What's the deal about Topology?

A.k.a. how to turn concrete problems into (hopefully) easier abstract ones.

Anthony Saint-Criq
Nov. $23^{\text {rd }}, 2023$

A few weird questions

A few weird questions

What's the difference between a doughnut and a bretzel?

A few weird questions

What's the difference between a doughnut and a bretzel?

A few weird questions

What's the difference between a doughnut and a bretzel?

A few weird questions

What's the difference between a doughnut and a bretzel?

A few weird questions

How to hang a frame to a wall in a sneaky way?

A few weird questions

How to prove that a rope and metal ring puzzle is impossible to solve?

The Loony Loop
This loony loop puzzle was stumbled upon by the great American puzzler, Siewarl T. Coffin. The aim of this puzzle is to iree the tied cord from the figureeight metal loop. without breaking or untying the cord. But - beware - the simplicity of the wire loop and intor-
twined cord may be deceptive.

A few weird questions

How to prove that a rope and metal ring puzzle is impossible to solve?

The Loony Loop
This loony loop puzzle was stumbled upon by the great American puzzler, Slewrari T. Coffin. The cim of this puzzle is to iree the tied cord from the figureeight metal loop. without breaking or untying the cord. But - beware - the simplicity of the wire loop and interwined cord may be deceptive.

Follow the direction arrows on the diagram: pass the cord loop through the left eye; over the top loop: through the right eye; and around the bottom loop. Now the cord should come free - or should it? After all, no one has proved it impossible!

A few weird questions

How to be sure that the granny knot and the figure-eight knot are actually different?

Distinguishing spaces: the fundamental group

Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number of holes.

Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number of holes. How to put meaning behind this more rigorously?

Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number of holes. How to put meaning behind this more rigorously?

Definition

Two topological spaces X and Y are homeomorphic if there exists a bijection $f: X \rightarrow Y$ such that both f and f^{-1} are continuous.

Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number of holes. How to put meaning behind this more rigorously?

Definition

Two topological spaces X and Y are homeomorphic if there exists a bijection $f: X \rightarrow Y$ such that both f and f^{-1} are continuous.

Topology is (a lot of times) the study of topological spaces up to homeomorphism (up to continuous deformations).

Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number of holes. How to put meaning behind this more rigorously?

Definition

Two topological spaces X and Y are homeomorphic if there exists a bijection $f: X \rightarrow Y$ such that both f and f^{-1} are continuous.

Topology is (a lot of times) the study of topological spaces up to homeomorphism (up to continuous deformations). The motto: imagine that everything is made out of clay.

Distinguishing spaces: the fundamental group

Fact

The doughnut \mathscr{D} and the pretzel \mathscr{P} are not homeomorphic topological spaces.

Distinguishing spaces: the fundamental group

Fact

The doughnut \mathscr{D} and the pretzel \mathscr{P} are not homeomorphic topological spaces.

How does one go proving this?

Distinguishing spaces: the fundamental group

Fact

The doughnut \mathscr{D} and the pretzel \mathscr{P} are not homeomorphic topological spaces.

How does one go proving this? The answer: find invariants!

Distinguishing spaces: the fundamental group

Funnier fact

The doughnut and the coffee mug are homeomorphic. The pretzel and the hand spinner are too.

How does one go proving this? The answer: find invariants!

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

Let us play a game.

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$.

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A deformation of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A deformation of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

1. $\gamma_{0}=\gamma$;

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A deformation of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

1. $\gamma_{0}=\gamma$;
2. the map $H:[0,1] \times[0,1] \rightarrow X$ defined by $H(s, t)=\gamma_{s}(t)$ is continuous;

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A deformation of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

1. $\gamma_{0}=\gamma$;
2. the map $H:[0,1] \times[0,1] \rightarrow X$ defined by $H(s, t)=\gamma_{s}(t)$ is continuous;
3. for all $s \in[0,1], \gamma_{s}(0)=\gamma_{s}(1)=\gamma(0)=\gamma(1)$.

