SOPHIA YAZZOURH - STUDENT SEMINAR 06/06/24 INTRODUCTION TO REINFORCEMENT LEARNING

QUID OF REINFORCEMENT LEARNING?

- > The nature of learning is basically interacting with the environment
- Use the environment response to our actions to take the next decision
- How to map situations to actions?
- Solve decision-making problems

teracting with the environment ar actions to take the next decision

INTRODUCTION TO REINFORCEMENT LEARNING

ONLINE VS OFFLINE

PLAN

- I. Mathematical framework
- II. Algorithms
- III. Properties
- VII. Researches issues

 $2x^{2}+3x+4=y$ $(x+y)^{n} = a^{3}+b^{3}$ x^{n-k} y^k y=sin a^2+b^2 <u>377</u> - 77 2 <u>3π</u> 2 27 ·<u>π</u>2 - 5 2 N $(x+y)^{n}=$ $\sqrt[3]{-8} = -\sqrt[3]{8} = 2$ $y = \frac{k}{x} k < 0$ b $\frac{\sqrt{3}}{2}$ $=ax^{2}+bx+c$ ฦ≈3.14 0) A=Lw X^2 $y = kx^2 k > 0$ $4^{-2} = \left(\frac{1}{4}\right)^2$ × $8^2 + 6^2 = c^2$ 0 $4^{\frac{3}{2}} = \sqrt[2]{4^3}$ $64+36=c^2$ $\sqrt{2}$ $100 = c^2$ $y = \frac{k}{x}$ $\sqrt{100} = \sqrt{c^2}$ +c2-2ab+2bc-2ca $\pm 10 = c$ C ab+c С B V=Lwh y=a(x-b)2+c

INTRODUCTION TO RL MATHEMATICAL FRAMEWORK

DECISION PROCESS ($\mathbb{S}, \mathbb{A}, \{\mathbb{A}(s) \mid s \in \mathbb{S}\}, \nu$) on \mathbb{T}

- A family of random variables $\{S_t, t \in \mathbb{T}\}$ in S called space of states
- A family of random variable $\{A_t, t \in \mathbb{T}\}$ in A called space of actions
- A set $\{A(s) | s \in S\}$ of non empty measurable subsets of A(s) is the set of realizable actions when the system is in the state $s \in S$. We will ask to be a measurable subset of $S \times A$.
- An initial probability law ν on \mathbb{S} .

TRAJECTORY / HISTORY

is described by $(s_0, a_0, ..., s_{n-1}, a_{n-1}, s_n)$

An admissible trajectory h_n at time n is a vector containing the states visited by the system and the actions taken

MARKOV DECISION PROCESS

- The point of main importance to deal with decision process is $\mathbb{P}_{\nu}[S_{n+1} = S_{n+1} | H_n = h_n, A_n = a_n]$
- of the vector h_n as *n* increases
- The Markov Assumption : $\mathbb{P}_{\nu}[S_{n+1} = S_{n+1} | H_n = h_n, A_n = a_n] = \mathbb{P}_{\nu}[S_{n+1} = S_{n+1} | S_n = S_n, A_n = a_n]$

Demands significant computational resources because of the increasing length

POLICY

defined, for any $\mathscr{A} \in \mathscr{B}(\mathbb{A})$ and all $h_n \in \mathbb{H}_n$, by :

$\pi_n(\mathscr{A}, h_n) = \mathbb{P}[A_n \in \mathscr{A} \mid H_n = h_n]$

- Plan that establishes a sequence of actions
- Tailored to align with a specified objective.

A policy is a sequence $\pi = (\pi_n)_{n \in \mathbb{N}}$ of conditional distributions from A given \mathbb{H}_n

Reward is defined as a family of bounded R-valued random variables $h_n \in \mathbb{H}_n$, all $a_n \in \mathbb{A}$ and all $s_{n+1} \in \mathbb{S}$: $\mathscr{R}_{n+1}(h_n, a_n, s_{n+1}) = \mathbb{E}_{\nu}^{\pi}[R_{n+1} | H_n = h_n]$ function is defined for all $n \in \mathbb{N}$, by: $G_n = \sum \gamma^{j-n-1} R_j$

