

hypothesis: For every direction θ and every r, we have

µ{|x · θ| > r} ≤ 2e−r
2
. (9)

It is well-known that there exists 1/2-net of the unit sphere of cardinality 5n at most. Let N
be such a set. Since any element x in the sphere is at distance 1/2 at most from a point of
N we have

|x| ≤ 2max
θ∈N

{x · θ},

for every x ∈ Rn. Applying (9) to every θ in the net and the union bound we get

µ(|x| > r) ≤ 2 · 5ne−r2/4.

If r > C
√
n for a sufficiently large constant C, we deduce from this inequality

µ(|x| > r) ≤ e−r
2/8

which is even better than what we needed.

This proof seems to have lots of slack. In particular it certainly does not look like the
ψ2 hypothesis was fully exploited. However, as far as the log-Sobolev version of the KLS
conjecture is concerned this is the best result around, as of today.
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