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A deformation of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

1. $\gamma_{0}=\gamma$;
2. the map $H:[0,1] \times[0,1] \rightarrow X$ defined by $H(s, t)=\gamma_{s}(t)$ is continuous;
3. for all $s \in[0,1], \gamma_{s}(0)=\gamma_{s}(1)=\gamma(0)=\gamma(1)$.

Definition

Two loops γ and γ^{\prime} are homotopic if there exists a deformation
$\left(\gamma_{s}\right)_{s \in[0,1]}$ with $\gamma_{0}=\gamma$ and $\gamma_{1}=\gamma^{\prime}$.

Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)$. A homotopy of a loop γ is a family $\left(\gamma_{s}\right)_{s \in[0,1]}$ of loops in X such that:

1. $\gamma_{0}=\gamma$;
2. the map $H:[0,1] \times[0,1] \rightarrow X$ defined by $H(s, t)=\gamma_{s}(t)$ is continuous;
3. for all $s \in[0,1], \gamma_{s}(0)=\gamma_{s}(1)=\gamma(0)=\gamma(1)$.

Definition

Two loops γ and γ^{\prime} are homotopic if there exists a deformation $\left(\gamma_{s}\right)_{s \in[0,1]}$ with $\gamma_{0}=\gamma$ and $\gamma_{1}=\gamma^{\prime}$.

Distinguishing spaces: the fundamental group

Homotopy is an equivalence relation. We denote as $\pi_{1}(X)$ the set of all homotopy classes.

Distinguishing spaces: the fundamental group

Homotopy is an equivalence relation. We denote as $\pi_{1}(X)$ the set of all homotopy classes.

Facts

1. The set $\pi_{1}(X)$ is a group, where the operation is "putting loops one after the other" (concatenation). The unit element is the constant loop, and the inverse of a loop is that loop travelled in the opposite direction.

Distinguishing spaces: the fundamental group

Homotopy is an equivalence relation. We denote as $\pi_{1}(X)$ the set of all homotopy classes.

Facts

1. The set $\pi_{1}(X)$ is a group, where the operation is "putting loops one after the other" (concatenation). The unit element is the constant loop, and the inverse of a loop is that loop travelled in the opposite direction.
2. If Y and X are homeomorphic, then $\pi_{1}(X)$ and $\pi_{1}(Y)$ are isomorphic.

Distinguishing spaces: the fundamental group

Some examples.

Distinguishing spaces: the fundamental group

Some examples.

1. The plane \mathbb{R}^{2} has $\pi_{1}\left(\mathbb{R}^{2}\right)$ trivial. The same goes for \mathbb{R}^{3}, and any \mathbb{R}^{n}.

Distinguishing spaces: the fundamental group

Some examples.

1. The plane \mathbb{R}^{2} has $\pi_{1}\left(\mathbb{R}^{2}\right)$ trivial. The same goes for \mathbb{R}^{3}, and any \mathbb{R}^{n}.
2. The circle \mathscr{C} has $\pi_{1}(\mathscr{C})=$

Distinguishing spaces: the fundamental group

Some examples.

1. The plane \mathbb{R}^{2} has $\pi_{1}\left(\mathbb{R}^{2}\right)$ trivial. The same goes for \mathbb{R}^{3}, and any \mathbb{R}^{n}.
2. The circle \mathscr{C} has $\pi_{1}(\mathscr{C})=\mathbb{Z}$.

Distinguishing spaces: the fundamental group

Some examples.

1. The plane \mathbb{R}^{2} has $\pi_{1}\left(\mathbb{R}^{2}\right)$ trivial. The same goes for \mathbb{R}^{3}, and any \mathbb{R}^{n}.
2. The circle \mathscr{C} has $\pi_{1}(\mathscr{C})=\mathbb{Z}$.
3. The (hollow) donut \mathcal{T} has $\pi_{1}(\mathcal{T})=$

Distinguishing spaces: the fundamental group

Some examples.

