Modelling of system with a large number of agents: Birds and Hierarchy of models

Etienne LEHMAN

Student seminar

October 26th, 2023

Etienne LEHMAN Student seminar Modelling of system with a large number of agents: Birds and H

・ロット (日本) (日本) (日本)

Modelling of a large number N of identical agents of mass m. Starting point : modelling through Newton's equations, $\forall i = 1, \dots, N$:

$$\begin{cases} x'_i(t) = v_i(t), \\ m v'_i(t) = F^{ext}(t, x_i, v_i) + F^{int}_i(x_1, \cdots, x_N, v_1, \cdots, v_N), \\ x_i(t=0) := x^0_i, \quad v_i(t=0) := v^0_i \end{cases}$$

・ロット (日本) (日本) (日本)

,

Modelling of a large number N of identical agents of mass m. Starting point : modelling through Newton's equations, $\forall i = 1, \dots, N$:

$$\begin{cases} x'_i(t) &= v_i(t), \\ m v'_i(t) &= F^{ext}(t, x_i, v_i) + F^{int}_i(x_1, \cdots, x_N, v_1, \cdots, v_N), \\ x_i(t=0) &:= x^0_i, \quad v_i(t=0) := v^0_i \end{cases}$$

- System of 2N nonlinear coupled ODEs → Careful modelling in order to recover observed phenomena.
- 2N equations $\gg 1 \longrightarrow$ Unreasonable computational cost

,

2/24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Modelling of a large number N of identical agents of mass m. Starting point : modelling through Newton's equations, $\forall i = 1, ..., N$:

$$\begin{cases} x'_i(t) &= v_i(t), \\ m v'_i(t) &= F^{ext}(t, x_i, v_i) + F^{int}_i(x_1, \cdots, x_N, v_1, \cdots, v_N), \\ x_i(t=0) &:= x^0_i, \quad v_i(t=0) := v^0_i \end{cases}$$

- System of 2N nonlinear coupled ODEs → Careful modelling in order to recover observed phenomena.
- 2N equations $\gg 1 \longrightarrow$ Unreasonable computational cost
- First example : F^{ext} = q_i E, E electric field computed through Poisson's equation → Not the focus of today's talk !
- Today: Drone/bird modelling

,

2/24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline of the talk

- Examples of common effects considered in Drone swarms/bird flocks modelling
- Case study of two collective models for birds : Cucker-Smale and three-zone model
- How to reduce the huge computational cost

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへ⊙

Panorama of different kind of effects

- Friction with the environment : F_i^{fric} = −μ(v_i) v_i. One can choose for instance a simple linear drag force, *i.e.* μ(v) := β with = β > 0, or μ(v) := β|v|² (Rayleigh-Helmholtz).
- Self-propulsion : F_i^{prop} = α v_i, with α > 0 describing a constant acceleration of the particles.
- Normally self-propulsion and friction are **modelled together** via a force term $F^{fp}(v_i) = -(\beta |v_i|^2 - \alpha) v_i$, leading to an asymptotic velocity of magnitude $\sqrt{\alpha/\beta}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Obstacles and targets (drones)

• **Obstacle avoidance** repulsive artificial forces, prevent it from colliding with the occurring obstacles, *i.e.*

$$\begin{split} F_i^{obs} &= -\nabla_{x_i} \left[\varphi_{obs}(|x_i - x_{obs}(t)|] \right] \\ &= \varphi_{obs}'(|x_i - x_{obs}|) \frac{(x_i - x_{obs})}{|x_i - x_j|}, \qquad \varphi_{obs}(r) \coloneqq \frac{1}{r^{\alpha}}, \ \alpha > 0; \end{split}$$

• **Destination point (target)** attraction force, helps the drone to reach the goal, *i.e.*

$$\begin{split} F_i^{tar} &= -\nabla_{x_i} \left[\varphi_{tar}(|x_i - x_{tar}(t)|] \right] \\ &= \varphi_{tar}'(|x_i - x_{tar}|) \frac{(x_i - x_{tar})}{|x_i - x_j|}, \qquad \varphi_{tar}(r) := r^{\alpha}, \ \alpha > 0; \end{split}$$

・ロット (四) (日) (日) (日)

Modelling of system with large number of agents

Case study: modelling the flocking of birds Hierarchy of models

Example

Figure: N = 20 drones converging towards a target (red point), avoiding obstacles.

