
A link between the central limit theorem
and numerical schemes for the transport
equation

Lucas Coeuret

14th of March 2024

Institut de Mathématiques de Toulouse (IMT)

1 / 21



Goal of numerical analysis: For a given PDE, how can we approach its
solutions?

Who cares about numerical analysis on the transport equation?

∂tu + c∂xu = 0, t ∈]0,+∞[, x ∈ R

u(t = 0, x) = u0(x), x ∈ R.
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Approximations of solutions of systems of conservation laws

We consider the systems of conservation laws

∂tu + ∂x f (u) = 0, t ∈ R+, x ∈ R,
u : R+ × R→ R,

where the function f : R→ R is smooth.

This type of PDE approaches several physical phenomena, for instance in
fluid mechanics.

Particularities:

• The solutions of this type of PDE tends to have discontinuities.
(shock waves)

• The solutions can be fairly difficult to find. Numerical analysis for
those PDEs is a central theme.
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Here is a solution for the Burgers equation:

∂tu + u∂xu = 0.
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Here is a solution for the Burgers equation:

∂tu + u∂xu = 0.
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Here is a solution for the Burgers equation:

∂tu + u∂xu = ε∂xxu.
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Finite difference schemes for the transport equation

We consider a velocity c > 0. We are looking to approach the solutions
of the transport equation:

∂tu + c∂xu = 0, t ∈]0,+∞[, x ∈ R

u(t = 0, x) = u0(x), x ∈ R.

We are going to apply a finite difference scheme.

We consider a small time step ∆t > 0 and a small space step ∆x > 0.
We define tn := n∆t and xj := j∆x for n ∈ N and j ∈ Z.
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For a regular function u, we have:

∂tu(t, x) ≈ u(t + ∆t, x)− u(t, x)

∆t

∂xu(t, x) ≈ u(t, x)− u(t, x −∆x)

∆x

Thus, for u a regular solution of the transport equation, we have for all
t ∈ [0,+∞[ and x ∈ R:

u(t + ∆t, x)− u(t, x)

∆t
+ c

u(t, x)− u(t, x −∆x)

∆x
≈ 0.
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Thus, for u a regular solution of the transport equation, we have for all
t ∈ [0,+∞[ and x ∈ R:

u(t + ∆t, x) ≈
(
1− c

∆t

∆x

)
u(t, x) + c

∆t

∆x
u(t, x −∆x).

This leads us to study the solution (un)n∈N of

∀n ∈ N,∀j ∈ Z, un+1
j =

(
1− c

∆t

∆x

)
unj + c

∆t

∆x
unj−1

with u0 ∈ RZ .
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From now on we have:
λ :=

∆t

∆x
.

We consider the numerical scheme for cλ = 0.25:

∀n ∈ N,∀j ∈ Z, un+1
j = (1− cλ) unj + cλunj−1
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From now on we have:
λ :=

∆t

∆x
.

We consider the numerical scheme for cλ = 0.25:

∀n ∈ N,∀j ∈ Z, un+1
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"The numerical scheme introduces numerical viscosity"

Hypothesis: We have fixed the ratio between ∆t and ∆x .

We consider u a regular solution of the transport equation:

u(t + ∆t, x) ≈ (1− cλ) u(t, x) + cλu(t, x −∆x)
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"The numerical scheme introduces numerical viscosity"

Hypothesis: We have fixed the ratio between ∆t and ∆x .

We consider u a regular solution of the transport equation:

u(t + ∆t, x)− (1− cλ) u(t, x)− cλu(t, x −∆x)

= −∆x2β∂xxu + o
(
∆x2)

where β is some constant in ]0,+∞[.
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Rewriting the finite difference schemes in a better way

We consider the Modified Lax Friedrichs scheme (D is some constant)

un+1
j =

(
λD +

cλ

2

)
unj−1 + (1− 2Dλ) unj +

(
λD − cλ

2

)
unj+1

Thus,
∀n ∈ N, un+1 = a ∗ un,

where a = (· · · , 0, a−1, a0, a1, 0, · · · ) ∈ CZ.
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A finite difference approximation of our initial transport equation can be
written as

∀n ∈ N, un = an ∗ u0,

u0 ∈ CZ,

where a ∈ CZ is finitely supported and an = a ∗ · · · ∗ a.