1. The plane \mathbb{R}^{2} has $\pi_{1}\left(\mathbb{R}^{2}\right)$ trivial. The same goes for \mathbb{R}^{3}, and any \mathbb{R}^{n}.
2. The circle \mathscr{C} has $\pi_{1}(\mathscr{C})=\mathbb{Z}$.
3. The torus \mathcal{T} has $\pi_{1}(\mathcal{T})=\mathbb{Z}^{2}$.

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an abelian group!

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an abelian group! Example \#1:

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an abelian group! Example \#2:

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an abelian group! Example \#3:

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group!

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\mathrm{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\mathrm{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\mathrm{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\mathrm{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Distinguishing spaces: the fundamental group

It is not always the case that $\pi_{1}(X)$ is an infinite group! Example: $\pi_{1}(\operatorname{SO}(3, \mathbb{R}))=\mathbb{Z} / 2$.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_ 460svvp9.webm

Answering the questions!

Answering the questions!

What's the difference between a doughnut and a bretzel?

Answering the questions!

What's the difference between a doughnut and a bretzel? What are $\pi_{1}(\mathscr{D})$ and $\pi_{1}(\mathscr{P})$?

Answering the questions!

What's the difference between a doughnut and a bretzel? What are $\pi_{1}(\mathscr{D})$ and $\pi_{1}(\mathscr{P})$?
Imagine that they are made of cheese, and that our friend Mickey lives inside.

Answering the questions!

Answering the questions!

$$
\pi_{1}(\mathscr{D})=\pi_{1}(\mathscr{C})=\mathbb{Z}
$$

Answering the questions!

$$
\pi_{1}(\mathscr{D})=\pi_{1}(\mathscr{C})=\mathbb{Z} .
$$

Similarly: $\pi_{1}(\mathscr{P})=\pi_{1}(\mathscr{\&})=F_{3}$.

Answering the questions!

$$
\pi_{1}(\mathscr{D})=\pi_{1}(\mathscr{C})=\mathbb{Z} .
$$

Similarly: $\pi_{1}(\mathscr{P})=\pi_{1}(\mathscr{F})=F_{3}$. Therefore, $\mathscr{D} \neq \mathscr{P}$!

Answering the questions!

How to hang a frame to a wall in a sneaky way?

Answering the questions!

How to hang a frame to a wall in a sneaky way? The plane minus two points $\mathbb{R}^{2} \backslash\{*, *\}$ has $\pi_{1}=\pi_{1}(\infty)=F_{2}$:

Answering the questions!

How to hang a frame to a wall in a sneaky way? The plane minus two points $\mathbb{R}^{2} \backslash\{*, *\}$ has $\pi_{1}=\pi_{1}(\infty)=F_{2}$:

Here, $a \cdot b \neq b \cdot a$, so $a b a^{-1} b^{-1} \neq 0$.

Answering the questions!

The loop $a b a^{-1} b^{-1} \in \pi_{1}\left(\mathbb{R}^{2} \backslash\{*, *\}\right)=F_{2}$.

Answering the questions!

Take the loop $[a,[b, c]] \in \pi_{1}\left(\mathbb{R}^{2} \backslash\{*, *, *\}\right)=\pi_{1}(\oint)=F_{3}$.

Answering the questions!

With n nails:

$$
\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{1}, \ldots, z_{n}\right\}\right)=F_{n} .
$$

Take the loop:

$$
\left[a_{1},\left[a_{2},\left[\ldots,\left[a_{n-1}, a_{n}\right]\right] \ldots\right]\right] .
$$

Answering the questions!

With n nails:

$$
\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{1}, \ldots, z_{n}\right\}\right)=F_{n} .
$$

Take the loop:

$$
\left[a_{1},\left[a_{2},\left[\ldots,\left[a_{n-1}, a_{n}\right]\right] \ldots\right]\right] .
$$

A more difficult problem:

Question

Given $1 \leqslant k<n$, how to hang a frame to a wall using n nails, in such a way that removing any subset of k nails makes the frame drop?

