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An experiment for wetting region

Figure 1: Experiment
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KPZ universality

Figure 2: Random interface growth

Karder-Parisi-Zhang (KPZ) universality conjecture (1986)� �
The above phenomena are described by the following equation:

∂th =
1
2∆h +

1
2 |∇h|2 + βξ.� �
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KPZ universality II
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KPZ equation

Fix β > 0. The following is called the KPZ equation:� �
For t ∈ [0,∞) and x ∈ Rd ,

∂th(t, x) =
1
2∆h(t, x) + 1

2 |∇h(t, x)|2 + βξ(t, x)

=
1
2

d∑
i=1

∂2
xi

h(t, x) + 1
2

d∑
i=1

(∂xi h(t, x))2 + βξ(t, x),

where ξ(t, x) is a space-time white noise on [0,∞)× Rd .� �
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The meaning of each term

∂th(t, x) =
1
2 ∆h(t, x)︸ ︷︷ ︸

relaxation

+
1
2 |∇h(t, x)|2︸ ︷︷ ︸

lateral growth

+βξ(t, x)︸ ︷︷ ︸
noise

∆h(t, x): relaxation
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Problem of the construction of solutions to the KPZ eq.

KPZ equation

∂th(t, x) =
1
2∆h(t, x) + 1

2 |∇h(t, x)|2 + βξ(t, x).

Problem

• ξ is not a function ⇒ h(t, x) may not be a function.
• How to make sense of |∇h(t, x)|2?

Scheme

• Mollify the noise.
• Consider a (smooth) solution to the mollified KPZ equation.
• We switch off the mollification and consider the limit of solutions.
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Regularization scheme

Let φ be a smooth and compactly supported function on Rd .
Mollify the white noise ξ(t, x) in space on scale ε:

ξε(t, x) :=
∫

φε(x − y)ξ(t, y)dy ⇒ ξ(t, x),

where φε(x) := ε−dφ(ε−1x).

Let us consider:

∂thε(t, x) =
1
2∆hε(t, x) +

1
2 |∇hε(t, x)|2 + βξε(t, x)

Q. hε converges as ε→ 0?

A. No! We have to modify the equation more.
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Regularization scheme

Let φ be a smooth and compactly supported function on Rd .
Mollify the white noise ξ(t, x) in space on scale ε:

ξε(t, x) :=
∫

φε(x − y)ξ(t, y)dy ,

where φε(x) := ε−dφ(ε−1x).

We introduce new parameters and consider the regularized KPZ:

∂thε(t, x) =
1
2∆hε(t, x) +

1
2 |∇hε(t, x)|2 + βεξ

ε(t, x)− Cε.

Can we take βε and Cε so that hε converges as ε→ 0?
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Choice of βε and Cε

Recall that ξε(t, x) :=
∫
φε(x − y)ξ(t, y)dy .

The choice of βε

For fixed β̂ ∈ (0,∞), we choose

βε =


β̂ (d = 1)
β̂
√

2π
log ε−1 (d = 2)

β̂ε
d−2

2 (d ≥ 3).

The choice of Cε

We choose Cε = β2
ε ε

−d‖φ‖2
L2 .

Remark
• There are other choices (e.g., Family-Vicsek scaling).
• This choice is related to directed polymers explained later.
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Previous researches (d = 1)

We consider the solution hε to the mollified KPZ:

∂thε(t, x) =
1
2∆hε(t, x) +

1
2 |∇hε(t, x)|2 + βεξ

ε(t, x)− Cε.

Theorem (Bertini-Giacomin)
When d = 1, for any β̂ ≥ 0, hε(t, x)→ ∃h(t, x) as ε→ 0.
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Previous researches (d = 2)

Theorem (Caravenna-Sun-Zygouras)
When d = 2,

hε(t, x)
d→

{
∃h(t, x) ∈ R, (β̂ < 1)
−∞. (β̂ > 1)

They have studied more:
• If β̂ < 1, then the fluctuation converges to EW limit;
• Even if β̂ = 1, a non-trivial limit of exp (hε) still exists in

distributional sense (Critical Stochastic Heat Flow).
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KPZ ⇒ Directed Polymer (via Feynman-Kac formula)

We define uε(t, x) := exp (hε(t, x)), V (x) :=
∫
φ(x − y)φ(y)dy .

Proposition
The following are equivalent:
• ∂thε(t, x) = 1

2∆hε(t, x) + 1
2 |∇hε(t, x)|2 + βεξ

ε(t, x)− Cε

• ∂tuε =
1
2∆uε + βεξ

ε(t, x)uε

If uε is the solution to the above, then uε can be written as

uε(t, x) = EBM
x

[
uε(0,Bt) exp

(
βε

∫ t

0
ξε(t − s,Bs)ds)−Aε(t)

)]
d
= EBM

x

[
uε(0,Bt) exp

(
βε

∫ t

0
ξε(s,Bs)ds)−Aε(t)

)]
,

where Aε(t) = β̂2ε−2tV (0)
2 (Itô correction).
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KPZ ⇒ Directed Polymer (via Feynman-Kac formula)

We define uε(t, x) := exp (hε(t, x)), V (x) :=
∫
φ(x − y)φ(y)dy .