Etienne LEHMAN Student seminar Modelling of syst

Modelling of system with a large number of agents: Birds and H

Noise, environmental disturbances

- Environmental disturbances, like for example unpredictable fluctuations in the wind \rightarrow random force field in the model F_i^{fluc} , meaning noise terms representing the incessant impact of the environment on the drones;
- Inner noise inaccuracy of the sensors that measure the positions and velocities of the drones → stochastic force fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Case study: modelling the flocking of birds

Figure: A flock of birds (Royalty free stock photo).

The Cucker-Smale model

$$\begin{cases} x'_i(t) &= v_i(t), \\ v'_i(t) &= \frac{1}{N} \sum_{j=1}^N \psi(|x_i - x_j|) (v_j - v_i), \end{cases} \quad \forall i = 1, \dots, N.$$

 $\psi \in \mathcal{C}^1(\mathbb{R}^+_*)\,, \quad \psi(r) > 0 \quad ext{and} \quad \psi'(r) \leq 0 \qquad \forall r > 0\,.$

- Main feature: alignment of the agents with strength $\psi(|x_i x_j|)$.
- Behaviour of the system depends solely on ψ !

Question ? Qualitative behaviour of agents

• First conjecture: alignment of particles: particles should have asymptotically same velocity.

イロト 不得 トイヨト イヨト 三日

Question ? Qualitative behaviour of agents

- First conjecture: alignment of particles: particles should have asymptotically same velocity.
- Question ? Which velocity ?

イロト 不得 トイヨト イヨト 三日

Question ? Qualitative behaviour of agents

- First conjecture: alignment of particles: particles should have asymptotically same velocity.
- Question ? Which velocity ?
- Define the center of mass couple $(x_c(t), v_c(t))$ via

$$x_c(t) := rac{1}{N}\sum_{i=1}^N x_i(t), \quad v_c(t) := rac{1}{N}\sum_{i=1}^N v_i(t), \qquad orall t \in \mathbb{R}^+,$$

one can show that $v_c(t) = v_c(0)$ and $x_c(t) = x_c(0) + tv_c(0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへ⊙

Question ? Qualitative behaviour of agents

- First conjecture: alignment of particles: particles should have asymptotically same velocity.
- Question ? Which velocity ?
- Define the center of mass couple $(x_c(t), v_c(t))$ via

$$x_c(t) := rac{1}{N} \sum_{i=1}^N x_i(t), \quad v_c(t) := rac{1}{N} \sum_{i=1}^N v_i(t), \qquad orall t \in \mathbb{R}^+,$$

one can show that $v_c(t) = v_c(0)$ and $x_c(t) = x_c(0) + tv_c(0)$.

• Let us introduce furthermore the notation

$$X(t) := (x_i(t) - x_c(t))_{i=1}^N, \quad V(t) := (v_i(t) - v_c(t))_{i=1}^N.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition (Flocking with bounded ψ)

- Assume $\psi = \psi_b := \frac{1}{(1+r^2)^{\beta/2}}$.
- Non collisional I.C: $x_i^0 \neq x_j^0$ for all $1 \le i \ne j \le N$

Then :

イロト イポト イヨト イヨト

-

Proposition (Flocking with bounded ψ)

• Assume
$$\psi = \psi_b := \frac{1}{(1+r^2)^{\beta/2}}$$
.

• Non collisional I.C:
$$x_i^0 \neq x_j^0$$
 for all $1 \le i \ne j \le N$

Then :

(i) if $\beta \in [0, 1]$, one has an unconditional flocking , meaning there exists $d_M > 0$ such that

$$||X(t)||_2 \leq d_M\,, \quad ||V(t)||_2 \leq ||V^0||_2\,e^{-\psi_b(d_M)t}\,, \;\; orall t \in \mathbb{R}^+$$

イロト イボト イヨト イヨト

Proposition (Flocking with bounded ψ)

• Assume
$$\psi = \psi_b := \frac{1}{(1+r^2)^{\beta/2}}$$
.

• Non collisional I.C:
$$x_i^0 \neq x_j^0$$
 for all $1 \le i \ne j \le N$

Then :

(i) if $\beta \in [0, 1]$, one has an unconditional flocking , meaning there exists $d_M > 0$ such that

$$||X(t)||_2 \leq d_M\,, \quad ||V(t)||_2 \leq ||V^0||_2\,e^{-\psi_b(d_M)t}\,, \;\; orall t\in \mathbb{R}^+\,.$$

(ii) if $\beta \in (1, \infty)$, we are in the conditional flocking case, namely assuming $||V^0||_2 < \int_{||X^0||_2}^{\infty} \psi_b(r) dr$, there exists $d_M > 0$ such that

$$||X(t)||_2 \leq d_M\,, \quad ||V(t)||_2 \leq ||V^0||_2\,e^{-\psi_b(d_M)t}\,, \;\; orall t\in \mathbb{R}^+$$

イロト イポト イヨト イヨト

-

Alignment is modeled

Yay, we modeled alignment of particles....