Answering the questions!

With n nails:

$$
\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{1}, \ldots, z_{n}\right\}\right)=F_{n}
$$

Take the loop:

$$
\left[a_{1},\left[a_{2},\left[\ldots,\left[a_{n-1}, a_{n}\right]\right] \ldots\right]\right] .
$$

A more difficult problem:

Question

Given $1 \leqslant k<n$, how to hang a frame to a wall using n nails, in such a way that removing any subset of k nails makes the frame drop?

There is a solution, which amounts to finding an element in some intersection of kernels of morphisms from F_{n} to

Answering the questions!

With n nails:

$$
\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{1}, \ldots, z_{n}\right\}\right)=F_{n}
$$

Take the loop:

$$
\left[a_{1},\left[a_{2},\left[\ldots,\left[a_{n-1}, a_{n}\right]\right] \ldots\right]\right] .
$$

A more difficult problem:

Question

Given $1 \leqslant k<n$, how to hang a frame to a wall using n nails, in such a way that removing any subset of k nails makes the frame drop?

There is a solution, which amounts to finding an element in some intersection of kernels of morphisms from F_{n} to

Whatever; now, it's just algebra!

Answering the questions!

How to prove that a rope and metal ring puzzle is impossible to solve?

The Loony Loop
This loony loop puzzle was stumbled upon by the great American puzzler, Slewrarl T. Coffin. The cim of this puzzle is to iree the tied cord from the figureeight metal loop. without breaking or untying the cord. But - beware - the simplicity of the wire loop and inter
twrined cord may be deceptive.

Follow the direction arrows on the diagram: pass the cord loop through the left eye; over the top loop: through the right eye; and around the bottom loop. Now the cord should come free - or should it? After all, no one has proved it impossible!

Answering the questions!

How to prove that a rope and metal ring puzzle is impossible to solve?

The Loony Loop
This loony loop puzzle was stumbled upon by the great American puzzler, Slewarl T. Coffin. The cim of this puzzle is to iree the tied cord from the figure-
eight metal loop. without breaking or
untying the cord. But - beware - the
simplicity of the wire loop and intor
twrined cord may be deceptive.

Take $X=\mathbb{R}^{3} \backslash W$. Then r is a loop in X.

Answering the questions!

It is possible to find a "presentation" of the fundamental group:

$$
\pi_{1}(X)=\left\langle a, b, c \mid a=\left[c,\left[b^{-1}, a\right]\right]\right\rangle .
$$

(For the topologists: either using Van Kampen, or by a Wirtinger-type argument.)

Answering the questions!

It is possible to find a "presentation" of the fundamental group:

$$
\pi_{1}(X)=\left\langle a, b, c \mid a=\left[c,\left[b^{-1}, a\right]\right]\right\rangle .
$$

(For the topologists: either using Van Kampen, or by a Wirtinger-type argument.)

The homotopy class of the loop r is given by a; algebraic computations give $a \neq 0$.

Answering the questions!

It is possible to find a "presentation" of the fundamental group:

$$
\pi_{1}(X)=\left\langle a, b, c \mid a=\left[c,\left[b^{-1}, a\right]\right]\right\rangle .
$$

(For the topologists: either using Van Kampen, or by a Wirtinger-type argument.)

The homotopy class of the loop r is given by a; algebraic computations give $a \neq 0$. The puzzle is impossible!

Answering the questions!

How to be sure that the granny knot and the figure-eight knot are actually different?

Answering the questions!

How to be sure that the granny knot and the figure-eight knot are actually different?

Answering the questions!

How to be sure that the granny knot and the figure-eight knot are actually different?

Take $X_{1}=\mathbb{R}^{3} \backslash K_{1}$ and $X_{2}=\mathbb{R}^{3} \backslash K_{2}$.

Answering the questions!

How to be sure that the granny knot and the figure-eight knot are actually different?