Proposition
The following are equivalent:
• ∂thε(t, x) = 1

2∆hε(t, x) + 1
2 |∇hε(t, x)|2 + βεξ

ε(t, x)− Cε

• ∂tuε =
1
2∆uε + βεξ

ε(t, x)uε.

If uε is the solution to the above, then uε can be written as

uε(t, x) = EBM
x

[
uε(0,Bt) exp

(
βε

∫ t

0
ξε(t − s,Bs)ds)−Aε(t)

)]

d
= EBM

x

uε(0,Bt) exp

(
βε

∫ t

0
ξε(s,Bs)ds − Aε(t)

)
︸ ︷︷ ︸

Hamiltonian of a directed polymer

 .
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Remark on the expression of uε

In this slide, we assume uε(0, x) = 1 and take T = Tε = ε−2.
• Using the definitions of βε, ξε, we obtain

uε(1, x)
d
= EBM√

Tx

[
eβ̂

∫ T
0 (ξ(s,·)∗φ)(Bs )ds)− β̂2TV (0)

2

]
,

=: EBM√
Tx [ΦT ] .

• Φs is a martingale w.r.t. σ(ξ(r , x) : r ≤ s, x ∈ Rd).
• Let ZT := EBM

0 [ΦT ]. Then, (ZT )T≥0 is also a martingale. Hence,
by the Martingale convergence theorem,

ZT → ∃Z∞ a.s.
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Subcritical and L2 region

When d ≥ 3, there are critical parameters 0 < β̂L2 ≤ β̂c ,

• It is believed that β̂L2 < β̂c
(discrete case: Birkner-Greven-den Hollander 11).
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Law of large numebers of uε for d ≥ 3

Recall that uε is the solution to

∂tuε =
1
2∆uε + βεuεξ

ε.

Let uε(0, ·) ≡ u0(·) ∈ Cb(Rd). We define ū(t, x) = EBM
x [u0(Bt)].

Theorem (Mukherjee-Shamov-Zeitouni, Cosco-Nakashima-N)

1 For all β̂ < β̂c , f ∈ Cc(Rd) and u0 ∈ Cb(Rd), as ε→ 0,∫
Rd

f (x)uε(t, x)dx L1

→
∫
Rd

f (x)ū(t, x)dx .

2 For all β̂ > β̂c , f ∈ Cc(Rd) and u0 ∈ Cb(Rd), as ε→ 0,

uε(t, x)
P→ 0.

Shuta Nakajima Joint work with Stefan Junk (Gakushuin University)
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Law of large numebers of uε for d ≥ 3

Theorem (Mukherjee-Shamov-Zeitouni, Cosco-Nakashima-N)

1 For all β̂ < β̂c , f ∈ Cc(Rd) and u0 ∈ Cb(Rd), as ε→ 0,∫
Rd

f (x)uε(t, x)dx L1

→
∫
Rd

f (x)ū(t, x)dx .

2 For all β̂ > β̂c and u0 ∈ Cb(Rd), as ε→ 0,

uε(t, x)
P→ 0.

� �
The limit of uε (also hε) is just a function (NOT random)!� �

Shuta Nakajima Joint work with Stefan Junk (Gakushuin University)
Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime 23 / 40



Overview Previous research on SHE and KPZ equation Main result

Fluctuation of uε (SHE)

For all β̂ < β̂c , ∫
Rd

f (x)uε(t, x)dx L1

→
∫
Rd

f (x)ū(t, x)dx .

Theorem (Gu-Ryzhik-Zeitouni, Cosco-Nakashima-N)
Suppose uε(0, ·) ≡ u0 ∈ Cb. For all β̂ < β̂L2 ,

ε−
d−2

2

∫
Rd

f (x)(uε(t, x)− ū(t, x))dx (d)→
∫

f (x)U1(t, x)dx ,

where U1(t, x) is the solution of U1(0, x) ≡ 0 and

∂tU1(t, x) =
1
2∆U1(t, x) + γ(β̂)ū(t, x)ξ(t, x). (EW equation)

Note that γ(β̂)→∞ as β̂ → β̂L2 .
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Fluctuation of hε (KPZ)

Let hε(t, x) := log uε(t, x).