イロト 不得 トイヨト イヨト

-

Alignment is modeled

Yay, we modeled alignment of particles....

But they can collide...

イロト イポト イヨト イヨト

-

Alignment is modeled

Yay, we modeled alignment of particles....

But they can collide...

and they won't necessarily aggregate....

イロト イポト イヨト イヨト

-

Alignment is modeled

Yay, we modeled alignment of particles....

But they can collide...

and they won't necessarily aggregate

We need to refine the modelling.

イロト 不得 トイヨト イヨト 三日

The three-zone model

$$\begin{cases} x_{i}'(t) = v_{i}(t), \\ v_{i}'(t) = \frac{1}{N} \sum_{j=1}^{N} \psi(|x_{i} - x_{j}|) (v_{j} - v_{i}) \\ -\frac{1}{N} \sum_{j=1, j \neq i}^{N} \sum_{j=1, j \neq i}^{N} \frac{\nabla_{x_{i}} [\varphi(|x_{i} - x_{j}|)]}{\varphi'(|x_{i} - x_{j}|)}, \\ \end{cases} \quad \forall i = 1, \dots, N,$$

- Attraction between particles i, j such that $\varphi'(|x_i x_j|) > 0$.
- Repulsion between particles i, j such that $\varphi'(|x_i x_j|) < 0$.

Figure: Example of attraction, alignment and repulsion potentials (bounded in r = 0) for the 3zone model.

イロト 不得 トイヨト イヨト

ъ

Flocking for the three-zone model

Proposition (Flocking for the 3-zone model)

Assume $\varphi \in C^1(\mathbb{R}^*_+)$ is such that $\lim_{r\to 0,\infty} \varphi(r) = +\infty$.

Then for any non-collisional I.C $(x_i^0, v_i^0)_{i=1}^N$ then there exist two constants $r_m, r_M > 0$ (dependent on N but not on t), such that for all $i, j = 1, \dots, N$

$$0 < r_m \leq |x_i(t) - x_j(t)| \leq r_M \quad \forall t \geq 0, \qquad V(t) \rightarrow_{t \to \infty} 0.$$

・ロット (四) (日) (日) (日)

What about the equilibrium configurations ?

$$\begin{cases} x'_i(t) = v_i(t), \\ v'_i(t) = \frac{1}{N} \sum_{j=1}^N \psi(|x_i - x_j|) (v_j - v_i) \\ -\frac{1}{N} \sum_{j=1, j \neq i}^N \nabla_{x_i} [\varphi(|x_i - x_j|)], \end{cases} \quad \forall i = 1, \dots, N,$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

-

What about the equilibrium configurations ?

$$\begin{cases} x_i'(t) &= v_i(t), \\ v_i'(t) &= \frac{1}{N} \sum_{j=1}^N \psi(|x_i - x_j|) (v_j - v_i) \\ &- \frac{1}{N} \sum_{j=1, j \neq i}^N \nabla_{x_i} [\varphi(|x_i - x_j|)], \end{cases} \quad \forall i = 1, \dots, N, \end{cases}$$

Flocking solutions are such that

$$\sum_{j=1,j\neq i}^{N} \nabla_{x_i} \left[\varphi(|x_i - x_j|) \right] = 0.$$

イロト 不得 トイヨト イヨト

-

Figure: Annular formation for a potential $\varphi_{ann}(r) := (r-5)^2$.

э

Figure: Ring formation for the potential $\varphi_{ring}(r)$.

Etienne LEHMAN Student seminar Modelling of system with a large number of agents: Birds and H

Microscopic description

4

$$\left\{ egin{array}{rll} x_i'(t) &=& v_i(t)\,, \ v_i'(t) &=& rac{1}{N}\sum_{j=1}^N\psi(|x_i-x_j|)\,(v_j-v_i) & & \forall i=1,\ldots,N\,, \ && -rac{1}{N}\sum_{j=1,j
eq i}^N
abla_{x_i}\left[arphi(|x_i-x_j|)
ight]\,, \end{array}
ight.$$

Very high dimensionality when number of birds/drones is very high.

• No one cares about the movement of each individual agent.

