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An experiment for wetting region
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Figure 1: Experiment
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KPZ universality

random interface growth

Liquid penetration

Paper burning
Infected population

cell colony

Figure 2: Random interface growth

Karder-Parisi-Zhang (KPZ) universality conjecture (1986)

The above phenomena are described by the following equation:

1 1
Och = SAh+ 5\Vh|2 + BE.
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KPZ universality

|d = 1(KPZ Universality Class) |
Exactly Solvable Unsolvable

KPZ FPP

TASEP Directed polymers
LPP(special) LPP (general)

Six Vertex Ballistic deposition

* Any model is so far unsolvable.

» Construction of a solution to
KPZ equation is harder.
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KPZ equation

Fix 8 > 0. The following is called the KPZ equation:

For t € [0,00) and x € R¥,

Deh(t, x) = %Ah(t,x) + % Vh(t, x) + BE(t, x)
d

1 1
=5 ;agh(mx) + 5 2 (0 h(£,x)) + BE(2,x),

i=1

where &(t, x) is a space-time white noise on [0, 00) x RY.
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The meaning of each term

Deh(t, x) = %Ah(t,x) % IV h(t, )2+ BE(t, %)

relaxation lateral growth noise

’ Ah(t,x): relaxation ‘
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The meaning of each term

Deh(t,x) = 2 Bh(E,%) 45 [Vh(t, x)P + FE(E, %)

relaxation lateral growth noise

1 |Vh(t,x)[*: lateral growth

)
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The meaning of each term

deh(t,x) = % Ah(t, x) J% |Vh(t,x)|> + B<(t, x)

relaxation lateral growth noise

BE(t, x): noise
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Problem of the construction of solutions to the KPZ eq.

KPZ equation

Deh(t, x) = %Ah(t,x) + % IV (¢, x)[2 + BE(t, x).

e ¢ is not a function = h(t, x) may not be a function.

* How to make sense of [Vh(t,x)[*?
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Problem of the construction of solutions to the KPZ eq.

KPZ equation

Deh(t, x) = %Ah(t,x) + % IV (¢, x)[2 + BE(t, x).

e ¢ is not a function = h(t, x) may not be a function.

* How to make sense of [Vh(t,x)[*?

® Mollify the noise.
® Consider a (smooth) solution to the mollified KPZ equation.

® \We switch off the mollification and consider the limit of solutions.
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Regularization scheme

Let ¢ be a smooth and compactly supported function on RY.
Mollify the white noise £(t, x) in space on scale e:

() = [ 0= V)E(E )y = 6o,
where 6¢(x) = e~96(e=1x).
Let us consider:
Dehe(t,x) = 2 Ah(3) + 3 [Vhe(t ) + B2 (2 )

Q. he converges as € — 07
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Regularization scheme

Let ¢ be a smooth and compactly supported function on RY.
Mollify the white noise £(t, x) in space on scale e:

() = [ 0= V)E(E )y = 6o,
where 6¢(x) = e~96(e=1x).
Let us consider:
Dehe(t,x) = 2 Ah(3) + 3 [Vhe(t ) + B2 (2 )

Q. he converges as € — 07

A. No! We have to modify the equation more.
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Regularization scheme

Let ¢ be a smooth and compactly supported function on RY.
Mollify the white noise £(t, x) in space on scale e:

(e = [0 (x - Ee N,
where ¢¢(x) := e~ 9p(e71x).
We introduce new parameters and consider the regularized KPZ:
1 1 5 .
Orhe(t,x) = EAhE(Lx) + 5 [Vh(t,x)|" + B£°(¢t, x) — Ce.
Can we take 5. and C, so that h. converges as ¢ — 07
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Choice of 3, and C,

Recall that &¢( = [¢°(x — y)&(t, y)dy.

The choice of .

For fixed /3 € (0,0), we choose

The choice of C,

We choose C. = 32~ 9||9||2,
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Choice of 3, and C,

Recall that &¢( = [¢°(x — y)&(t, y)dy.

The choice of .

For fixed /3 € (0,0), we choose

B (d=1)
86 = B Iog2:—1 (d = 2)
BT (d > 3).

The choice of C,

We choose C. = 32~ 9||9||2,

® There are other choices (e.g., Family-Vicsek scaling).

® This choice is related to directed polymers explained later.
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Previous researches (d = 1)

We consider the solution h. to the mollified KPZ:

1 1
Oehe(t,x) = EAhe(t,x) +5 IVhe(t,x)|? + Be£e(t, x) — C..

Theorem (Bertini-Giacomin)

When d =1, for any § > 0, he(t,x) — 3h(t,x) as e — 0.
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Previous researches (d = 2)

Theorem (Caravenna-Sun-Zygouras)

When d = 2, A
he(t.%) d 3h(t,x) € R, (@ <1)
—00. (8>1)

They have studied more:
e If 3 <1, then the fluctuation converges to EW limit;

® Even if =1, a non-trivial limit of exp (h,) still exists in
distributional sense (Critical Stochastic Heat Flow).
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KPZ = Directed Polymer (via Feynman-Kac formula)

We define uc(t, x) := exp (he(t,x)), V(x) = [ o(x — y)p(y)dy.

Proposition

The following are equivalent:
o Qiho(t,x) = LAh(t,x) + L [Vh(t,x)]° + B£(t, x) — Ce
® O,u. = %AuE + Be&e(t, x)ue

If u. is the solution to the above, then u. can be written as

uc(t,x) = EBM [ue(O, B:) exp <ﬂ€ /Otg(r —s, Bs)ds)AE(t)ﬂ
<62 [u(0.8) o (5. [ €(s.BI00)-4.0))].

where A.(t) = w (1t correction).
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KPZ = Directed Polymer (via Feynman-Kac formula)

We define u.(t, x) := exp (he(t,x)), V(x) = [o(x — y)o(y)dy.

