A link between the central limit theorem and numerical schemes for the transport equation

Lucas Coeuret
14th of March 2024
Institut de Mathématiques de Toulouse (IMT)

Goal of numerical analysis: For a given PDE, how can we approach its solutions?

Who cares about numerical analysis on the transport equation?

$$
\begin{aligned}
\partial_{t} u+c \partial_{x} u=0, & t \in] 0,+\infty[, x \in \mathbb{R} \\
u(t=0, x)=u_{0}(x), & x \in \mathbb{R} .
\end{aligned}
$$

Approximations of solutions of systems of conservation laws

We consider the systems of conservation laws

$$
\begin{gathered}
\partial_{t} u+\partial_{x} f(u)=0, \quad t \in \mathbb{R}_{+}, x \in \mathbb{R} \\
u: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}
\end{gathered}
$$

where the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is smooth.
This type of PDE approaches several physical phenomena, for instance in fluid mechanics.

Particularities:

- The solutions of this type of PDE tends to have discontinuities. (shock waves)
- The solutions can be fairly difficult to find. Numerical analysis for those PDEs is a central theme.

Here is a solution for the Burgers equation:

$$
\partial_{t} u+u \partial_{x} u=0 .
$$

Here is a solution for the Burgers equation:

$$
\partial_{t} u+u \partial_{x} u=0
$$

Here is a solution for the Burgers equation:

$$
\partial_{t} u+u \partial_{x} u=\varepsilon \partial_{x x} u .
$$

Finite difference schemes for the transport equation

We consider a velocity $c>0$. We are looking to approach the solutions of the transport equation:

$$
\begin{aligned}
\partial_{t} u+c \partial_{x} u=0, & t \in] 0,+\infty[, x \in \mathbb{R} \\
u(t=0, x)=u_{0}(x), & x \in \mathbb{R} .
\end{aligned}
$$

We are going to apply a finite difference scheme.
We consider a small time step $\Delta t>0$ and a small space step $\Delta x>0$. We define $t^{n}:=n \Delta t$ and $x_{j}:=j \Delta x$ for $n \in \mathbb{N}$ and $j \in \mathbb{Z}$.

Finite difference schemes for the transport equation

We consider a velocity $c>0$. We are looking to approach the solutions of the transport equation:

$$
\begin{aligned}
\partial_{t} u+c \partial_{x} u=0, & t \in] 0,+\infty[, x \in \mathbb{R} \\
u(t=0, x)=u_{0}(x), & x \in \mathbb{R} .
\end{aligned}
$$

We are going to apply a finite difference scheme.
We consider a small time step $\Delta t>0$ and a small space step $\Delta x>0$. We define $t^{n}:=n \Delta t$ and $x_{j}:=j \Delta x$ for $n \in \mathbb{N}$ and $j \in \mathbb{Z}$.

For a regular function u, we have:

$$
\begin{aligned}
& \partial_{t} u(t, x) \approx \frac{u(t+\Delta t, x)-u(t, x)}{\Delta t} \\
& \partial_{x} u(t, x) \approx \frac{u(t, x)-u(t, x-\Delta x)}{\Delta x}
\end{aligned}
$$

Thus, for u a regular solution of the transport equation, we have for all $t \in[0,+\infty[$ and $x \in \mathbb{R}$:

$$
\frac{u(t+\Delta t, x)-u(t, x)}{\Delta t}+c \frac{u(t, x)-u(t, x-\Delta x)}{\Delta x} \approx 0 .
$$

For a regular function u, we have:

$$
\begin{aligned}
\partial_{t} u(t, x) & \approx \frac{u(t+\Delta t, x)-u(t, x)}{\Delta t} \\
\partial_{x} u(t, x) & \approx \frac{u(t, x)-u(t, x-\Delta x)}{\Delta x}
\end{aligned}
$$

Thus, for u a regular solution of the transport equation, we have for all $t \in[0,+\infty[$ and $x \in \mathbb{R}$:

$$
u(t+\Delta t, x) \approx\left(1-c \frac{\Delta t}{\Delta x}\right) u(t, x)+c \frac{\Delta t}{\Delta x} u(t, x-\Delta x)
$$

For a regular function u, we have:

$$
\begin{aligned}
& \partial_{t} u(t, x) \approx \frac{u(t+\Delta t, x)-u(t, x)}{\Delta t} \\
& \partial_{x} u(t, x) \approx \frac{u(t, x)-u(t, x-\Delta x)}{\Delta x}
\end{aligned}
$$

