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A few weird questions

How to hang a frame to a wall in a sneaky way?
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A few weird questions

How to prove that a rope and metal ring puzzle is impossible to
solve?
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A few weird questions

How to be sure that the granny knot and the figure-eight knot are
actually different?
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Distinguishing spaces: the fundamental group

The difference between the pretzel and the doughnut is the number
of holes.

How to put meaning behind this more rigorously?

Definition
Two topological spaces X and Y are homeomorphic if there exists a
bijection f : X→ Y such that both f and f−1 are continuous.

Topology is (a lot of times) the study of topological spaces up to
homeomorphism (up to continuous deformations). The motto:
imagine that everything is made out of clay.
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Distinguishing spaces: the fundamental group

Fact
The doughnut D and the pretzel P are not homeomorphic
topological spaces.
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Fact
The doughnut D and the pretzel P are not homeomorphic
topological spaces.

How does one go proving this? The answer: find invariants!
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Distinguishing spaces: the fundamental group

Funnier fact
The doughnut and the coffee mug are homeomorphic. The pretzel
and the hand spinner are too.

How does one go proving this? The answer: find invariants!

6



Distinguishing spaces: the fundamental group

Let us play a game.
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Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path γ : [0, 1] → X with
γ(0) = γ(1).

A deformation of a loop γ is a family (γs)s∈[0,1] of loops
in X such that:

1. γ0 = γ;
2. the map H : [0, 1]× [0, 1] → X defined by H(s, t) = γs(t) is
continuous;

3. for all s ∈ [0, 1], γs(0) = γs(1) = γ(0) = γ(1).

Definition
Two loops γ and γ′ are homotopic if there exists a deformation
(γs)s∈[0,1] with γ0 = γ and γ1 = γ′.
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Distinguishing spaces: the fundamental group

A loop in a space X is a continuous path γ : [0, 1] → X with
γ(0) = γ(1). A homotopy of a loop γ is a family (γs)s∈[0,1] of loops in
X such that:

1. γ0 = γ;
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Distinguishing spaces: the fundamental group

Homotopy is an equivalence relation. We denote as π1(X) the set of
all homotopy classes.

Facts

1. The set π1(X) is a group, where the operation is ”putting loops
one after the other” (concatenation). The unit element is the
constant loop, and the inverse of a loop is that loop travelled in
the opposite direction.

2. If Y and X are homeomorphic, then π1(X) and π1(Y) are
isomorphic.
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Distinguishing spaces: the fundamental group

Some examples.

1. The plane R2 has π1(R2) trivial. The same goes for R3, and any
Rn.

2. The circle C has π1(C ) =

3. The T has π1(T ) =
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Distinguishing spaces: the fundamental group

Some examples.

1. The plane R2 has π1(R2) trivial. The same goes for R3, and any
Rn.

2. The circle C has π1(C ) = Z.
3. The (hollow) donut T has π1(T ) =

10



Distinguishing spaces: the fundamental group

Some examples.

1. The plane R2 has π1(R2) trivial. The same goes for R3, and any
Rn.

2. The circle C has π1(C ) = Z.
3. The torus T has π1(T ) = Z2.
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Distinguishing spaces: the fundamental group

It is not always the case that π1(X) is an abelian group!

Example :
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It is not always the case that π1(X) is an abelian group! Example #3:

11



Distinguishing spaces: the fundamental group

It is not always the case that π1(X) is an infinite group!

Example:
π1(SO(3,R)) = Z/2.

https://img-9gag-fun.9cache.com/photo/aXnzOg6_
460svvp9.webm
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Answering the questions!

What’s the difference between a doughnut and a bretzel?

What are
π1(D) and π1(P)?

Imagine that they are made of cheese, and that our friend Mickey
lives inside.
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π1(D) = π1(C ) = Z.
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π1(D) = π1(C ) = Z.

Similarly: π1(P) = π1( ) = F3. Therefore, D ̸= P !
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Answering the questions!

How to hang a frame to a wall in a sneaky way?

The plane minus two
points R2 ∖ {∗, ∗} has π1 = π1(∞) = F2:

Here, a · b ̸= b · a, so aba−1b−1 ̸= 0.
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Answering the questions!

The loop aba−1b−1 ∈ π1(R2 ∖ {∗, ∗}) = F2.
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Answering the questions!

