Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

Shuta Nakajima (Meiji University)

Joint work with Stefan Junk (Gakushuin University)

March 8, 2024

Shuta Nakajima

2 Previous research on SHE and KPZ equation

3 Main result

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

・ロト ・四ト ・ヨト ・ヨト

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

3

2 Previous research on SHE and KPZ equation

3 Main result

・ロト・日本・ヨト・ヨー うくの

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

Previous research on SHE and KPZ equation

An experiment for wetting region

Figure 1: Experiment

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

<ロト <問ト < 国ト < 国ト

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

э

KPZ universality

Figure 2: Random interface growth

Karder-Parisi-Zhang (KPZ) universality conjecture (1986) The above phenomena are described by the following equation: $\partial_t h = \frac{1}{2}\Delta h + \frac{1}{2}|\nabla h|^2 + \beta\xi.$ Previous research on SHE and KPZ equation

KPZ universality II

- Any model is so far unsolvable.
- Construction of a solution to KPZ equation is harder.

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Previous research on SHE and KPZ equation

3 Main result

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ∧ </p>

Shuta Nakajima

${\rm KPZ}$ equation

Fix $\beta > 0$. The following is called the KPZ equation:

For
$$t \in [0, \infty)$$
 and $x \in \mathbb{R}^d$,
 $\partial_t h(t, x) = \frac{1}{2} \Delta h(t, x) + \frac{1}{2} |\nabla h(t, x)|^2 + \beta \xi(t, x)$
 $= \frac{1}{2} \sum_{i=1}^d \partial_{x_i}^2 h(t, x) + \frac{1}{2} \sum_{i=1}^d (\partial_{x_i} h(t, x))^2 + \beta \xi(t, x),$
where $\xi(t, x)$ is a space-time white noise on $[0, \infty) \times \mathbb{R}^d$.

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Previous research on SHE and KPZ equation

The meaning of each term

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Previous research on SHE and KPZ equation

The meaning of each term

Joint work with Stefan Junk (Gakushuin University)

Previous research on SHE and KPZ equation

The meaning of each term

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

Previous research on SHE and KPZ equation

Problem of the construction of solutions to the KPZ eq.

KPZ equation

$$\partial_t h(t,x) = rac{1}{2} \Delta h(t,x) + rac{1}{2} |
abla h(t,x)|^2 + eta \xi(t,x).$$

Problem

- ξ is not a function $\Rightarrow h(t, x)$ may not be a function.
- How to make sense of $|\nabla h(t, x)|^2$?

(4 間) (4 回) (4 回)

Problem of the construction of solutions to the KPZ eq.

KPZ equation

$$\partial_t h(t,x) = rac{1}{2} \Delta h(t,x) + rac{1}{2} |
abla h(t,x)|^2 + eta \xi(t,x).$$

Problem

- ξ is not a function $\Rightarrow h(t, x)$ may not be a function.
- How to make sense of $|\nabla h(t,x)|^2$?

Scheme

- Mollify the noise.
- Consider a (smooth) solution to the mollified KPZ equation.
- We switch off the mollification and consider the limit of solutions.

12 / 40

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Regularization scheme

Let ϕ be a smooth and compactly supported function on \mathbb{R}^d . Mollify the white noise $\xi(t, x)$ in space on scale ϵ :

$$\xi^{\epsilon}(t,x) := \int \phi^{\epsilon}(x-y)\xi(t,y)\mathrm{d}y \Rightarrow \xi(t,x),$$

where $\phi^{\epsilon}(x) := \epsilon^{-d} \phi(\epsilon^{-1}x).$

Let us consider:

$$\partial_t h_\epsilon(t,x) = rac{1}{2} \Delta h_\epsilon(t,x) + rac{1}{2} \left|
abla h_\epsilon(t,x) \right|^2 + eta \xi^\epsilon(t,x)$$

Q. h_{ϵ} converges as $\epsilon \rightarrow 0$?

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

(4 間) (4 回) (4 回)

Regularization scheme

Let ϕ be a smooth and compactly supported function on \mathbb{R}^d . Mollify the white noise $\xi(t, x)$ in space on scale ϵ :

$$\xi^{\epsilon}(t,x) := \int \phi^{\epsilon}(x-y)\xi(t,y)\mathrm{d}y \Rightarrow \xi(t,x),$$

where $\phi^{\epsilon}(x) := \epsilon^{-d} \phi(\epsilon^{-1}x)$.