Theorem (MU, DGRZ, LZ, CNN)
Suppose ‖ log u0‖∞ <∞. For all β̂ < β̂L2 ,

ε−
d−2

2

∫
Rd

f (x)(hε(t, x)− Ehε(t, x))dx (d)→
∫

f (x)U2(t, x)dx ,

where U2(t, x) is the solution of U2(0, x) ≡ 0 and

∂tU2(t, x) =
1
2∆U2(t, x) +∇ log ū(t, x) · ∇U2(t, x) + γ(β̂)ξ(t, x).
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Some remarks

• We discuss a relation between SHE and KPZ equation in weak
disorder regime.

• Out main result is only stated in discrete directed polymer.
• From now on, we only consider the discrete model.
• However, we believe that the same techniques work for continuum

models.
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Discrete polymer model

• Let (ω(i , n))i∈Zd ,n∈N be i.i.d. random variables.
• We assume λ(β) := logEβω(i,n) ∈ R for any β ∈ R.
• Let us define the partition function ZN(x) for x ∈ Zd of directed

polymers:

ZN(x) := Zω,N,β(x) := Ex

[
eβ

∑N
k=1 ω(k,Xk )−Nλ(β)

]
,

where Ex denotes the expectation of the simple random walk
starting at x .

• For simplicity of notation, we write ZN := ZN(0).
• We call {β ≥ 0| P(lim infN ZN > 0) = 1} the weak disorder regime.
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Discrete Polymer vs. Continuum Polymer

Recall that
• uε(t, x)

d
= EBM

[
exp

(
β̂
∫ T

0 φ ∗ ξ(s,Bs)ds − TA(β̂)
)]

with T = ε−2.

• hε(t, x) = log uε(t, x) solves ∂th = 1
2∆x h + 1

2 |∇x h|2 + βεξ
ε − Cε.

Discrete Polymer Continuum Polymer

Energy HN =
∑N

k=1 ω(k, Sk) HT =
∫ T

0 φ ∗ ξ(s,Bs)ds

Partition ESRW [exp (βHN − Nλ(β))] EBM
[
exp

(
β̂HT − TA(β̂)

)]
Critical sup{β > 0| limZN > 0} sup{β̂ > 0| limZT > 0}
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Tail exponent

We suppose that the distribution of ω(i , n) has a compact support.
Let p∗(β) := sup{p ≥ 0| supN E[ZN(β)

p] <∞} (tail exponent).

Theorem (Junk 22+)
In the weak disorder regime, it holds

p∗(β) ≥
d + 2

d .

Moreover, for a certain class of weight distribution (finite support),

β < βc ⇔ p∗(β) >
d + 2

d .
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Fluctuation for SHE in weak disorder regime

We define p∗ := p∗(β) as before.
Let ξ := ξ(β) := − d

2 + d+2
2(p∗∧2) (fluctuation exponent).

Theorem (Junk 22+)
Given a compactly supported function f : Rd → R, we define the
fluctuation of discrete SHE as

χN(f ) := N−d/2
∑
x∈Zd

f (x/
√

N)(ZN(x)− EZN(x)).

In the weak disorder regime, for any ε > 0 and f 6≡ 0, it holds

lim
N→∞

P(n−ξ−ε < |χN(f )| < n−ξ+ε) = 1.
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Equivalence of fluctuation between SHE and KPZ

From now on, we assume the following:
• p∗(β) >

d+2
d .

• ω(i , x) has a compact support.
Given a compactly supported function f : Rd → R, we define the
fluctuation of discrete KPZ as

κN(f ) := N−d/2
∑
x∈Zd

f (x/
√

N)(logZN(x)− E logZN(x)).

Theorem (Junk-N 23+)
There exists δ > 0 such that

lim
n→∞

P(|χN(f )− κN(f )| ≤ N−ξ−δ) = 1.
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Theorem (Junk-N 23+)
There exists δ > 0 such that

lim
n→∞

P(|χN(f )− κN(f )| ≤ N−ξ−δ) = 1.

Together with the result of [Junk 22] (|χN(f )| = N−ξ+o(1)), we conclude:

Corollary (Junk-N 23+)
For any ε > 0 and f 6≡ 0,

P(N−ξ−ε ≤ |κN(f )| ≤ N−ξ+ε)→ 1.

Moreover, there exists δ > 0 such that

lim
n→∞

P
(

|χN(f )− κN(f )|
min{|χN(f )|, |κN(f )|}

≤ N−δ

)
= 1.
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Why I was surprised

• For β ∈ (β2, βc), it is believed that

χN(f ) := N−d/2
∑
x∈Zd

f (x/
√

N)(ZN(x)− EZN(x))→ Stable.

• We can prove that

• sup
N∈N

E[(logZN)
2] <∞

• lim
|x−y |→∞

sup
N∈N

E[(logZN(x)− E logZN(x))(logZN(y)− E logZN(y))] = 0.

• Hence I believed that

κN(f ) := N−d/2
∑
x∈Zd

f (x/
√

N)(logZN(x)− E logZN(x))→ Gauss.