Take the loop [a, [b, c]] ∈ π1(R2 ∖ {∗, ∗, ∗}) = π1( ) = F3.

16



Answering the questions!

With n nails:
π1(R2 ∖ {z1, . . . , zn}) = Fn.

Take the loop:
[a1, [a2, [. . . , [an−1,an]] . . . ]].

A more difficult problem:

Question
Given 1 ⩽ k < n, how to hang a frame to a wall using n nails, in such
a way that removing any subset of k nails makes the frame drop?

There is a solution, which amounts to finding an element in some
intersection of kernels of morphisms from Fn to Fn−k.

Whatever; now, it’s just algebra!
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Answering the questions!

How to prove that a rope and metal ring puzzle is impossible to
solve?

Take X = R3 ∖W. Then r is a loop in X.
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Answering the questions!

It is possible to find a ”presentation” of the fundamental group:

π1(X) = ⟨a,b, c | a = [c, [b−1,a]]⟩.

(For the topologists: either using Van Kampen, or by a Wirtinger-type
argument.)

The homotopy class of the loop r is given by a; algebraic
computations give a ̸= 0. The puzzle is impossible!
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Answering the questions!

How to be sure that the granny knot and the figure-eight knot are
actually different?

Take X1 = R3 ∖ K1 and X2 = R3 ∖ K2.
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Answering the questions!

There is an algorithm to compute π1(Xi), which gives:

π1(X1) = ⟨x, y, z | xyx = yxy, xzx = zxz⟩

π1(X2) = ⟨x, y | x−1yxy−1xy = yx−1yx⟩

Showing that K1 ̸= K2 has ”just” become an algebra problem only.
This is still not obvious, but those groups are distinct!
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To infinity, and beyond!



To infinity, and beyond!

The fundamental group π1 detects some sorts of holes. There is still
a problem.

For example, the sphere:

A volley ball is ”hollow”, there is a hole right in the middle! And yet,
π1(S ) = 0...
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To infinity, and beyond!

The π1 measures the one-dimensional holes. What about π2?

A loop is, equivalently, a continuous map γ : C → X. A 2-loop is a
continuous map φ : S → X.

It is possible to talk about homotopies of such 2-loops, and to
compose them.

Definition
The second homotopy group π2(X) is the set of all homotopy
classes of 2-loops into X.

Fact
This is a group. Moreover, it is always abelian.
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To infinity, and beyond!

We have:
π2(C ) = 0 and π2(S ) = Z.

What about higher-dimensional holes?

An n-loop in X is a continuous map f : Sn → X. Homotopies and
concatenation are well-defined.

Definition & Fact
The n-th homotopy group πn(X) is the set of homotopies of all
n-loops in X.

This forms a group, which is always abelian when n ⩾ 2.
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To infinity, and beyond!

It is not very difficult to show that:

∀n ⩾ 2, πn(S1) = 0, π1(Sn) = · · · = πn−1(Sn) = 0 and πn(Sn) = Z.
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To infinity, and beyond!

It is not very difficult to show that:

∀n ⩾ 2, πn(S1) = 0, π1(Sn) = · · · = πn−1(Sn) = 0 and πn(Sn) = Z.

We have:
π4(S3) = Z/2.

Wait, what?!
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To infinity, and beyond!

It is not very difficult to show that:

∀n ⩾ 2, πn(S1) = 0, π1(Sn) = · · · = πn−1(Sn) = 0 and πn(Sn) = Z.

We have:
π7(S4) = Z× Z/12.

Wait, what?!
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To infinity, and beyond!

It is not very difficult to show that:

∀n ⩾ 2, πn(S1) = 0, π1(Sn) = · · · = πn−1(Sn) = 0 and πn(Sn) = Z.

We have:
π14(S3) = Z/84× Z/2× Z/2.

Wait, WHAT?!
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To infinity, and beyond!
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To infinity, and beyond!

Computing those groups is a whole profession, and only the bravest
dare doing it.

The ramifications are incredible though: they allow to compute the
homotopy groups of virtually any reasonable space.
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To infinity, and beyond!

To conclude, a picture of the Hopf map h : S3 → S2, whose homotopy
class spans π3(S2) = Z:
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Questions?


	A few weird questions
	Distinguishing spaces: the fundamental group
	Answering the questions!
	To infinity, and beyond!

