
Lecture 2. The stochastic localization process

Informal definition. The original result of Kannan, Lovasz and Simonovits from 1995,
namely CP (µ) ≲ tr(cov(µ)) for the uniform measure on a convex set, was obtained by a
localization method, which, very roughly speaking, consisted in reducing the problem to a
one dimensional problem by truncating the measure by affine hyperplanes repeatedly. The
method of Eldan is inspired by this localization technique but as a number of key differences

• Instead of being truncated the measure is perturbed multiplicatively by a Gaussian
factor, of the form exp

(
c+ x · θ − δ|x|2

)
,

• The relevant direction θ is chosen randomly, according to a certain distribution for
which the above Gaussian factor is 1 on average,

• This operation is performed in continuous time rather than discrete time.

Let us now spell out the actual definition of Eldan’s process. We are given a probability
measure on Rn, satisfying some mild moment conditions which we do not want to specify for
now, and a standard Brownian motion (Wt) on Rn. We consider the following infinite system
of SDE whose unknown is the family (pt) of functions from Rn to R+:{

p0(x) = 1

dpt(x) = pt(x) (x− at) · dWt,

where at is the barycenter pt(x)µ(dx), namely

at =

∫
Rn x · pt(x)µ(dx)∫
Rn pt(x)µ(dx)

.

Note that we have only one Brownian motion (Wt) which is used for every x. Actually in
Eldan’s original paper [3] the process is slightly more intricate than that. Here we consider
the simplified version that was introduced by Lee and Vempala [7].

Since we have an equation for each x and they are all coupled together by the condition
on the barycenter, it is not at all clear that such a process should actually exists. Let us leave
that matter aside for now, and go on with the main properties of the process. The barycenter
condition ensures that the total mass of ptdµ remains constant. Indeed, at least formally we
have

d

∫
Rn

pt(x)µ(dx) =

∫
Rn

dpt(x)µ(dx) =

(∫
Rn

(x− at)pt(x)µ(dx)

)
· dWt,

which is 0 by definition of at. Therefore ptdµ is a random probability measure for all time,
and we call that measure µt from now on. The second feature is that pt(x) is a martingale
for all x. In particular Ept(x) = p0(x) = 1 for all x. Therefore the random measure µt equals
µ on average

Eµt = µ.

The third observation is that the equation

dpt(x) = pt(x)(x− at) · dWt
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can be solved explicitly. Indeed applying Itô’s formula to log pt(x) we get

d log pt(x) = (x− at) · dWt −
1

2
|x− at|2 dt,

hence

pt(x) = exp

(∫ t

0
(x− as) · dWs −

1

2

∫ t

0
|x− as|2 ds

)
= exp

(
ct + x · θt −

t

2
|x|2

)
,

where (ct) and (θt) are certain random processes not depending on x. This shows that the
density pt of µt with respect to µ is just a certain Gaussian factor. The linear term and
the normalizing constant are random but the quadratic term is deterministic, equal to t

2 |x|
2.

As a result if the original measure was log-concave then the measure µt is t-uniformly log-
concave, almost surely. Therefore the stochastic localization of Eldan allows us to write a
log-concave measure as a mixture of t-uniformly log-concave measures. Moreover this mixture
is constructed by solving a certain stochastic differential equation, so that its behavior over
time can be somehow controlled using Itô’s formula.

A proper construction of the process. We will now give a rigorous construction of the
stochastic localization process. This process was first introduce by Eldan [3] (a variant of it
actually), it was used in a number of subsequent works [7, 2, 5]. The construction that we
give here is somewhat original, but very much inspired by Klartag-Puttermann [6].

Start with a standard n-dimensional Brownian motion (θt) defined on some probability
space (Ω,F ,P) equipped with a filtration (Ft). This is an odd name for a Brownian motion,
you’ll see the reason for this choice shortly. Observe that for every fixed x ∈ Rn the process

exp

(
x · θt −

t

2
|x|2

)
is a martingale. Using Fubini, we deduce that given a test function f ,

Nt :=

∫
Rn

f(x) · exp
(
x · θt −

t

2
|x|2

)
µ(dx).

also is a martingale. In particular its expectation is what we have at time 0, namely
∫
Rn f dµ.

Let µt be the random probability measure on Rn whose density with respect to µ(dx) is
proportional to exp

(
x · θt − t

2 |x|
2
)
and rewrite Nt as

Nt =

(∫
Rn

f(x) dµt

)
·
∫
Rn

exp

(
x · θ − t

2
|x|2

)
µ(dx).