Take $X_{1}=\mathbb{R}^{3} \backslash K_{1}$ and $X_{2}=\mathbb{R}^{3} \backslash K_{2}$.

Answering the questions!

How to be sure that the granny knot and the figure-eight knot are actually different?

Take $X_{1}=\mathbb{R}^{3} \backslash K_{1}$ and $X_{2}=\mathbb{R}^{3} \backslash K_{2}$.

Answering the questions!

There is an algorithm to compute $\pi_{1}\left(X_{i}\right)$, which gives:

$$
\begin{gathered}
\pi_{1}\left(x_{1}\right)=\langle x, y, z \mid x y x=y x y, x z x=z x z\rangle \\
\pi_{1}\left(x_{2}\right)=\left\langle x, y \mid x^{-1} y x y^{-1} x y=y x^{-1} y x\right\rangle
\end{gathered}
$$

Answering the questions!

There is an algorithm to compute $\pi_{1}\left(X_{i}\right)$, which gives:

$$
\begin{gathered}
\pi_{1}\left(X_{1}\right)=\langle x, y, z \mid x y x=y x y, x z x=z x z\rangle \\
\pi_{1}\left(X_{2}\right)=\left\langle x, y \mid x^{-1} y x y^{-1} x y=y x^{-1} y x\right\rangle
\end{gathered}
$$

Showing that $K_{1} \neq K_{2}$ has "just" become an algebra problem only. This is still not obvious, but those groups are distinct!

To infinity, and beyond!

To infinity, and beyond!

The fundamental group π_{1} detects some sorts of holes. There is still a problem.

To infinity, and beyond!

The fundamental group π_{1} detects some sorts of holes. There is still a problem. For example, the sphere:

To infinity, and beyond!

The fundamental group π_{1} detects some sorts of holes. There is still a problem. For example, the sphere:

A volley ball is "hollow", there is a hole right in the middle! And yet, $\pi_{1}(\mathscr{S})=0 . .$.

To infinity, and beyond!

The π_{1} measures the one-dimensional holes. What about π_{2} ?

To infinity, and beyond!

The π_{1} measures the one-dimensional holes. What about π_{2} ?
A loop is, equivalently, a continuous map $\gamma: \mathscr{C} \rightarrow X$. A 2-loop is a continuous map $\varphi: \mathscr{S} \rightarrow X$.

To infinity, and beyond!

The π_{1} measures the one-dimensional holes. What about π_{2} ?
A loop is, equivalently, a continuous map $\gamma: \mathscr{C} \rightarrow X$. A 2-loop is a continuous map $\varphi: \mathscr{S} \rightarrow X$.

It is possible to talk about homotopies of such 2-loops, and to compose them.

To infinity, and beyond!

The π_{1} measures the one-dimensional holes. What about π_{2} ?
A loop is, equivalently, a continuous map $\gamma: \mathscr{C} \rightarrow X$. A 2-loop is a continuous map $\varphi: \mathscr{S} \rightarrow X$.

It is possible to talk about homotopies of such 2-loops, and to compose them.

Definition

The second homotopy group $\pi_{2}(X)$ is the set of all homotopy classes of 2-loops into X.

To infinity, and beyond!

The π_{1} measures the one-dimensional holes. What about π_{2} ?
A loop is, equivalently, a continuous map $\gamma: \mathscr{C} \rightarrow X$. A 2-loop is a continuous map $\varphi: \mathscr{S} \rightarrow X$.

It is possible to talk about homotopies of such 2-loops, and to compose them.

Definition

The second homotopy group $\pi_{2}(X)$ is the set of all homotopy classes of 2-loops into X.

Fact

This is a group. Moreover, it is always abelian.

To infinity, and beyond!

We have:

$$
\pi_{2}(\mathscr{C})=0 \text { and } \pi_{2}(\mathscr{S})=\mathbb{Z}
$$

To infinity, and beyond!