Thus, for u a regular solution of the transport equation, we have for all $t \in[0,+\infty[$ and $x \in \mathbb{R}$:

$$
u(t+\Delta t, x) \approx\left(1-c \frac{\Delta t}{\Delta x}\right) u(t, x)+c \frac{\Delta t}{\Delta x} u(t, x-\Delta x)
$$

This leads us to study the solution $\left(u^{n}\right)_{n \in \mathbb{N}}$ of

$$
\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_{j}^{n+1}=\left(1-c \frac{\Delta t}{\Delta x}\right) u_{j}^{n}+c \frac{\Delta t}{\Delta x} u_{j-1}^{n}
$$

with $u^{0} \in \mathbb{R}^{Z}$.

From now on we have:

$$
\lambda:=\frac{\Delta t}{\Delta x} .
$$

We consider the numerical scheme for $c \lambda=0.25$:

$$
\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_{j}^{n+1}=(1-c \lambda) u_{j}^{n}+c \lambda u_{j-1}^{n}
$$

From now on we have:

$$
\lambda:=\frac{\Delta t}{\Delta x} .
$$

We consider the numerical scheme for $c \lambda=0.25$:

$$
\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_{j}^{n+1}=(1-c \lambda) u_{j}^{n}+c \lambda u_{j-1}^{n}
$$

Hypothesis: We have fixed the ratio between Δt and Δx.
We consider u a regular solution of the transport equation:

$$
u(t+\Delta t, x) \approx(1-c \lambda) u(t, x)+c \lambda u(t, x-\Delta x)
$$

Hypothesis: We have fixed the ratio between Δt and Δx.
We consider u a regular solution of the transport equation:

$$
\begin{aligned}
u(t+\Delta t, x)-(1-c \lambda) u(t, x)-c \lambda u(t, x & -\Delta x) \\
& =-\Delta x^{2} \beta \partial_{x x} u+o\left(\Delta x^{2}\right)
\end{aligned}
$$

where β is some constant in $] 0,+\infty[$.

Rewriting the finite difference schemes in a better way

We consider the Modified Lax Friedrichs scheme (D is some constant)

$$
u_{j}^{n+1}=\left(\lambda D+\frac{c \lambda}{2}\right) u_{j-1}^{n}+(1-2 D \lambda) u_{j}^{n}+\left(\lambda D-\frac{c \lambda}{2}\right) u_{j+1}^{n}
$$

We consider the Modified Lax Friedrichs scheme (D is some constant)

$$
u_{j}^{n+1}=\underbrace{\left(\lambda D+\frac{c \lambda}{2}\right)}_{=\mathbf{a}_{1}} u_{j-1}^{n}+\underbrace{(1-2 D \lambda)}_{=\mathbf{a}_{0}} u_{j}^{n}+\underbrace{\left(\lambda D-\frac{c \lambda}{2}\right)}_{=\mathbf{a}_{-1}} u_{j+1}^{n}
$$

We consider the Modified Lax Friedrichs scheme (D is some constant)

$$
u_{j}^{n+1}=\underbrace{\left(\lambda D+\frac{c \lambda}{2}\right)}_{=\mathbf{a}_{1}} u_{j-1}^{n}+\underbrace{(1-2 D \lambda)}_{=\mathbf{a}_{0}} u_{j}^{n}+\underbrace{\left(\lambda D-\frac{c \lambda}{2}\right)}_{=\mathbf{a}_{-1}} u_{j+1}^{n}
$$

Thus,

$$
\forall n \in \mathbb{N}, \quad u^{n+1}=\mathbf{a} * u^{n},
$$

where $\mathbf{a}=\left(\cdots, 0, \mathbf{a}_{-1}, \mathbf{a}_{0}, \mathbf{a}_{1}, 0, \cdots\right) \in \mathbb{C}^{\mathbb{Z}}$.

A finite difference approximation of our initial transport equation can be written as

$$
\begin{aligned}
& \forall n \in \mathbb{N}, \quad u^{n}=\mathbf{a}^{n} * u^{0}, \\
& u^{0} \in \mathbb{C}^{\mathbb{Z}},
\end{aligned}
$$

where $\mathbf{a} \in \mathbb{C}^{\mathbb{Z}}$ is finitely supported and $\mathbf{a}^{n}=\mathbf{a} * \cdots * \mathbf{a}$.