Note that the second factor is just the inverse normalizing factor for µt, as it should be. We
will interpret this factor as a change in the probability space. Fix a large but finite time
horizon T . The process (Dt) given by

Dt =

∫
Rn

exp

(
x · θ − t

2
|x|2

)
µ(dx)

is a positive martingale with expectation 1. Let Q be the probability measure on (Ω,F) whose
density with respect to P is DT . It is easy to see that a process (Xt) defined on [0, T ] is a Q-
martingale if and only if the process (XtDt) is a P-martingale. Since (Nt) was a P-martingale
we obtain the following.
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Fact 1. Under Q, the process (Mt) given by Mt =
∫
Rn fdµt is a martingale.

Getting an Itô equation for this process is a little more involved. It relies on the Girsanov
change of measure formula which we spell out now.

Proposition 2 (Girsanov change of measure). If X is a P-local martingale on [0, T ] then the
process X̃ given by

X̃t = Xt −
∫ t

0

d⟨X,D⟩s
Ds

is a Q-local martingale on [0, T ]. Moreover, X̃ and X have the same quadratic variation. In
particular if X is a P-Brownian motion on [0, T ] then X̃ is a Q-Brownian motion on [0, T ].

Remark. The bracket denotes the quadratic covariation of continuous semimartingales. Note
that the quadratic variation under P is the same as the quadratic variation under Q. Indeed,
quadratic variation is defined as the limit in probability of some expression, and this is easily
seen to be left unchanged by an absolutely continuous change of probability measure.

Remark. In the statement the process X is R-valued but the result also works for vector
valued martingales by applying it to each coordinate.

Proof. This is a very standard tool in stochastic calculus, we only give a very brief sketch of
proof and refer to [8, section IV.38] for more details. This amounts to proving that X̃D is a
P-martingale. But, from Itô’s integration by parts formula we get

d(X̃D) = (dX̃)D + X̃(dD) + d⟨X̃,D⟩

= (dX)D − d⟨X,D⟩+ X̃(dD) + d⟨X,D⟩.

The quadratic covariation of X and D thus cancels out and we’re left with martingale incre-
ments only.

Coming back to our situation, we see that the change of measure is of the form

Dt = exp(φ(t, θt))

where φ : R+ × Rn → R is the function given by

φ(t, θ) = log

(∫
Rn

exp

(
⟨x, θ⟩ − t

2
|x|2

)
µ(dx)

)
. (1)

This is not quite essential but let us assume for simplicity that ex·θ is integrable for all θ ∈ Rn

in which case φ is smooth on [0,∞[×Rn. From Itô’s formula we get

dDt = Dt∇φ(t, θt) · dθt.

Then from Gisanov, we see that the process (Wt) given by

Wt = θt −
∫ t

0
∇φ(t, θt) dt

is a Q-Brownian motion. We rewrite this equation as

dθt = dWt +∇φ(t, θt) dt.

We are now in a position to prove the following.
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Fact 3. The Itô derivative of the Q-martingale Mt =
∫
Rn fdµt is given by

dMt =

(∫
Rn

f(x)(x− at) dµt

)
· dWt,

where at =
∫
Rn x dµt is the barycenter of µt.

Proof. First of all, by differentiating under the integral sign, we obtain ∇φ(t, θt) = at. We
see Mt =

∫
f dµt as a function of t and θt, denoted F (t, θt). Thus by Itô’s formula and the

equation for θt, we have

dMt = ∇F (t, θt) · (dWt +∇φ(t, θt) dt) +
1

2
∆F (t, θt) dt+ ∂tF (t, θt) dt.

Differentiating under the intgral sign, we see that on the one hand,

∇F (t, θt) =

∫
Rn

f(x)(x− at) dµt,

and on the other hand that

∂tF = −∇F · ∇φ− 1

2
∆F.

So the absolutely continuous part in dF (t, θt) cancels out and the fact is proven.

Remark. Strictly speaking this only gives a construction of the process (µt) on a bounded
time interval [0, T ]. This will be sufficient for our needs but let us note that one could
extend this construction to the whole half-line by some abstract argument à la Caratheodory.
Beware though that the change of measure is only absolutely continuous when we restrict our
processes to a bounded time interval. If you’re not comfortable with this remark, you can
safely ignore it.

As a byproduct of this construction we obtain a simple description of the law of the process
(θt). This observation is not present in the works of Eldan, Lee-Vempala, and Chen. Its first
explicit mention is in the paper of Klartag and Puttermann.

Proposition 4. The process (θt) has the same law as the process (tX +Wt), where (Wt) is
a standard Brownian motion, and X is a random vector having law µ independent of (Wt).