• It was not the case, and I was really reluctant..
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Outline of the proof

Let `k := k1/8 and Ek(y) := eβω(k,y) − 1. We define

ρN(f ) := N−d/2
∑
x∈Zd

f (x/
√

N)

 N∑
k=1

∑
y∈Zd

←−
Z `k (k, y)Ek(y)pN(x , y)

 .

We will prove that

χN(f ) ≈ ρN(f ) (Approximation for SHE),
κN(f ) ≈ ρN(f ) (Approximation for KPZ).
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Sketch proof (Approximation for SHE)

Let `k := k1/8 and Ek(y) := eβω(k,y)−λ(β) − 1. We have the following
approximation for χn:

χN(f ) = N−d/2
∑
x∈Zd

f (x/
√

N)(ZN(x)− 1)

= N−d/2
∑
y∈Zd

N∑
k=1

Ek(y)

∑
x∈Zd

f (x/
√

N)Zk(x , y)pk(x , y)


≈ N−d/2

∑
y∈Zd

N∑
k=1

Ek(y)

∑
x∈Zd

f (x/
√

N)
←−
Z `k (k, y)pN(x , y)

 = ρN(f ),

where we have used law of large numbers (similar to Zk ≈ Z`k ).
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Some ingredients

As before, we assume:
(1) p∗(β) >

d+2
d , (2) ω(i , x) has a compact support.

The following play an important role in the proof below:

Theorem (Junk 23+)
Let ZN(x , y) := Ex [eβ

∑N−1
k=1 ω(k,Xk )−(N−1)λ(β)| XN = y ]. Let `N := N1/8.

For any p < p∗(β) and c > 0, it holds

lim
N→∞

sup
x ,y∈[−N1−c ,N1−c ]

E|ZN(x , y)− Z`N

←−
Z `N (N, y)|p = 0.

Theorem (Junk-N 23+)
There exists C = C(β) > 0 such that for any u ≥ 1 and N ∈ N,

P(ZN < 1/u) ≤ Ce−(log u)2/C .
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Some ingredients� �
It holds:

lim
N→∞

sup
x ,y∈[−N1−c ,N1−c ]

E|ZN(x , y)− Z`N

←−
Z `N (N, y)|p = 0,

P(ZN < 1/u) ≤ Ce−(log u)2/C .� �
We define the polymer measure:

µN(x , y) :=
Ex

[
eβ

∑N−1
k=1 ω(k,Xk )−nλ(β)1Xn=y

]
ZN−1(x)

=
ZN(x , y)pN(x , y)

ZN−1(x)
.

By Zk(x , y) ≈ Z`k (x)
←−
Z `k (k, y) and Z`k (x),Zk(x)→ Z∞(x), they imply

µk(x , y) =
Zk(x , y)pk(x , y)

Zk−1(x)
≈ Z`k (x)

←−
Z `k (k, y)pk(x , y)
Zk−1(x)

≈
←−
Z `k (k, y)pk(x , y).
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Sketch proof (Approximation for KPZ I)

For κn, we consider the following Martingale decomposition:

κn(f ) = N−d/2
∑
x∈Zd

f (x/
√

N)(logZN(x)− E[logZN(x)])

=
∑
x∈Zd

N∑
k=1

f (x/
√

N)(log
Zk(x)

Zk−1(x)
− E

[
log

Zk(x)
Zk−1(x)

| Fk−1

]
)

+
∑
x∈Zd

N∑
k=1

f (x/
√

N)(E
[
log

Zk(x)
Zk−1(x)

| Fk−1

]
− E

[
log

Zk(x)
Zk−1(x)

]
)

≈
∑
x∈Zd

N∑
k=1

f (x/
√

N)
∑
y∈Zd

µk(x , y)Ek(y),

where µk(x , y) := Zk (x ,y)pk (x ,y)
Zk−1(x) , Ek(y) := eβω(k,y)−λ(β) − 1 and used

log
Zk(x)

Zk−1(x)
= log

(
1 +

∑
y∈Zd

µk(x , y)Ek(y)
)
≈

∑
y∈Zd

µk(x , y)Ek(y).
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Sketch proof (Approximation for KPZ II)

Let `k := k1/8 and Ek(y) := eβω(k,y) − 1. Recall that

µk(x , y) ≈
←−
Z `k (k, y)pk(x , y).

Hence, we have the following approximation for κn:

κN(f ) ≈ N−d/2
∑
x∈Zd

N∑
k=1

f (x/
√

N)
∑
y∈Zd

µk(x , y)Ek(y)

≈ N−d/2
∑
x∈Zd

N∑
k=1

f (x/
√

N)
∑
y∈Zd

[←−
Z `k (k, y)Ek(y)pN(x , y)

]
= ρN(f ).

Therefore, we have χN(f ) ≈ κN(f ).
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