We must also have :∑
k∈Z

ak = 1

constants are solutions

and
∑
k∈Z

kak = cλ

the solutions of the scheme travel at the correct speed

.
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Goal:

• We want to study an for large values of n to better understand the
large time behavior of the finite difference scheme. Maybe this
would explain the diffusive behavior we observe.

• Could we prove some estimates on an in `p(Z)?
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A detour through Probability - The Local Limit Theorem

We consider a random walk

Sn := I + X1 + · · ·+ Xn

where Xn are i.i.d. random variables (same law as some random variable
X with values in Z) and I is also an independent random variable with
values in Z. We use the notation

∀j ∈ Z, u0
j := P(I = j) and aj := P(X = j).

We then have

∀j ∈ Z, P(S0 = j) = u0
j .
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Central Limit Theorem :

√
n

(
Sn
n
− E(X )

)
L→ N (0,V (X )).

Local Limit Theorem : Under suitable conditions on the sequence a

anj −
1√

2πV (X )n
exp

(
−|j − nE(X )|2

2nV (X )

)
=

n→+∞
o

(
1√
n

)
uniformly on Z.
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A detour through Probability - The Local Limit Theorem

anj −
1√

2πV (X )n
exp

(
−|j − nE(X )|2

2nV (X )

)
−1
n
q

(
j − nE(X )√

V (X )n

)
=

n→+∞
o

(
1
n

)
,

where
∀x ∈ R, q(x) := C (X )(x3 − 3x)e−

x2
2

with C (X ) a constant depending on the random variable X .

Question solved ?
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Two remaining issues:

• The Local limit theorem does not allow to obtain estimates on an in
`p.

• The Local limit theorem only applies to sequences a with positive
coefficients. The case with real (or even complex) coefficients can
create strange new behavior!
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We consider the Lax -Wendroff scheme for cλ = 0.25:

∀n ∈ N,∀j ∈ Z, un+1
j =

cλ+ (cλ)2

2
unj−1+(1−(cλ)2)unj −

cλ− (cλ)2

2
unj+1.
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A spectral issue

We consider the convolution operator acting on `p(Z):

∀u ∈ `p(Z), Lu := a ∗ u.

The spectrum of the convolution operator L is:{∑
k∈Z

akκk , κ ∈ S1

}
= F (S1)

where F is the Fourier series associated to the sequence a.
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Hypotheses on the Fourier series

We assume that:

• F (0) =
∑

k∈Z ak = 1

• F ′(0) =
∑

k∈Z kak = cλ

• ∀κ ∈ S1, |F (κ)| < 1

We notate m ∈ N\ {0, 1} the first integer
such that there exists a constant D 6= 0 such
that:

F (e it) =
t→0

exp(icλt + Dtm + o(tm)).

S1

F (S1)

•1
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Generalized local limit theorem - Randles and Saloff-Coste 15’

The asymptotic behavior of an is described by:

anj −
1
n

1
m

Hm

(
j − ncλ

n
1
m

)
=

n→+∞
o

(
1
n

1
m

)
where the generalized Gaussian Hm is the fundamental solution of

∂tu + imD∂mx u = 0.
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Generalized local limit theorem - C. 22’

When m is even, there exists two positive constants C , c such that:

∀n ∈ N,∀j ∈ Z,∣∣∣∣anj − 1
n

1
m

Hm

(
j − ncλ

n
1
m

)∣∣∣∣ ≤ C

n
2
m

exp

(
−c
(
|j − ncλ|

n
1
m

) m
m−1
)
.
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Thank you for your attention!
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