Proof. Recall that we only work on some finite time interval [0, T ]. By the construction of
the previous proposition, the law of the process (θt) is absolutely continuous with respect to
the Wiener measure, with density eφ(T,WT ). Set ηt = tX +Wt for every t. Conditionally on
the vector X, the process (ηt) is just a Brownian motion plus a constant speed deterministic
drift. As a result its law is explicit, given by a very basic version of the Cameron-Martin
formula: For any test function H we have

E(H(η) | X) = E
(
H(W ) · eX·WT−T

2
|X|2 | X

)
.

Taking expectation again and using Fubini we obtain

EH(η) = EH(W ) · eφ(T,WT )

which indeed shows that η also has density eφ(T,WT ) with respect to the Wiener measure.
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One may wonder why we did not simply set θt = tX+Wt and proved that the correspond-
ing measure valued process (µt) is a martingale using Itô’s formula. This simplified approach
does not work: While the process (µt) is then a martingale with respect to its own filtration,
it is generally not a martingale with respect to the natural filtration of the Brownian motion
(Wt). Let us illustrate this issue with a simple example.

Example. In dimension 1, take µ to be the standard Gaussian measure. In that case we
have an explicit formula for φ namely

φ(t, θ) =
θ2

2(1 + t)
− 1

2
log(1 + t),

which gives ∇φ(t, θ) = θ
1+t . The equation for the tilt process (θt) is thus

dθt = dWt +
θt

1 + t
dt,

which can be solved explicitly:

θt = (1 + t)

∫ t

0

dWs

1 + s
.

Observe that the barycenter (at) of µt satisfies

at = ∇φ(t, θt) =
θt

1 + t
=

∫ t

0

dWs

1 + s

which is indeed a martingale with respect to the natural filtration of (Wt). On the other hand
if we set

ηt = Wt + tX

whereX is a standard Gaussian variable independent of (Wt), and if we let bt be the barycenter
of the corresponding tilt of µ, then we have

bt = ∇φ(t, ηt) =
ηt

1 + t
=

∫ t

0

dWs

1 + s
+

X −Ws

(1 + s)2
ds.

The absolutely continuous part is clearly not identically 0. Therefore (bt) is not a martingale
with respect to the Brownian motion (Wt). Nevertheless, according to the latest proposition
the processes (θt) and (ηt) should have the same law, hence also the processes (at) and
(bt). This identity can be seen directly in that case. Indeed, clearly (θt) and (ηt) both
are centered Gaussian processes. Therefore it is enough to check that the two covariance
structures coincide. It turns out that

Eθsθt = Eηsηt = st+ s ∧ t.

We leave this computation as an exercise.
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Time reversal. The description of the law of the tilt process (θt) and of the stochastic
localization process becomes even simpler after a time reversal. Observe that for every test
function f the quantity

∫
Rn f dµt is the convolution of fρ by a certain Gaussian factor, where

ρ is the density of µ with respect to the Lebesgue measure. More precisely if we introduce
the heat semi-group

Ptf(x) = Ef(x+Bt) = f ∗ gt
where gt(x) = (2πt)−n/2e−|x|2/2t is the density of the Gaussian measure with mean 0 and
covariance t · Id, then ∫

Rn

f dµt =
P1/t(fρ)

P1/tρ

(
θt
t

)
.

Warning: from now on (Pt) will denote the heat semigroup, and not the Langevin semigroup
associated to µ of lecture 1. Now set s = 1/t, observe that

θt
t
∼ tX +Bt

t
= X + sB1/s,

and observe also that B̃s := sB1/s is again a standard Brownian motion (this is the time
reversal property of the Brownian motion). Here the symbol ∼ means equality in law. This
means that up to the time reversal s = 1/t the process (

∫
f dµt)t≥0 has the same distribution

as (Qsf(X +Bs))s≥0, where Qs is the operator defined by

Qsf =
Ps(fρ)

Psρ
.

Moreover, using the fact that the heat semigroup is self-adjoint in L2(dx) it is easy to see
that

Qsf(X +Bs) = E[f(X) | X +Bs].

Putting everything together we see that the stochastic localization process initiated from µ
has the same law as the measure valued process obtained by looking at the conditional law
of X given X +Bs and then reversing time by setting t = 1/s.

Remark. It is clear from this description that this process was looked at in many other
contexts. Apparently it is an important tool in filtering theory, and it is also very much
related to what Bauerschmidt, Bodineau and Dagallier [1] mpcall the Polcinski equation,
which is used in their recent series of works on log-Sobolev inequalities for various particles
models. In any case, the way the process was used by Eldan to prove inequalities was clearly
novel.
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