
Lecture 3. The covariance of the localization process

Our main task for today’s lecture is to prove the following.

Theorem 1. Let µ be log-concave and isotropic, in the sense that it is centered with identity
covariance matrix. Then the corresponding stochastic localization process satisfies

E∥cov(µt)∥ ≤ C, ∀t ≤ 1

C log2 n
,

As usual C is a universal constant (C = 10 is probably OK). Also cov(µt) is the covariance
matrix of the measure µt. Recall that µt is a random measure, so covariance is a random
matrix. Lastly the norm here is the operator norm, which is also the maximal eigenvalue (a
covariance matrix is psd).

This can be derived by combining arguments from Eldan [2], Lee-Vempala [7], Chen [1],
Klartag-Lehec [5], with the improved Lichnerowicz of Klartag [4]. Actually the improved
Lichnerowicz allows to bypass many ideas of the aforementioned papers.

We have seen that µt is just the conditional of law of a random vector X having law µ
given some noisy version of X. So we could just as well rewrite the theorem as follows. Let
X be isotropic and log-concave, let G be a standard Gaussian vector independent of X, then

E∥cov(X | X +
√
s ·G)∥ ≤ C, ∀ρ ≥ C log2 n.

This morning Bo’az showed us, using something called the improved Lichnerowicz inequality,
that if X is log-concave and if

E∥cov(X | X +
√
s ·G)∥ ≲ 1,

for all s ≥ s0 then CP (X) ≲
√
s0. So our theorem indeed yields

CP (X) ≲ log n,

which is the current best bound for the Poincaré constant of an isotropic log-concave random
vector.

The point of reversing time and of writing everything in terms of the stochastic localization
is that we can then control the evolution of cov(µt) using Itô’s formula and some convexity
inequalities. The proof of the theorem requires some preliminaries. There will be a number
of them, but I promise you that taken individually, each one of them is pretty easy.

The equation for the covariance. As we have seen in the previous lecture, for any test
function f the martingale Mt =

∫
Rn f dµt satisfies

dMt =

(∫
Rn

f(x)(x− at) dµt

)
· dWt,

where (Wt) is some standard Brownian motion. This obviously extends to vector valued
functions. If F : Rn → Rk is a vector valued function that grows fairly reasonably at infinity
then the process (Mt) given by

Mt =

∫
F dµt
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is a martingale, and moreover

dMt =

(∫
F (x)⊗ (x− at) dµt

)
· dWt

A bit more explicitly, writing xi for the i-th coordinate of a vector x ∈ Rn we have

dMt =
n∑

i=1

(∫
F (x)(x− at)i dµt

)
dWt,i. (1)

Lemma 2. Let at and At be the barcenter and covariance matrix of µt, respectively. Then

dat = AtdWt

dAt =

n∑
i=1

(∫
(x− at)

⊗2 (x− at)i dµt

)
dWt,i −A2

t dt.

This is obtained by applying (1) to the tensors F (x) = x and F (x) = x ⊗ x and then
rearranging the terms appropriately. The details are left as an exercise.
This shows that the stochastic localization process has some moment generating property.
The derivative for the barycenter is expressed in terms of the covariance, and the derivative
for the covariance depends on 3-tensors.

Some matrix inequalities.

Lemma 3. Suppose K,H are symmetric matrices, and K is positive semi-definite. Then for
every positive α, β we have

tr(KαHKβH) ≤ tr(Kα+βH2).

Proof. Let K =
∑

λixi ⊗ xi be the spectral decomposition of K. Then

tr(KαHKβH) =
∑
ij

λα
i λ

β
j ⟨xi, Hxj⟩2

≤
∑
ij

λα+β
i ⟨xi, Hxj⟩2

=
∑
i

λα+β
i ⟨xi, Hxi⟩2 = tr(Kα+βH2).

The inequality above follows from Young’s inequality

λα
i λ

β
j ≤ α

α+ β
λα+β
i +

β

α+ β
λα+β
j ,

and the fact that the expression ⟨xi, Hxj⟩2 is symmetric in i and j.