Let us consider:

$$\partial_t h_\epsilon(t,x) = rac{1}{2} \Delta h_\epsilon(t,x) + rac{1}{2} \left|
abla h_\epsilon(t,x) \right|^2 + eta \xi^\epsilon(t,x)$$

Q. h_{ϵ} converges as $\epsilon \rightarrow 0$?

A. No! We have to modify the equation more.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Regularization scheme

Let ϕ be a smooth and compactly supported function on \mathbb{R}^d . Mollify the white noise $\xi(t, x)$ in space on scale ϵ :

$$\xi^{\epsilon}(t,x) := \int \phi^{\epsilon}(x-y)\xi(t,y)\mathrm{d}y,$$

where $\phi^{\epsilon}(x) := \epsilon^{-d} \phi(\epsilon^{-1}x)$.

We introduce new parameters and consider the regularized KPZ:

$$\partial_t h_\epsilon(t,x) = rac{1}{2} \Delta h_\epsilon(t,x) + rac{1}{2} \left|
abla h_\epsilon(t,x) \right|^2 + eta_\epsilon \xi^\epsilon(t,x) - C_\epsilon.$$

Can we take β_{ϵ} and C_{ϵ} so that h_{ϵ} converges as $\epsilon \to 0$?

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Previous research on SHE and KPZ equation

Main result 000000000000000000000

Choice of β_{ϵ} and C_{ϵ}

Recall that
$$\xi^{\epsilon}(t,x) := \int \phi^{\epsilon}(x-y)\xi(t,y)\mathrm{d}y.$$

The choice of β_{ϵ}

For fixed $\hat{\beta} \in (0,\infty)$, we choose

$$eta_{\epsilon} = egin{cases} \hat{eta} & (d=1) \ \hat{eta} \sqrt{rac{2\pi}{\log \epsilon^{-1}}} & (d=2) \ \hat{eta} \epsilon^{rac{d-2}{2}} & (d\geq 3). \end{cases}$$

The choice of C_{ϵ}

We choose $C_{\epsilon} = \beta_{\epsilon}^2 \epsilon^{-d} \|\phi\|_{L^2}^2$.

Shuta Nakajima

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

Joint work with Stefan Junk (Gakushuin University)

イロト イボト イヨト イヨト

э

Previous research on SHE and KPZ equation

Choice of β_{ϵ} and C_{ϵ}

Recall that
$$\xi^{\epsilon}(t,x) := \int \phi^{\epsilon}(x-y)\xi(t,y)\mathrm{d}y.$$

The choice of β_{ϵ}

For fixed $\hat{eta} \in (0,\infty)$, we choose

$$eta_{\epsilon} = egin{cases} \hat{eta} & (d=1) \ \hat{eta} \sqrt{rac{2\pi}{\log \epsilon^{-1}}} & (d=2) \ \hat{eta} \epsilon^{rac{d-2}{2}} & (d\geq 3). \end{cases}$$

The choice of C_{ϵ}

We choose $C_{\epsilon} = \beta_{\epsilon}^2 \epsilon^{-d} \|\phi\|_{L^2}^2$.

Remark

- There are other choices (e.g., Family-Vicsek scaling).
- This choice is related to directed polymers explained later.

Shuta Nakajima

Previous researches (d = 1)

We consider the solution h_{ϵ} to the mollified KPZ:

$$\partial_t h_\epsilon(t,x) = rac{1}{2} \Delta h_\epsilon(t,x) + rac{1}{2} \left|
abla h_\epsilon(t,x)
ight|^2 + eta_\epsilon \xi^\epsilon(t,x) - C_\epsilon.$$

Theorem (Bertini-Giacomin)

When
$$d = 1$$
, for any $\hat{\beta} \ge 0$, $h_{\epsilon}(t, x) \to \exists h(t, x)$ as $\epsilon \to 0$.

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Previous researches (d = 2)

Theorem (Caravenna-Sun-Zygouras)

When
$$d=2$$
, $h_\epsilon(t,x) \stackrel{d}{
ightarrow} \begin{cases} \exists h(t,x) \in \mathbb{R}, & (\hat{eta} < 1) \\ -\infty. & (\hat{eta} > 1) \end{cases}$

They have studied more:

- If $\hat{\beta} < 1$, then the fluctuation converges to EW limit;
- Even if β̂ = 1, a non-trivial limit of exp(h_ε) still exists in distributional sense (Critical Stochastic Heat Flow).