We must also have :

$$
\sum_{\substack{k \in \mathbb{Z} \\ \text { constants are solutions }}} \mathbf{a}_{k}=1 \quad \text { and }
$$

$$
\sum_{k \in \mathbb{Z}} k \mathbf{a}_{k}=c \lambda
$$

the solutions of the scheme travel at the correct speed

Goal:

- We want to study \mathbf{a}^{n} for large values of n to better understand the large time behavior of the finite difference scheme. Maybe this would explain the diffusive behavior we observe.
- Could we prove some estimates on \mathbf{a}^{n} in $\ell^{p}(\mathbb{Z})$?

A detour through Probability - The Local Limit Theorem

We consider a random walk

$$
S_{n}:=I+X_{1}+\cdots+X_{n}
$$

where X_{n} are i.i.d. random variables (same law as some random variable X with values in \mathbb{Z}) and I is also an independent random variable with values in \mathbb{Z}. We use the notation

$$
\forall j \in \mathbb{Z}, \quad u_{j}^{0}:=P(I=j) \quad \text { and } \quad \mathbf{a}_{j}:=P(X=j)
$$

We then have

$$
\forall j \in \mathbb{Z}, \quad P\left(S_{0}=j\right)=u_{j}^{0} .
$$

A detour through Probability - The Local Limit Theorem

We consider a random walk

$$
S_{n}:=I+X_{1}+\cdots+X_{n}
$$

where X_{n} are i.i.d. random variables (same law as some random variable X with values in \mathbb{Z}) and I is also an independent random variable with values in \mathbb{Z}. We use the notation

$$
\forall j \in \mathbb{Z}, \quad u_{j}^{0}:=P(I=j) \quad \text { and } \quad \mathbf{a}_{j}:=P(X=j)
$$

We then have

$$
\forall j \in \mathbb{Z}, \quad P\left(S_{1}=j\right)=\sum_{k \in \mathbb{Z}} P\left((I=k) \cap\left(X_{1}=j-k\right)\right)=\left(\mathbf{a} * u^{0}\right)_{j} .
$$

A detour through Probability - The Local Limit Theorem

We consider a random walk

$$
S_{n}:=I+X_{1}+\cdots+X_{n}
$$

where X_{n} are i.i.d. random variables (same law as some random variable X with values in \mathbb{Z}) and I is also an independent random variable with values in \mathbb{Z}. We use the notation

$$
\forall j \in \mathbb{Z}, \quad u_{j}^{0}:=P(I=j) \quad \text { and } \quad \mathbf{a}_{j}:=P(X=j)
$$

We then have

$$
\forall j \in \mathbb{Z}, \quad P\left(S_{2}=j\right)=\sum_{k \in \mathbb{Z}} P\left(\left(S_{1}=k\right) \cap\left(X_{2}=j-k\right)\right)=\left(\mathbf{a}^{2} * u^{0}\right)_{j} .
$$

A detour through Probability - The Local Limit Theorem

We consider a random walk

$$
S_{n}:=I+X_{1}+\cdots+X_{n}
$$

where X_{n} are i.i.d. random variables (same law as some random variable X with values in \mathbb{Z}) and I is also an independent random variable with values in \mathbb{Z}. We use the notation

$$
\forall j \in \mathbb{Z}, \quad u_{j}^{0}:=P(I=j) \quad \text { and } \quad \mathbf{a}_{j}:=P(X=j)
$$

We then have

$$
\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad P\left(S_{n}=j\right)=\left(\mathbf{a}^{n} * u^{0}\right)_{j} .
$$

Central Limit Theorem :

$$
\sqrt{n}\left(\frac{S_{n}}{n}-\mathbb{E}(X)\right) \stackrel{\mathcal{C}}{\rightarrow} \mathcal{N}(0, V(X)) .
$$

Local Limit Theorem : Under suitable conditions on the sequence a
$\mathbf{a}_{j}^{n}-\frac{1}{\sqrt{2 \pi V(X) n}} \exp \left(-\frac{|j-n \mathbb{E}(X)|^{2}}{2 n V(X)}\right) \underset{n \rightarrow+\infty}{=} 0\left(\frac{1}{\sqrt{n}}\right) \quad$ uniformly on \mathbb{Z}.

A detour through Probability - The Local Limit Theorem

$\mathbf{a}_{j}^{n}-\frac{1}{\sqrt{2 \pi V(X) n}} \exp \left(-\frac{|j-n \mathbb{E}(X)|^{2}}{2 n V(X)}\right)-\frac{1}{n} q\left(\frac{j-n \mathbb{E}(X)}{\sqrt{V(X) n}}\right) \underset{n \rightarrow+\infty}{=} \circ\left(\frac{1}{n}\right)$,
where

$$
\forall x \in \mathbb{R}, \quad q(x):=C(X)\left(x^{3}-3 x\right) e^{-\frac{x^{2}}{2}}
$$

with $C(X)$ a constant depending on the random variable X.