 $\{R_n, n \in \mathbb{N}\}$. For a sake of simplicity, let us denote for a given $n \in \mathbb{N}$, for all

$$, A_n = a_n, S_{n+1} = s_{n+1}]$$

Siven $\gamma \in [0,1]$ a discount parameter, the stage *n* long term discounted reward i=n+1

VALUE FUNCTIONS AND OPTIMALITY (MDP)

- Given $(S, A, \{A(s) | s \in S\}, \nu)$ a decision process on $\mathbb{T}, \{R_n, n \in \mathbb{N}\}$ a family of rewards, π a policy and $\gamma \in [0,1]$ a discount parameter.
 - The Q-function for a history s_n , taking a_n is given by: $Q_n^{\pi}(s_n, a_n) = \mathbb{E}_n^{\pi}[G_n | S_n = s_n, A_n = a_n]$
 - The V-function for a state s_n is given by: $V_n^{\pi}(s_n) = \mathbb{E}_n^{\pi}[G_n | S_n = s_n]$
- Optimal policy: $V_n^*(s_n) = \max V_n^{\pi}(s_n)$ and $Q_n^*(s_n, a_n) = \max Q_n^{\pi}(s_n, a_n)$ π

(item[i], x) do inc Arr [1][i] do while begin Cersc jmax:=1; i, j, imax, jmax; more (item[j],x) do dec for j=1 to ma w=item[i]; item[i]=item[j]; While for i=1 tondo incli ---- 9

INTRODUCTION TO RL

Q-LEARNING (ONLINE ENVIRONMENT)

- Initialization : Arbitrary
- **Exploration/Exploitation**:

 $\pi_{\epsilon}(s) = \begin{cases} \text{random action from } \mathbb{A}(s) \\ \arg \max_{a \in \mathbb{A}(s)} Q(s, a) \end{cases}$

Update Q-values : $Q(s, a) \leftarrow Q(s, a) +$

• Optimal Policy : $Q_n^*(s_n, a_n) = \max Q_n^{\pi}(s_n, a_n)$

with probability ϵ with probability $1 - \epsilon$

$$\alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$

- Determination of an optimal strategy at each step

Learning process

Estimation of Q-values using regression algorithms in a backward manner at each step

ALGORITHMS (NON-EXHAUSTIVE LIST)

INTRODUCTION TO RL

PROPERTIES

MODEL-BASED VS. MODEL-FREE

A procedure is considered "model-based" when it relies on knowledge of all transition probabilities from a model

 $\mathbb{P}_{\nu}[S_{n+1} = S_{n+1} | H_n = h_n, A_n = a_n]$

A model-free method is able to bypass this model and is based on partial information of the associations between states and actions

POLICY-BASED VS. VALUE-BASED

- Direct Computation : Optimization problem directly solve
 Policy Parametrization : θ ∈ Θ, π_θ(s, α)
 Objective function :
 - $\theta_{t+1} = \theta_t + \nabla \mathbb{E}^{\pi}[G_t | \theta]$

- Intermediate Element : State-value and Action-value
- Value functions :
 V^π_n(s_n) = ℝ^π_ν[G_n | S_n = s_n]
 Q^π_n(s_n, a_n) = ℝ^π_ν[G_n | S_n = s_n, A_n = a_n]
 Optimality :
 - $V_{n}^{*}(s_{n}) = \max_{\pi} V_{n}^{\pi}(s_{n})$ $Q_{n}^{*}(s_{n}, a_{n}) = \max_{\pi} Q_{n}^{\pi}(s_{n}, a_{n})$

III. PROPERTIES

ON-POLICY VS. OFF-POLICY

Environment Optimale Policy 🗲 Behavior Policy

ALGORITHMS (NON-EXHAUSTIVE LIST)

INTRODUCTION TO RL RESEARCH SSUES

•••

« HOT » TOPICS IN REINFORCEMENT LEARNING

- Sample Efficiency for online setting
- Deep Reinforcement Learning
- Multi Agent Reinforcement Learning
- Explicable Reinforcement Learning

REINFORCEMENT LEARNING FOR HEALTHCARE APPLICATIONS

- Reward formulation
- Integration of Prior Knowledge
- Learning from small data
- Futur in Vivo Studies

• • •