Shuta Nakajima

< □ > < □ > < □ > < □ > < □ > < □ >

$KPZ \Rightarrow$ Directed Polymer (via Feynman-Kac formula)

We define $u_{\epsilon}(t,x) := \exp(h_{\epsilon}(t,x)), V(x) := \int \phi(x-y)\phi(y) dy$.

Proposition

The following are equivalent:

- $\partial_t h_{\epsilon}(t,x) = \frac{1}{2} \Delta h_{\epsilon}(t,x) + \frac{1}{2} |\nabla h_{\epsilon}(t,x)|^2 + \beta_{\epsilon} \xi^{\epsilon}(t,x) C_{\epsilon}$
- $\partial_t u_{\epsilon} = \frac{1}{2} \Delta u_{\epsilon} + \beta_{\epsilon} \xi^{\epsilon}(t, x) u_{\epsilon}$

If u_{ϵ} is the solution to the above, then u_{ϵ} can be written as

$$u_{\epsilon}(t,x) = \mathbf{E}_{x}^{\mathrm{BM}} \left[u_{\epsilon}(0,B_{t}) \exp\left(\beta_{\epsilon} \int_{0}^{t} \xi^{\epsilon}(t-s,B_{s})ds\right) - A_{\epsilon}(t) \right) \right]$$
$$\stackrel{d}{=} \mathbf{E}_{x}^{\mathrm{BM}} \left[u_{\epsilon}(0,B_{t}) \exp\left(\beta_{\epsilon} \int_{0}^{t} \xi^{\epsilon}(s,B_{s})ds\right) - A_{\epsilon}(t) \right) \right],$$

where
$$A_{\epsilon}(t)=rac{\hat{eta}^2\epsilon^{-2}tV(0)}{2}$$
 (Itô correction).

Shuta Nakajima

・ 同 ト ・ 三 ト ・ 三 ト

$KPZ \Rightarrow$ Directed Polymer (via Feynman-Kac formula)

We define $u_{\epsilon}(t,x) := \exp(h_{\epsilon}(t,x)), V(x) := \int \phi(x-y)\phi(y)dy$.

Proposition

The following are equivalent:

- $\partial_t h_{\epsilon}(t,x) = \frac{1}{2} \Delta h_{\epsilon}(t,x) + \frac{1}{2} \left| \nabla h_{\epsilon}(t,x) \right|^2 + \beta_{\epsilon} \xi^{\epsilon}(t,x) C_{\epsilon}$
- $\partial_t u_{\epsilon} = \frac{1}{2} \Delta u_{\epsilon} + \beta_{\epsilon} \xi^{\epsilon}(t, x) u_{\epsilon}.$

Shuta Nakajima

・ 何 ト ・ 三 ト ・ 三 ト

$KPZ \Rightarrow$ Directed Polymer (via Feynman-Kac formula)

We define $u_{\epsilon}(t,x) := \exp(h_{\epsilon}(t,x)), V(x) := \int \phi(x-y)\phi(y) dy$.

Proposition

1

The following are equivalent:

•
$$\partial_t h_{\epsilon}(t,x) = \frac{1}{2} \Delta h_{\epsilon}(t,x) + \frac{1}{2} |\nabla h_{\epsilon}(t,x)|^2 + \beta_{\epsilon} \xi^{\epsilon}(t,x) - C_{\epsilon}$$

•
$$\partial_t u_{\epsilon} = \frac{1}{2} \Delta u_{\epsilon} + \beta_{\epsilon} \xi^{\epsilon}(t, x) u_{\epsilon}.$$

If u_{ϵ} is the solution to the above, then u_{ϵ} can be written as

$$u_{\epsilon}(t,x) = \mathrm{E}_{x}^{\mathrm{BM}} \left[u_{\epsilon}(0,B_{t}) \exp\left(\beta_{\epsilon} \int_{0}^{t} \xi^{\epsilon}(t-s,B_{s})ds\right) - A_{\epsilon}(t) \right) \right]$$
$$\stackrel{d}{=} \mathrm{E}_{x}^{\mathrm{BM}} \left[u_{\epsilon}(0,B_{t}) \exp\left(\beta_{\epsilon} \int_{0}^{t} \xi^{\epsilon}(s,B_{s})ds - A_{\epsilon}(t)\right) \right]$$
$$\stackrel{Hamiltonian of a directed polymer}{\overset{Hamiltonian of a directed polymer}{\overset{Hamiltonian}{\overset{Hamiltonian}{\overset{Hamiltonian}{\overset{Hamiltonian}{\overset{Hamiltonian}{\overset{Hamilton}{\overset$$

Shuta Nakaiima

Joint work with Stefan Junk (Gakushuin University) Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

.