Corollary 4. Let φ be the map defined on the space Sn(R) of symmetric matrices by φ(A) =
tr eA. Then for every symmetric matrices A,H we have

D2φ(A)(H,H) ≤ Dφ(A)(H2) = tr(eAH2),

where Dφ(A) stands for the differential of φ at A and D2φ(A) for the Hessian matrix, viewed
as a bilinear form on Sn(R).
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Proof. Assume first that the matrix A is positive. Then by the previous lemma we have

D2φ(A)(H,H) =
∑
k≥1

1

k!

k−1∑
l=0

tr(AlHAk−1−lH)

≤
∑
k≥1

1

k!
· k · tr(Ak−1H2) = tr(eAH2) = Dφ(A)(H2),

which is the desired inequality. This argument does not work if A has some negative eigen-
values, but observe that the function φ has the property that

φ(A+ t · Id) = etφ(A)

By differentiating this equality with respect to A we see also Dφ and D2φ satisfy the same
equation, which means that adding a multiple of identity to A does not perturb the desired
inequality. Therefore it is enough to prove it for positive A.

Inequalities for 3-tensors. Recall the equation for At

dAt =
n∑

i=1

Hi,tdWi −A2
t dt,

where

Hi,t =

∫
Rn

(x− at)
⊗2(x− at)i dµt.

Recall that at is the barycenter of µt. So the matrix Hi,t is of the form EXiX
⊗2 for some

random vector with mean 0. We need to control such quantities. This is the purpose of the
next two lemmas.

Lemma 5. Let X be a centered log-concave vector, and let u be a fixed unit vector. Then

sup
u∈Sn−1

{∥E(X · u)X⊗2∥} ≤ C∥cov(X)∥3/2.

Proof. Let u, v be unit vector and let Hu = E(X · u)X⊗2. By Cauchy-Scwharz

Huv · v = E(X · u)(X · v)2 ≤ (E(X · u)2)1/2(E(X · v)4)1/2.

Now we use log-concavity. The variable X · v is a log-concave random variable centered at 0.
As we saw in Bo’az’s first talk its moments satisfy a reverse Hölder inequality. In particular
the fourth moment and second moment squared are of the same order. We thus get

Huv · v ≤ C(E(X · u)2)1/2E(X · v)2 ≤ C∥cov(X)∥3/2.

Taking the supremum in both u and v yields the result.

Lemma 6. Let X be a centered random vector having third moments and finite Poincaré
constant. Then

∥
n∑

i=1

(EXiX
⊗2)2∥ ≤ 4CP (X) · ∥cov(X)∥2.
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Proof. Recall the definition of Hu. When u is a coordinate vector ei we write Hi rather than
Hei . We need to show that for every unit vector u

n∑
i=1

H2
i u · u ≤ 4CP (X) · ∥cov(X)∥2.

An elementary computation shows that
∑

H2
i u · u = tr(H2

u). Moreover, since X is centered,
we get from Cauchy-Schwarz and the Poincaré inequality

trH2
u = E(X · u)(HuX ·X)

≤ (E(X · u)2)1/2 · (var(HuX ·X))1/2

≤ (E(X · u)2)1/2 · (4CP (X)E|HuX|2)1/2

= (cov(X)u · u)1/2 · (4CP (X)tr(H2
ucov(X)))1/2

≤ ∥cov(X)∥ · (4CP (X)tr(H2
u))

1/2.

Thus trH2
u ≤ 4CP (X)∥cov(X)∥2, which is the result.

Remark. We only applied Poincaré to a quadratic form so in a sense we only need a weak
notion of Poincaré here. This observation will not be needed in the subsequent analysis
presented here but it was crucial in the original work of Eldan.

Freedman inequality. Lastly we need a relatively classical deviation inequality for
martingales, which is usually attributed to Freedman [3].

Lemma 7. Let (Mt)t≥0 be a continuous local martingale satisfying M0 = 0. Then for every
positive u and σ2 we have

P(∃t > 0: Mt ≥ u& ⟨M⟩t ≤ σ2) ≤ e−u2/2σ2
.

Proof. We only sketch the argument and leave the details as an exercise. Start by proving
the following statement: If (Zt) is a square integrable martingale satisfying ⟨Z⟩t ≤ σ2 for all
t > 0 and almost surely, then Z∞ = limt→+∞ Zt exists and satisfies

P(Z∞ ≥ u) ≤ e−u2/2σ2

for all u > 0. Coming back to Freedman’s inequality, introduce the stopping time

τ = inf{t > 0: ⟨M⟩t > σ2}

and apply the above statement to the martingale (Mt) stopped at time τ .

The bound on the covariance matrix.

Theorem 8. Suppose µ is log-concave and isotropic on Rn, and let (At) be the covariance
process of the stochastic localization associated to µ. Then

P (∃s ≤ t : ∥At∥ ≥ 2) ≤ exp

(
− 1

Ct

)
, ∀t ≤ 1

C log2 n
.