Question solved?

A detour through Probability - The Local Limit Theorem

$\mathbf{a}_{j}^{n}-\frac{1}{\sqrt{2 \pi V(X) n}} \exp \left(-\frac{|j-n \mathbb{E}(X)|^{2}}{2 n V(X)}\right)-\frac{1}{n} q\left(\frac{j-n \mathbb{E}(X)}{\sqrt{V(X) n}}\right) \underset{n \rightarrow+\infty}{=} \circ\left(\frac{1}{n}\right)$,
where

$$
\forall x \in \mathbb{R}, \quad q(x):=C(X)\left(x^{3}-3 x\right) e^{-\frac{x^{2}}{2}}
$$

with $C(X)$ a constant depending on the random variable X.

Question solved ? No !

Two remaining issues:

- The Local limit theorem does not allow to obtain estimates on \mathbf{a}^{n} in ℓ^{p}.
- The Local limit theorem only applies to sequences a with positive coefficients. The case with real (or even complex) coefficients can create strange new behavior!

We consider the Lax-Wendroff scheme for $c \lambda=0.25$:
$\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_{j}^{n+1}=\frac{c \lambda+(c \lambda)^{2}}{2} u_{j-1}^{n}+\left(1-(c \lambda)^{2}\right) u_{j}^{n}-\frac{c \lambda-(c \lambda)^{2}}{2} u_{j+1}^{n}$.

We consider the Lax-Wendroff scheme for $c \lambda=0.25$:
$\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}, \quad u_{j}^{n+1}=\frac{c \lambda+(c \lambda)^{2}}{2} u_{j-1}^{n}+\left(1-(c \lambda)^{2}\right) u_{j}^{n}-\frac{c \lambda-(c \lambda)^{2}}{2} u_{j+1}^{n}$.

A spectral issue

We consider the convolution operator acting on $\ell^{\rho}(\mathbb{Z})$:

$$
\forall u \in \ell^{p}(\mathbb{Z}), \quad L u:=\mathbf{a} * u
$$

The spectrum of the convolution operator L is:

$$
\left\{\sum_{k \in \mathbb{Z}} \mathbf{a}_{k} \kappa^{k}, \quad \kappa \in \mathbb{S}^{1}\right\}=F\left(\mathbb{S}^{1}\right)
$$

where F is the Fourier series associated to the sequence a.

Hypotheses on the Fourier series

We assume that:

- $F(0)=\sum_{k \in \mathbb{Z}} \mathbf{a}_{k}=1$
- $F^{\prime}(0)=\sum_{k \in \mathbb{Z}} k \mathbf{a}_{k}=c \lambda$
- $\forall \kappa \in \mathbb{S}^{1}, \quad|F(\kappa)|<1$

We notate $m \in \mathbb{N} \backslash\{0,1\}$ the first integer such that there exists a constant $D \neq 0$ such that:

$$
F\left(e^{i t}\right) \underset{t \rightarrow 0}{=} \exp \left(i c \lambda t+D t^{m}+o\left(t^{m}\right)\right)
$$

Generalized local limit theorem - Randles and Saloff-Coste 15 '

The asymptotic behavior of \mathbf{a}^{n} is described by:

$$
\mathbf{a}_{j}^{n}-\frac{1}{n^{\frac{1}{m}}} H_{m}\left(\frac{j-n c \lambda}{n^{\frac{1}{m}}}\right) \underset{n \rightarrow+\infty}{=} \circ\left(\frac{1}{n^{\frac{1}{m}}}\right)
$$

where the generalized Gaussian H_{m} is the fundamental solution of

$$
\partial_{t} u+i^{m} D \partial_{x}^{m} u=0 .
$$

Generalized local limit theorem - C. 22'

When m is even, there exists two positive constants C, c such that:

$$
\forall n \in \mathbb{N}, \forall j \in \mathbb{Z}
$$

$$
\left|\mathbf{a}_{j}^{n}-\frac{1}{n^{\frac{1}{m}}} H_{m}\left(\frac{j-n c \lambda}{n^{\frac{1}{m}}}\right)\right| \leq \frac{C}{n^{\frac{2}{m}}} \exp \left(-c\left(\frac{|j-n c \lambda|}{n^{\frac{1}{m}}}\right)^{\frac{m}{m-1}}\right) .
$$

Thank you for your attention!