Remark on the expression of u_{ϵ}

In this slide, we assume $u_{\epsilon}(0, x) = 1$ and take $T = T_{\epsilon} = \epsilon^{-2}$.

• Using the definitions of β_{ϵ} , ξ^{ϵ} , we obtain

$$\begin{split} u_{\epsilon}(1,x) &\stackrel{d}{=} \mathrm{E}_{\sqrt{T}x}^{\mathrm{BM}} \left[e^{\hat{\beta} \int_{0}^{T} (\xi(s,\cdot) * \phi)(B_{s}) ds) - \frac{\hat{\beta}^{2} T V(0)}{2}} \right], \\ &=: \mathrm{E}_{\sqrt{T}x}^{\mathrm{BM}} \left[\Phi_{T} \right]. \end{split}$$

- Φ_s is a martingale w.r.t. $\sigma(\xi(r, x): r \leq s, x \in \mathbb{R}^d)$.
- Let $\mathcal{Z}_{\mathcal{T}} := \mathrm{E}_0^{\mathrm{BM}} [\Phi_{\mathcal{T}}]$. Then, $(\mathcal{Z}_{\mathcal{T}})_{\mathcal{T} \ge 0}$ is also a martingale. Hence, by the Martingale convergence theorem,

$$\mathcal{Z}_{\mathcal{T}}
ightarrow \exists \mathcal{Z}_{\infty}$$
 a.s.

Shuta Nakajima

(4月) キョン キョン

Subcritical and L^2 region

When $d \ge 3$, there are critical parameters $0 < \hat{\beta}_{L^2} \le \hat{\beta}_c$,

$\hat{\beta} < \hat{\beta}_{L^2}$	$\hat{\beta} < \hat{\beta}_c$	$\hat{\beta} > \hat{\beta}_c$
$(\mathcal{Z}_T)_T$ is bounded in L^2	$\mathcal{Z}_T \ \textbf{\rightarrow} \ \mathcal{Z}_\infty \ > 0$ a.s.	$\mathcal{Z}_{T} \rightarrow 0$ a.s.
L ² -region	weak disorder	strong disorder

• It is believed that $\hat{\beta}_{L^2} < \hat{\beta}_c$ (discrete case: Birkner-Greven-den Hollander 11).

・ 同 ト ・ ヨ ト ・ ヨ ト

Law of large numebers of u_{ϵ} for $d \geq 3$

Recall that u_{ϵ} is the solution to

$$\partial_t u_\epsilon = \frac{1}{2} \Delta u_\epsilon + \beta_\epsilon u_\epsilon \xi^\epsilon.$$

Let $u_{\epsilon}(0, \cdot) \equiv u_0(\cdot) \in \mathcal{C}_b(\mathbb{R}^d)$. We define $\bar{u}(t, x) = E_x^{BM}[u_0(B_t)]$.

Theorem (Mukherjee-Shamov-Zeitouni, Cosco-Nakashima-N)

1 For all
$$\hat{\beta} < \hat{\beta}_c$$
, $f \in C_c(\mathbb{R}^d)$ and $u_0 \in C_b(\mathbb{R}^d)$, as $\epsilon \to 0$,

$$\int_{\mathbb{R}^d} f(x) u_{\epsilon}(t,x) \mathrm{d} x \xrightarrow{L^1} \int_{\mathbb{R}^d} f(x) \overline{u}(t,x) \mathrm{d} x.$$

2 For all
$$\hat{\beta} > \hat{\beta}_c$$
, $f \in C_c(\mathbb{R}^d)$ and $u_0 \in C_b(\mathbb{R}^d)$, as $\epsilon \to 0$,

$$u_{\epsilon}(t,x) \stackrel{P}{\rightarrow} 0$$

Shuta Nakajima

22 / 40

Law of large numebers of u_{ϵ} for $d \geq 3$

Theorem (Mukherjee-Shamov-Zeitouni, Cosco-Nakashima-N)

1 For all
$$\hat{\beta} < \hat{\beta}_c$$
, $f \in \mathcal{C}_c(\mathbb{R}^d)$ and $u_0 \in \mathcal{C}_b(\mathbb{R}^d)$, as $\epsilon \to 0$,

$$\int_{\mathbb{R}^d} f(x) u_{\epsilon}(t,x) \mathrm{d}x \xrightarrow{L^1} \int_{\mathbb{R}^d} f(x) \overline{u}(t,x) \mathrm{d}x.$$

2 For all
$$\hat{\beta} > \hat{\beta}_c$$
 and $u_0 \in \mathcal{C}_b(\mathbb{R}^d)$, as $\epsilon \to 0$,
$$u_{\epsilon}(t, x) \xrightarrow{P} 0.$$

The limit of u_{ϵ} (also h_{ϵ}) is just a function (NOT random)!

