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Goal of numerical analysis: For a given PDE, how can we approach its
solutions?

Who cares about numerical analysis on the transport equation?

Oru+ coku =0, t€]0,+o0f,x €R
u(t =0,x) = up(x), x€R.
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Approximations of solutions of systems of conservation laws

We consider the systems of conservation laws
atU‘f’aXf(U):O, tER+,X€R,
u:Ry xR — R,
where the function f : R — R is smooth.

This type of PDE approaches several physical phenomena, for instance in
fluid mechanics.

Particularities:
e The solutions of this type of PDE tends to have discontinuities.
(shock waves)

e The solutions can be fairly difficult to find. Numerical analysis for
those PDEs is a central theme.
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Here is a solution for the Burgers equation:

Opu + udyu = 0.

t=0.00
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Here is a solution for the Burgers equation:

Orll + U0 u = €0y U.

t=0.00
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Finite difference schemes for the transport equation

We consider a velocity ¢ > 0. We are looking to approach the solutions
of the transport equation:

Oru~+ coyu =0, te€]0,+o0f,x €R
u(t=0,x) = up(x), x€eR.

We are going to apply a finite difference scheme.

We consider a small time step At > 0 and a small space step Ax > 0.
We define t" := nAt and x; := jAx for n € N and j € Z.

t Ax
ity
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For a regular function u, we have:

u(t + At,x) — u(t, x)
At

u(t,x) — u(t,x — Ax)
Ax

Oru(t, x) ~

Ocu(t,x) =~

Thus, for u a regular solution of the transport equation, we have for all
t €[0,400[ and x € R:

u(t 4+ At, x) — u(t, x) n Cu(t,x) — u(t,x — Ax)

~ 0.
At Ax
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For a regular function u, we have:

u(t + At,x) — u(t, x)

atu(t7X) ~ At
Deu(t, x) ~ u(t,x) — Z()i,x — Ax)

Thus, for u a regular solution of the transport equation, we have for all
t €[0,400[ and x € R:

At At
t+ At ~|(1l—c— t — = .
u(t + At, x) < CAX) u( ,x)+cAXu(t,x Ax)
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For a regular function u, we have:

u(t + At,x) — u(t, x)

aﬂl(t,X) ~ At
- ~A
Ocu(t,x) =~ {9 Z()i’x %)

Thus, for u a regular solution of the transport equation, we have for all
t € [0,+00 and x € R:

At At
u(t + At, x) ~ (1 — CAX> u(t,x) + cBu(t,x — Ax).

This leads us to study the solution (u")pen of

At
=0
Ax It

At
VYne N,Vj € Z, uj’7+1 = <1 = CAX) ul +c

with u° € RZ.
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From now on we have:
\ o At

o= E.

We consider the numerical scheme for c\ = 0.25:

. n+1 _
VneN,Vj€Z, u"™ =(1-cA)y+cAui,
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From now on we have:
LAt
=
We consider the numerical scheme for c\ = 0.25:

. n+1 _
VneN,Vj€Z, u"™ =(1-cA)y+cAui,

t=0.00
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"The numerical scheme introduces numerical viscosity"

Hypothesis: We have fixed the ratio between At and Ax.

We consider u a regular solution of the transport equation:

u(t+ At,x) ~ (1 — cA) u(t, x) + chu(t,x — Ax)
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"The numerical scheme introduces numerical viscosity"

Hypothesis: We have fixed the ratio between At and Ax.

We consider u a regular solution of the transport equation:

u(t+ At,x) — (1 — cA) u(t,x) — chu(t,x — Ax)
= —szﬁaxxu + o0 (AX2)

where /3 is some constant in ]0, +-o0|.
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Rewriting the finite difference schemes in a better way

We consider the Modified Lax Friedrichs scheme (D is some constant)

cA cA
uj’“: ()\D—|—2) uj’_l + (1-2D)) ujf’ + (/\D—Q) uJ’F_H
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Rewriting the finite difference schemes in a better way

We consider the Modified Lax Friedrichs scheme (D is some constant)

2 J

A\ A
—

= a]. = aO = a71
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Rewriting the finite difference schemes in a better way

We consider the Modified Lax Friedrichs scheme (D is some constant)

2 J

A\ A
—

= a]. = aO = a71

Thus,
VneN, u™l=axu"

where a = (---,0,a_1,a9,a1,0,---) € CZ.
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A finite difference approximation of our initial transport equation can be
written as
VneN, u"=a"xu°,
u e CZ,

where a € CZ is finitely supported and a” = a * - -- x a.

We must also have :

a =1 and kax = cA
> >

kez keZ
constants are solutions the solutions of the scheme travel at the correct speed
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Goal:

e We want to study a” for large values of n to better understand the
large time behavior of the finite difference scheme. Maybe this
would explain the diffusive behavior we observe.

e Could we prove some estimates on a” in (P(Z)?
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A detour through Probability - The Local Limit Theorem

We consider a random walk
Sp,=1+X1+--+ X,

where X, are i.i.d. random variables (same law as some random variable
X with values in Z) and [ is also an independent random variable with
values in Z. We use the notation

VjeZ, u:=P(=j) and a;:=P(X=)).

We then have
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Central Limit Theorem :

Vn (Sn - E(X)) 5 N(0, V(X)).

Local Limit Theorem : Under suitable conditions on the sequence a

a’ L e ( U nIE(X)|2> o ( L ) uniformly on Z
. eX —t——x JI — - .
i amvon P\ 20v(X) ) nree C\ U y
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A detour through Probability - The Local Limit Theorem

.1 j—mEOOR\ 1 (i-mE)) _ (1
N avX)n P <_2n\/(X)>_nq< \/(X)n) H:ooo(n)’

where

XZ

Vx € R, q(x):=C(X)(x®—3x)e" =

with C(X) a constant depending on the random variable X.

Question solved ?
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Two remaining issues:

e The Local limit theorem does not allow to obtain estimates on a” in
¢P

e The Local limit theorem only applies to sequences a with positive
coefficients. The case with real (or even complex) coefficients can
create strange new behavior!
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We consider the Lax -Wendroff scheme for ¢\ = 0.25:

: cA + (c))? cA — (c))?
Vn € N,V_j S Z, ujf”rl — %Uf_l‘F(l—(C/\)Q)uf— 2( )
n=0
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We consider the Lax -Wendroff scheme for ¢\ = 0.25:

2
VneN,Vje€Z, uftt= wuj"_1+(1—(cA)2)uj"—+ujﬂ+l.

150 t=0.00
125
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075
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A spectral issue

We consider the convolution operator acting on (P(Z):

Yue P(Z), Lu:=axu.

The spectrum of the convolution operator L is:

{Z agsk, ke Sl} = F(SY)

keZ

where F is the Fourier series associated to the sequence a.
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Hypotheses on the Fourier series

We assume that:
o F(0) =Y rcpak=1 st
o F(0) =D ycz kak = cA
o VeSS, |F(k)| <1

We notate m € N\ {0,1} the first integer

such that there exists a constant D # 0 such
that:

F(e") o exp(icAt + Dt™ + o(t™)).
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Generalized local limit theorem - Randles and Saloff-Coste 15’

The asymptotic behavior of a” is described by:

1 | — ncA 1
- (52) = o)
nm nm n—+00 nm

where the generalized Gaussian H,, is the fundamental solution of

Oru+ i"DOJu = 0.

n=0
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Generalized local limit theorem - C. 22’

When m is even, there exists two positive constants C, ¢ such that:

VneN,Vj € Z,
nm nm nm nm
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Thank you for your attention!
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