イロト 不得 トイヨト イヨト 三日

Microscopic description

4

$$\left\{ egin{array}{ll} x_i'(t) &=& v_i(t)\,, \ v_i'(t) &=& rac{1}{N}\sum_{j=1}^N\psi(|x_i-x_j|)\,(v_j-v_i) & \ &-rac{1}{N}\sum_{j=1,j
eq i}^N
abla_{x_i}\left[arphi(|x_i-x_j|)
ight]\,, \end{array}
ight.$$

Very high dimensionality when number of birds/drones is very high.

• No one cares about the movement of each individual agent.

 \longrightarrow Idea, follow the statistical distribution of agents: this is called the $Mean\mathchar`Field\mathchar`Limit.$

・ロット (四) (日) (日) (日)

Mean Field Limit

Idea to obtain such a statistical distribution of agents.

(i) Start from the solution of that model $(x_1(t), \ldots, x_N(t))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへ⊙

Mean Field Limit

Idea to obtain such a statistical distribution of agents.

- (i) Start from the solution of that model $(x_1(t), \ldots, x_N(t))$.
- (ii) Define the empirical measure

$$f^{N}(t, x, v) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}(t), v_{i}(t)}(x, v),$$

$$f^{N}(t = 0, x, v) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}(t=0), v_{i}(t=0)}(x, v)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへ⊙

Mean Field Limit

Idea to obtain such a statistical distribution of agents.

- (i) Start from the solution of that model $(x_1(t), \ldots, x_N(t))$.
- (ii) Define the empirical measure

$$f^{N}(t, x, v) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}(t), v_{i}(t)}(x, v),$$

$$f^{N}(t = 0, x, v) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}(t=0), v_{i}(t=0)}(x, v)$$

(iii) Assuming that $f^N(t=0) \rightarrow f^0$ as $N \rightarrow \infty$ we obtain (formally or rigorously, in some sense)

$$f^N(t,x,v) \to f(t,x,v)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Mesoscopic description

f(t, x, v) dx dv is the probability to find a drone/bird/agent at instant t, in a small volume dx dv around the phase space point (x, v).

イロト 不得 トイヨト イヨト 三日

Mesoscopic description

- f(t, x, v) dx dv is the probability to find a drone/bird/agent at instant t, in a small volume dx dv around the phase space point (x, v).
- n(t,x) := ∫_{ℝ³} f(t,x,v)dv is the spatial density of probability of finding a drone in a small volume around x. Moments of f are called macroscopic quantities

・ロット (四) (日) (日) (日)

Mesoscopic description

- f(t, x, v) dx dv is the probability to find a drone/bird/agent at instant t, in a small volume dx dv around the phase space point (x, v).
- n(t,x) := ∫_{ℝ³} f(t,x,v)dv is the spatial density of probability of finding a drone in a small volume around x. Moments of f are called macroscopic quantities

f satisfies (formally or rigorously, and in some sense)

$$\partial_t f(t, x, v) + v \cdot \nabla_x f(t, x, v) - (\nabla_x \varphi * n) \cdot \nabla_v f + \nabla_v (F_a(f)f) = 0$$

・ロット (四) (日) (日) (日)

Macroscopic description

Even the previous description is a computationally intensive approach: Macroscopic approach. Define (some) moments of f:

$$n(t,x) = \int_{\mathbb{R}^3_{\nu}} f(t,x,\nu) d\nu, \qquad (1)$$
$$n(t,x) u(t,x) = \int_{\mathbb{R}^3_{\nu}} \nu f(t,x,\nu) d\nu. \qquad (2)$$

イロト 不得 トイヨト イヨト

-

Macroscopic description

Even the previous description is a computationally intensive approach: Macroscopic approach. Define (some) moments of f:

$$n(t,x) = \int_{\mathbb{R}^3_{\nu}} f(t,x,\nu) d\nu, \qquad (1)$$

$$n(t,x) u(t,x) = \int_{\mathbb{R}^3_v} v f(t,x,v) dv.$$
(2)

Integrating the mesoscopic description gives

$$\partial_t n + \nabla_x (nu) = 0$$

$$\partial_t (nu) + \nabla_x (n(u \otimes u)) + \nabla_x \mathbb{P} + n(\nabla \varphi * n)$$

$$= \int_{\mathbb{R}^3} \psi(x - y) n(t, x) n(t, x) (u(t, y) - u(t, x)) dy$$

Figure: Drone swarm particle (left, N = 400) and fluid (right) simulations at t = 0, 2.51, 7.61s respectively.

イロト 不得 トイヨト イヨト

э

Thank you for your attention !

э