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

< □ > < □ > < □ > < □ > < □ > < □ >

Fluctuation of u_{ϵ} (SHE)

For all
$$\hat{\beta} < \hat{\beta}_c$$
,
 $\int_{\mathbb{R}^d} f(x) u_\epsilon(t,x) \mathrm{d}x \xrightarrow{L^1} \int_{\mathbb{R}^d} f(x) \overline{u}(t,x) \mathrm{d}x.$

Theorem (Gu-Ryzhik-Zeitouni, Cosco-Nakashima-N)

Suppose $u_{\epsilon}(0,\cdot) \equiv u_0 \in \mathcal{C}_b$. For all $\hat{\beta} < \hat{\beta}_{L^2}$,

$$\epsilon^{-\frac{d-2}{2}}\int_{\mathbb{R}^d}f(x)(u_\epsilon(t,x)-\bar{u}(t,x))\mathrm{d} x\xrightarrow{(d)}\int f(x)\mathcal{U}_1(t,x)\mathrm{d} x,$$

where $\mathcal{U}_1(t,x)$ is the solution of $\mathcal{U}_1(0,x)\equiv 0$ and

$$\partial_t \mathcal{U}_1(t,x) = rac{1}{2} \Delta \mathcal{U}_1(t,x) + \gamma(\hat{eta}) \bar{u}(t,x) \xi(t,x).$$
 (EW equation)

Note that $\gamma(\hat{\beta}) \to \infty$ as $\hat{\beta} \to \hat{\beta}_{L^2}$.

(4 間) (4 回) (4 回)

Fluctuation of h_{ϵ} (KPZ)

Let $h_{\epsilon}(t,x) := \log u_{\epsilon}(t,x)$.

Theorem (MU, DGRZ, LZ, CNN)

Suppose $\|\log u_0\|_{\infty} < \infty$. For all $\hat{\beta} < \hat{\beta}_{L^2}$,

$$e^{-rac{d-2}{2}}\int_{\mathbb{R}^d}f(x)(h_\epsilon(t,x)-\mathbb{E}h_\epsilon(t,x))\mathrm{d}x\stackrel{(d)}{
ightarrow}\int f(x)\mathcal{U}_2(t,x)\mathrm{d}x,$$

where $\mathcal{U}_2(t,x)$ is the solution of $\mathcal{U}_2(0,x)\equiv 0$ and

$$\partial_t \mathcal{U}_2(t,x) = rac{1}{2} \Delta \mathcal{U}_2(t,x) +
abla \log ar{u}(t,x) \cdot
abla \mathcal{U}_2(t,x) + \gamma(\hat{eta}) \xi(t,x).$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

(日)

2 Previous research on SHE and KPZ equation

3 Main result

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

<ロト <問ト < 国ト < 国ト

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

Ξ.

Some remarks

- We discuss a relation between SHE and KPZ equation in weak disorder regime.
- Out main result is only stated in discrete directed polymer.
- From now on, we only consider the discrete model.
- However, we believe that the same techniques work for continuum models.

Discrete polymer model

- Let (ω(i, n))_{i∈Z^d,n∈N} be i.i.d. random variables.
- We assume $\lambda(\beta) := \log \mathbb{E}^{\beta \omega(i,n)} \in \mathbb{R}$ for any $\beta \in \mathbb{R}$.
- Let us define the partition function Z_N(x) for x ∈ Z^d of directed polymers:

$$Z_N(x) := Z_{\omega,N,\beta}(x) := \operatorname{E}_x \left[e^{\beta \sum_{k=1}^N \omega(k,X_k) - N\lambda(\beta)}
ight],$$

where E_{x} denotes the expectation of the simple random walk starting at $\mathsf{x}.$

- For simplicity of notation, we write $Z_N := Z_N(0)$.
- We call $\{\beta \ge 0 | \mathbb{P}(\liminf_N Z_N > 0) = 1\}$ the weak disorder regime.