Remark. We will see later on that this bound is pretty much sharp.
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Proof. A common method to control the norm of a symmetric random matrix A is to use the
Schatten norm (trAp)1/p where p is an even integer of order log n as a proxy for ∥A∥. This is
what Eldan does in his 2014 paper. For some reason we prefer to use another proxy, namely

hβ(M) :=
1

β
log tr eβM .

Note that hβ is a smooth function. Also

λmax(M) ≤ 1

β
log tr eβM ≤ λmax(M) +

log n

β
.

Therefore if β is of order log n then hβ(M) is approximately the same as the maximal eigen-
value of M , up to an additive constant. Recall the equation for (At). From Itô’s formula we
get (omitting the time variable)

dhβ(A) = Dhβ(A)
(∑

HidBi

)
−Dhβ(A)(A2) dt+

1

2

∑
D2hβ(A)(Hi, Hi) dt.

Let

M = ∇hβ(A) =
eβA

tr(eβA)
,

and note that this is a positive semi-definite matrix of trace 1. Using Corollary 4, we see that
the second derivative of hβ satisfies

D2hβ(A)(Hi, Hi) ≤ βtr(MH2
i ).

Dropping some negative terms we finally arrive at

dhβ(A) ≤
∑

tr(MHi)dBi +
β

2
tr
(
M

∑
H2

i

)
dt.

Let us deal with the absolutely continuous part. Since M is positive and has trace 1, we get
from Lemma 6

tr
(
M

∑
H2

i

)
≤ ∥

∑
H2

i ∥ ≤ 4CP (µt)∥At∥2.

Recall that (µt) gets more and more log-concave along time. In particular if the original
measure µ is log-concave then µt is t-uniformly log-concave, almost surely. From the improved
Lichnerowicz inequality of Klartag we get

CP (µt) ≤
(
∥At∥
t

)1/2

,

hence

dhβ(A) ≤
∑

tr(MHi)dBi +
Cβ√
t
· ∥At∥5/2dt.

Let us now bound the quadratic variation of the martingale part. For any unit vector u,
letting Hu =

∑
Hiui we get from Lemma 5∑

tr(MHi)ui ≤ tr(MHu) ≤ ∥Hu∥ ≤ C0∥At|3/2.
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Therefore, ∑
tr(MHi)

2 ≤ C2
0∥At∥3.

Let us summarize what we have obtained so far:

∥At∥ ≤ hβ(At) ≤ hβ(A0) + Zt +
β

2

∫ t

0
s−1/2∥As∥5/2 ds

= 1 +
log n

β
+ Zt +

β

2

∫ t

0
s−1/2∥As∥5/2 ds

(2)

where (Zt) is a continuous martingale starting from 0 whose quadratic variation satisfies

⟨Z⟩t ≤ C1

∫ t

0
∥As∥3 ds. (3)

Now choose β = 2 log n, and assume that there exists s ≤ t such that ∥As∥ ≥ 2. If s is the
smallest such time then before time s the operator norm of A is less than 2, so by (2)

2 = ∥As∥ ≤ 3

2
+ Zs + C2s

1/2 log n ≤ 3

2
+ Zs + C2t

1/2 log n

where C2 is some constant. If t is a sufficiently small multiple of (logn)−2 then the latest
inequality implies that Zs ≥ 1

4 . Moreover, thanks to (3) we also have ⟨Z⟩s ≤ C3s ≤ C3t.
Therefore,

P(∃s ≤ t : ∥As∥ ≥ 2) ≤ P(∃s > 0: Zs ≥
1

4
& ⟨Z⟩s ≤ C3t).

We conclude with Freedmann’s inequality.

Now we prove the bound for the expectation of At.

Proof. Since µt is t-uniformly log-concave, its covariance matrix is bounded above by (1/t)Id.
This was already mentioned by Bo’az. Therefore we have ∥At∥ ≤ 1/t, almost surely. As a
result

E∥At∥ ≤ 2 +
1

t
P(∥At∥ > 2).

Now we apply the latest theorem. Since x · e−c1x is a bounded function of x we indeed get
E∥At∥ = O(1) on the appropriate time range.

Remark. Instead of the improved Lichnerowicz inequality, we could have bounded CP (µt) by
the KLS constant. Namely if Cn is the largest Poincaré constant of an isotropic log-concave
measure then it is easy to see that for any log-concave X

CP (X) ≤ Cn∥cov(X)∥.