We have:

$$
\pi_{2}(\mathscr{C})=0 \text { and } \pi_{2}(\mathscr{S})=\mathbb{Z}
$$

What about higher-dimensional holes?

To infinity, and beyond!

We have:

$$
\pi_{2}(\mathscr{C})=0 \text { and } \pi_{2}(\mathscr{S})=\mathbb{Z}
$$

What about higher-dimensional holes?
An n-loop in X is a continuous map $f: \mathbb{S}^{n} \rightarrow X$. Homotopies and concatenation are well-defined.

To infinity, and beyond!

We have:

$$
\pi_{2}(\mathscr{C})=0 \text { and } \pi_{2}(\mathscr{S})=\mathbb{Z}
$$

What about higher-dimensional holes?
An n-loop in X is a continuous map $f: \mathbb{S}^{n} \rightarrow X$. Homotopies and concatenation are well-defined.

Definition \& Fact

The n-th homotopy group $\pi_{n}(X)$ is the set of homotopies of all n-loops in X.

This forms a group, which is always abelian when $n \geqslant 2$.

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

We have:

$$
\pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}
$$

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

We have:

$$
\pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}
$$

Wait, what?!

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

We have:

$$
\pi_{4}\left(\mathbb{S}^{3}\right)=\mathbb{Z} / 2
$$

Wait, what?!

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

We have:

$$
\pi_{7}\left(\mathbb{S}^{4}\right)=\mathbb{Z} \times \mathbb{Z} / 12
$$

Wait, what?!

To infinity, and beyond!

It is not very difficult to show that:

$$
\forall n \geqslant 2, \pi_{n}\left(\mathbb{S}^{1}\right)=0, \pi_{1}\left(\mathbb{S}^{n}\right)=\cdots=\pi_{n-1}\left(\mathbb{S}^{n}\right)=0 \text { and } \pi_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}
$$

We have:

$$
\pi_{14}\left(\mathbb{S}^{3}\right)=\mathbb{Z} / 84 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2
$$

Wait, WHAT?!

To infinity, and beyond!

	Π_{1}	π_{2}	π_{3}	$\pi 4$	$\pi 5$	π_{6}	$\pi 7$	$\pi 8$	$\pi 9$	Π_{10}	Π_{11}	Π_{12}	Π_{13}	Π_{14}	Π_{15}
5^{0}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S^{1}	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S^{2}	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	z_{2}^{2}	$Z_{12} \times Z_{2}$	$\mathrm{Z}_{84} \times \mathrm{Z}_{2}^{2}$	z_{2}^{2}
s^{3}	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	z_{2}^{2}	$Z_{12} \times Z_{2}$	$Z_{84} \times Z_{2}^{2}$	z_{2}^{2}
S^{4}	0	0	0	Z	z_{2}	Z_{2}	$Z \times Z_{12}$	z_{2}^{2}	z_{2}^{2}	$Z_{24} \times Z_{3}$	Z_{15}	Z_{2}	z_{2}^{3}	$\begin{aligned} & Z_{120} \\ & Z_{12} \times Z_{2} \end{aligned}$	$Z_{84} \times Z_{2}^{5}$
s^{5}	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}	Z_{2}	Z_{30}	Z_{2}	z_{2}^{3}	$Z_{72} \times Z_{2}$
5^{6}	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0	z	Z_{2}	Z_{80}	$Z_{24} \times Z_{2}$	z_{2}^{3}
S^{7}	0	0	0	0	0	0	z	Z_{2}	Z_{2}	Z_{24}	0	0	Z_{2}	Z_{120}	z_{2}^{3}
5^{8}	0	0	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0	0	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{120}$

To infinity, and beyond!

Computing those groups is a whole profession, and only the bravest dare doing it.

To infinity, and beyond!

Computing those groups is a whole profession, and only the bravest dare doing it.

The ramifications are incredible though: they allow to compute the homotopy groups of virtually any reasonable space.

To infinity, and beyond!

To conclude, a picture of the Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$, whose homotopy class spans $\pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}$:

Questions?