Shuta Nakajima

A (B) < (B) < (B) < (B) </p>

Discrete Polymer vs. Continuum Polymer

Recall that

•
$$u_{\epsilon}(t,x) \stackrel{d}{=} \mathrm{E}^{\mathrm{BM}}\left[\exp\left(\hat{\beta}\int_{0}^{T}\phi * \xi(s,B_{s})ds - TA(\hat{\beta})\right)\right]$$
 with $T = \epsilon^{-2}$

•
$$h_{\epsilon}(t,x) = \log u_{\epsilon}(t,x)$$
 solves $\partial_t h = \frac{1}{2}\Delta_x h + \frac{1}{2}|\nabla_x h|^2 + \beta_{\epsilon}\xi^{\epsilon} - C_{\epsilon}$.

	Discrete Polymer	Continuum Polymer
Energy	$H_N = \sum_{k=1}^N \omega(k, S_k)$	$\mathcal{H}_{T} = \int_{0}^{T} \phi * \xi(s, B_{s}) ds$
Partition	$\mathrm{E}^{\mathrm{SRW}}\left[\exp\left(\beta H_{N}-N\lambda(\beta) ight) ight]$	$\mathrm{E}^{BM}\left[\exp\left(\hat{eta}\mathcal{H}_{\mathcal{T}}-\mathcal{T}\mathcal{A}(\hat{eta}) ight) ight]$
Critical	$\sup\{\beta>0 \lim Z_N>0\}$	$\sup\{\hat{eta}>0 \lim {\mathcal Z}_{\mathcal T}>0\}$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Tail exponent

We suppose that the distribution of $\omega(i, n)$ has a compact support. Let $p_*(\beta) := \sup\{p \ge 0 | \sup_N \mathbb{E}[Z_N(\beta)^p] < \infty\}$ (tail exponent).

Theorem (Junk 22+)

In the weak disorder regime, it holds

$$p_*(\beta) \geq rac{d+2}{d}.$$

Moreover, for a certain class of weight distribution (finite support),

$$\beta < \beta_c \Leftrightarrow p_*(\beta) > \frac{d+2}{d}.$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

· • @ • • E • • E •

Fluctuation for SHE in weak disorder regime

We define $p_* := p_*(\beta)$ as before. Let $\xi := \xi(\beta) := -\frac{d}{2} + \frac{d+2}{2(p_* \wedge 2)}$ (fluctuation exponent).

Theorem (Junk 22+)

Given a compactly supported function $f : \mathbb{R}^d \to \mathbb{R}$, we define the fluctuation of discrete SHE as

$$\chi_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(Z_N(x) - \mathbb{E}Z_N(x)).$$

In the weak disorder regime, for any $\epsilon > 0$ and $f \not\equiv 0$, it holds

$$\lim_{N\to\infty}\mathbb{P}(n^{-\xi-\epsilon}<|\chi_N(f)|< n^{-\xi+\epsilon})=1.$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

Equivalence of fluctuation between SHE and KPZ

From now on, we assume the following:

- $p_*(\beta) > \frac{d+2}{d}$.
- $\omega(i, x)$ has a compact support.

Given a compactly supported function $f : \mathbb{R}^d \to \mathbb{R}$, we define the fluctuation of discrete KPZ as

$$\kappa_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(\log Z_N(x) - \mathbb{E}\log Z_N(x)).$$

Theorem (Junk-N 23+)

There exists $\delta > 0$ such that

$$\lim_{n\to\infty}\mathbb{P}(|\chi_N(f)-\kappa_N(f)|\leq N^{-\xi-\delta})=1.$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Junk-N 23+)

There exists $\delta > 0$ such that

1

$$\lim_{n\to\infty}\mathbb{P}(|\chi_N(f)-\kappa_N(f)|\leq N^{-\xi-\delta})=1.$$

Together with the result of [Junk 22] ($|\chi_N(f)| = N^{-\xi+o(1)}$), we conclude:

Corollary (Junk-N 23+)

For any $\epsilon > 0$ and $f \not\equiv 0$,

$$\mathbb{P}(N^{-\xi-\epsilon} \leq |\kappa_N(f)| \leq N^{-\xi+\epsilon}) \to 1.$$

Moreover, there exists $\delta > 0$ such that

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{|\chi_N(f)-\kappa_N(f)|}{\min\{|\chi_N(f)|,|\kappa_N(f)|\}}\leq N^{-\delta}\right)=1.$$