Therefore
CP (µt) ≤ Cn∥At∥.

Using this estimate instead of the improved Lichnerowicz inequality leads to the following
statement:

E∥At∥ = O(1), ∀t ≤ c

Cn log n
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It looks like we are chasing our tail here: the bound for ∥At∥ depends on Cn which we
wanted to bound in the first place. But recall that Bo’az showed us that if t0 is such that

E∥At∥ = O(1) up until time t0 then CP (µ) = O(t
−1/2
0 ). So the latest display actually gives

Cn = O(
√
Cn log n)

which indeed recovers Cn = O(log n).
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Material not really covered

Life before improved Lichnerowicz. The improved Lichnerowicz estimate is only from
2023, and it was not available to Eldan, Lee-Vempala, Chen, Klartag-Lehec. Here I will only
say a few words about the original argument of Eldan.
This morning Bo’az showed us that if µ is log-concave and such that E∥At∥ = O(1) up until

some small time t0 then CP (µ) = O(t
−1/2
0 ). Let us first reprove this in a slightly different

manner than what Bo’az did. Let f be the function given by E. Milman’s result from my
first lecture. Namely f is 1-Lipschitz and such that

varµ(f) ≈ ∥f∥2∞ ≈ CP (µ).

By the decomposition of variance

varµ(f) = Evarµt(f) + var

(∫
Rn

f dµt

)
For the first term we proceed in the same way as Bo’az: by improved Lichnerowicz and since
f is 1-Lipschitz, we have

Evarµt(f) ≤
E∥At∥1/2√

t
.

For the second term, we proceed differently. The process Mt =
∫
f dµt is a martingale, whose

derivative is

dMt =

(∫
Rn

f(x)(x− at) dµt

)
· dWt.

Since ∥f∥2∞ ≲ CP (µ) we get from Cauchy-Schwarz∣∣∣∣∫
Rn

f(x)(x− at) dµt

∣∣∣∣2 ≲ CP (µ)∥At∥.

Hence

var

(∫
f dµt

)
≲ CP (µ)

∫ t

0
E∥As∥ ds.

If E∥At∥ = O(1) up to time t0 we finally get

CP (µ) ≲ t−1/2 + t · CP (µ),

for all t ≤ t0, which indeed implies CP (µ) = O(t
−1/2
0 ) (assuming t0 = O(1)). One thing that

we can notice from this proof is that if we replace the improved Lichnerowicz inequality by
the usual one, namely CP (µ) ≤ 1/t in the t-uniformly log-concave case, we also get something
non trivial, namely

CP (µ) = O(t−1
0 ). (4)

This is obviously a lot worse than what we get from improved Lichnerowicz, but still non
trivial. As a matter of fact, all the aforementioned works on the KLS conjecture (prior to the
latest one by Bo’az in which the improved Lichnerowicz inequality is established) rely on this
estimate, one way or another. The other argument to get Poincaré from the bound on the
covariance that Bo’az showed this morning may be more elementary and more natural in a
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way, but it only works if one happens to know the improved Lichnerowicz inequality. If you
combine it with the usual Lichnerowicz inequality you get nothing. Define the constants Kn

and Sn by

Kn = sup

{
∥

n∑
i=1

(EXiX
⊗2)2∥

}
, Sn = sup{ 1

n
var|X|2}

where both sup are taken over all log-concave isotropic random vectors on Rn. The constant
Sn is called the thin-shell constant. The thin-shell conjecture asserts that the sequence (Sn)
is bounded. This is a weak form of the KLS conjecture since we only require Poincaré for a
very specific function, namely the Euclidean norm squared. It was mentioned by Bo’az in his
first lecture in connection with the central limit problem for convex sets. A variant of what
we have done above shows that in the isotropic log-concave case we have E∥At∥ = O(1) up
until times (CKn log n)

−1. Hence from (4)

Cn = O(Kn log n).

Moreover, by definition of Sn, given a log-concave and isotropic vector X on Rn, a unit vector
u, and an orthogonal projection P of rank k, we have E(X · u)|PX|2 ≤

√
kSk. Applying this

to suitable chosen projections P one can estimate the eigenvalues of E(X · u)X⊗2 and then
arrive at the bound

Kn ≲
n∑

k=1

Sk

k
≲ Sn log n.

Altogether this is gives
Cn = O(Sn log

2 n).

In other words thin-shell implies KLS up to polylog. This was the original result of Eldan.
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