Shuta Nakajima

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

э

Why I was surprised

• For $\beta \in (\beta_2, \beta_c)$, it is believed that

$$\chi_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(Z_N(x) - \mathbb{E}Z_N(x)) \to \text{Stable}.$$

- We can prove that
 - $\sup_{N\in\mathbb{N}}\mathbb{E}[(\log Z_N)^2]<\infty$
 - $\lim_{|x-y|\to\infty} \sup_{N\in\mathbb{N}} \mathbb{E}[(\log Z_N(x) \mathbb{E}\log Z_N(x))(\log Z_N(y) \mathbb{E}\log Z_N(y))] = 0.$
- Hence I believed that

$$\kappa_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(\log Z_N(x) - \mathbb{E}\log Z_N(x)) \to \text{Gauss.}$$

Shuta Nakajima

・ 同 ト ・ ヨ ト ・ ヨ ト

Why I was surprised

• For $\beta \in (\beta_2, \beta_c)$, it is believed that

$$\chi_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(Z_N(x) - \mathbb{E}Z_N(x)) \to \text{Stable}.$$

- We can prove that
 - $\sup_{N\in\mathbb{N}}\mathbb{E}[(\log Z_N)^2]<\infty$
 - $\lim_{|x-y|\to\infty} \sup_{N\in\mathbb{N}} \mathbb{E}[(\log Z_N(x) \mathbb{E}\log Z_N(x))(\log Z_N(y) \mathbb{E}\log Z_N(y))] = 0.$
- Hence I believed that

$$\kappa_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N})(\log Z_N(x) - \mathbb{E}\log Z_N(x)) o \text{Gauss.}$$

• It was not the case, and I was really reluctant..

Outline of the proof

Let
$$\ell_k := k^{1/8}$$
 and $E_k(y) := e^{\beta \omega(k,y)} - 1$. We define

$$\rho_N(f) := N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N}) \left[\sum_{k=1}^N \sum_{y \in \mathbb{Z}^d} \overleftarrow{Z}_{\ell_k}(k, y) E_k(y) p_N(x, y) \right].$$

We will prove that

 $\chi_N(f) \approx \rho_N(f)$ (Approximation for SHE), $\kappa_N(f) \approx \rho_N(f)$ (Approximation for KPZ).

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Sketch proof (Approximation for SHE)

Let $\ell_k := k^{1/8}$ and $E_k(y) := e^{\beta \omega(k,y) - \lambda(\beta)} - 1$. We have the following approximation for χ_n :

$$\begin{split} \chi_N(f) &= N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N}) (Z_N(x) - 1) \\ &= N^{-d/2} \sum_{y \in \mathbb{Z}^d} \sum_{k=1}^N E_k(y) \left[\sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N}) Z_k(x, y) p_k(x, y) \right] \\ &\approx N^{-d/2} \sum_{y \in \mathbb{Z}^d} \sum_{k=1}^N E_k(y) \left[\sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N}) \overleftarrow{Z}_{\ell_k}(k, y) p_N(x, y) \right] = \rho_N(f), \end{split}$$

where we have used law of large numbers (similar to $Z_k \approx Z_{\ell_k}$).

Shuta Nakajima

イロト イポト イヨト イヨト

Previous research on SHE and KPZ equation

Main result

Some ingredients

As before, we assume: (1) $p_*(\beta) > \frac{d+2}{d}$, (2) $\omega(i, x)$ has a compact support.

The following play an important role in the proof below:

Theorem (Junk 23+)

Let $Z_N(x, y) := E^x [e^{\beta \sum_{k=1}^{N-1} \omega(k, X_k) - (N-1)\lambda(\beta)} | X_N = y]$. Let $\ell_N := N^{1/8}$. For any $p < p_*(\beta)$ and c > 0, it holds

$$\lim_{N\to\infty}\sup_{x,y\in[-N^{1-c},N^{1-c}]}\mathbb{E}|Z_N(x,y)-Z_{\ell_N}\overleftarrow{Z}_{\ell_N}(N,y)|^p=0.$$

Theorem (Junk-N 23+)

There exists $C = C(\beta) > 0$ such that for any $u \ge 1$ and $N \in \mathbb{N}$,

$$\mathbb{P}(Z_N < 1/u) \leq C e^{-(\log u)^2/C}.$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト

Some ingredients

It holds:

$$\lim_{N \to \infty} \sup_{x,y \in [-N^{1-c}, N^{1-c}]} \mathbb{E} |Z_N(x, y) - Z_{\ell_N} \overleftarrow{Z}_{\ell_N}(N, y)|^p = 0,$$

$$\mathbb{P}(Z_N < 1/u) \le C e^{-(\log u)^2/C}.$$

We define the polymer measure:

$$\mu_{N}(x,y) := \frac{\mathrm{E}_{x}\left[e^{\beta\sum_{k=1}^{N-1}\omega(k,X_{k})-n\lambda(\beta)}\mathbf{1}_{X_{n}=y}\right]}{Z_{N-1}(x)} = \frac{Z_{N}(x,y)p_{N}(x,y)}{Z_{N-1}(x)}.$$

By
$$Z_k(x,y) \approx Z_{\ell_k}(x) Z_{\ell_k}(k,y)$$
 and $Z_{\ell_k}(x), Z_k(x) \to Z_{\infty}(x)$, they imply

$$\mu_k(x,y) = \frac{Z_k(x,y)p_k(x,y)}{Z_{k-1}(x)} \approx \frac{Z_{\ell_k}(x)\overleftarrow{Z}_{\ell_k}(k,y)p_k(x,y)}{Z_{k-1}(x)} \approx \overleftarrow{Z}_{\ell_k}(k,y)p_k(x,y).$$

イロト イポト イヨト イヨト

Main result 000000000000000

Sketch proof (Approximation for KPZ I)

For κ_n , we consider the following Martingale decomposition:

$$\begin{aligned} \kappa_n(f) &= N^{-d/2} \sum_{x \in \mathbb{Z}^d} f(x/\sqrt{N}) (\log Z_N(x) - \mathbb{E}[\log Z_N(x)]) \\ &= \sum_{x \in \mathbb{Z}^d} \sum_{k=1}^N f(x/\sqrt{N}) (\log \frac{Z_k(x)}{Z_{k-1}(x)} - \mathbb{E}\Big[\log \frac{Z_k(x)}{Z_{k-1}(x)} | \mathcal{F}_{k-1}\Big]) \\ &+ \sum_{x \in \mathbb{Z}^d} \sum_{k=1}^N f(x/\sqrt{N}) (\mathbb{E}\Big[\log \frac{Z_k(x)}{Z_{k-1}(x)} | \mathcal{F}_{k-1}\Big] - \mathbb{E}\Big[\log \frac{Z_k(x)}{Z_{k-1}(x)}\Big]) \end{aligned}$$

$$pprox \sum_{x \in \mathbb{Z}^d} \sum_{k=1} f(x/\sqrt{N}) \sum_{y \in \mathbb{Z}^d} \mu_k(x,y) E_k(y),$$

where $\mu_k(x,y) := \frac{Z_k(x,y)p_k(x,y)}{Z_{k-1}(x)}, \ E_k(y) := e^{\beta\omega(k,y) - \lambda(\beta)} - 1$ and used

$$\log \frac{Z_k(x)}{Z_{k-1}(x)} = \log \left(1 + \sum_{y \in \mathbb{Z}^d} \mu_k(x, y) E_k(y)\right) \approx \sum_{y \in \mathbb{Z}^d} \mu_k(x, y) E_k(y).$$

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

Sketch proof (Approximation for KPZ II)

Let
$$\ell_k := k^{1/8}$$
 and $E_k(y) := e^{\beta \omega(k,y)} - 1$. Recall that
 $\mu_k(x,y) \approx \overleftarrow{Z}_{\ell_k}(k,y) p_k(x,y).$

Hence, we have the following approximation for κ_n :

$$\begin{split} \kappa_N(f) &\approx N^{-d/2} \sum_{x \in \mathbb{Z}^d} \sum_{k=1}^N f(x/\sqrt{N}) \sum_{y \in \mathbb{Z}^d} \mu_k(x, y) E_k(y) \\ &\approx N^{-d/2} \sum_{x \in \mathbb{Z}^d} \sum_{k=1}^N f(x/\sqrt{N}) \sum_{y \in \mathbb{Z}^d} \left[\overleftarrow{Z}_{\ell_k}(k, y) E_k(y) p_N(x, y) \right] = \rho_N(f). \end{split}$$

Therefore, we have $\chi_N(f) \approx \kappa_N(f)$.

Shuta Nakajima

Joint work with Stefan Junk (Gakushuin University)

イロト イポト イヨト イヨト