The following are equivalent:
® Qihe(t,x) = LAh(t,x) + 3 [Vh(t,x)* + Be£(t, x) — C.
® O,u, = %AuE + Be&5(t, x) .
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KPZ = Directed Polymer (via Feynman-Kac formula)

We define u.(t, x) := exp (he(t,x)), V(x) = [o(x — y)o(y)dy.

The following are equivalent:
® Qihe(t,x) = LAh(t,x) + 3 [Vh(t,x)* + Be£(t, x) — C.
® O,u, = %AuE + Be&5(t, x) .

If u. is the solution to the above, then u. can be written as

u(t,x) = EBM _uﬁ(o, B:) exp (56 /Otgf(t —s, Bs)ds)—Aﬁ(t)ﬂ

L EBM | 4 (0, By) exp (56 /tgf(s, Bs)ds — Ae(t)>
0

Hamiltonian of a directed polymer
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Remark on the expression of u,

In this slide, we assume u.(0,x) =1 and take T = T, = ¢~ 2.
® Using the definitions of B, £, we obtain

~ a2
e(1,x) L BB | B ST (e(s.)w0)(Er)as) -

= EUN [o7].

® &, is a martingale w.rt. o(&(r,x): r <s, x € RY).
® Let Z7 :=ESM[®7]. Then, (27)7>0 is also a martingale. Hence,
by the Martingale convergence theorem,

Zr — 312, as.
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Subcritical and L2 region

When d > 3, there are critical parameters 0 < B,_z < BC,
B < BLz B < BC B> B
(Z7 )t is bounded in 2 Zr = Zy >0as | Zr = 0as
L2-region weak disorder | strong disorder

® |t is believed that BLz < ﬂAc
(discrete case: Birkner-Greven-den Hollander 11).
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Law of large numebers of u. for d > 3

Recall that wu, is the solution to
1 €
Orle = EAUE + 55“&5 .

Let uc(0,-) = up(-) € Cp(RY). We define u(t,x) = EEM[uo(B;)].

Theorem (Mukherjee-Shamov-Zeitouni, Cosco-Nakashima-N)

@ For all B < fe, f € Cc(R?) and uy € Cp(RY), as e — 0,

/R F(u(t,x)dx 5[ re0m(e, x)dx.

f'
Rd

® For aIIB > Bc, fe CC(Rd) and ug € Cb(Rd), ase— 0,

ue(t, x) 5o.
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Law of large numebers of u. for d > 3

eitouni, Cosco-Nakashima-N)

@ Forall B < f, f € Cc(RY) and ug € Cp(RY), as e — 0,

/ F(x)ue(t, x)dx 5 [ F(x)a(t, x)dx.
Rd RY

@ For all 3 > f. and uy € Cp(R?), as e — 0,

ue(t, x) £o.

The limit of u. (also h.) is just a function (NOT random)!
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Fluctuation of u. (SHE)

For all B < Bc,
/ F(x)ue(t, x)dx & [ F()a(t, x)dx.
R

Rd

Theorem (Gu-Ryzhik-Zeitouni, Cosco-Nakashima-N)

Suppose u.(0,:) = uyg € Cp. For all B < Bz,

7 [ ROt~ e ) D [ (e,
Rd
where U (t, x) is the solution of U1(0,x) = 0 and

O (t,x) = %Aul(t,x) +(B)a(t, X)E(t,x). (EW equation)

Note that 7(3) — 00 as 3 — Ba.
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Fluctuation of h. (KPZ)

Let he(t, x) := log u(t, x).
Theorem (MU, DGRZ, LZ, CNN)

Suppose || log ug||s < 00. For all B < B2,

_7/ f(x)(he(t, x) — Ehe(t, x)) /f Wa(t, x)d
where Uy (t, x) is the solution of U>(0,x) = 0 and

Ds(t,x) = 1 BlUs(t,x) + V log (t,x) - Va(t,x) + 1(B)e(t, ).
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Some remarks

® We discuss a relation between SHE and KPZ equation in weak
disorder regime.

® Qut main result is only stated in discrete directed polymer.
® From now on, we only consider the discrete model.

® However, we believe that the same techniques work for continuum
models.
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Discrete polymer model

® Let (w(i, n))iezd nen be i.i.d. random variables.
® We assume \(f) := log E#“(i") € R for any 3 € R.

® Let us define the partition function Zy(x) for x € Z9 of directed
polymers:

Zn(x) = Zy N p(x) := Ex [eﬂszzlw(k7Xk)_N>\(,8)j| ,

where E, denotes the expectation of the simple random walk
starting at x.

® For simplicity of notation, we write Zy := Zy(0).
® We call {8 > 0| P(liminfy Zy > 0) = 1} the weak disorder regime.
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Discrete Polymer vs. Continuum Polymer

Recall that
o u.(t,x) < EBM [exp (B 1T 6% &(s, B)ds — TA(B))] with T = 2.
® he(t,x) = log uc(t, x) solves Oth = 1A h+ 2|V h]> + B¢ — C..

Discrete Polymer Continuum Polymer

Energy | Hy =1, w(k, Sk) Hr = [, ¢+E&(s, Bs)ds

Partition | ESRW [exp (BHy — NA(B))] | EBM [exp (BHT — TA(B))}

Critical | sup{8 > 0|lim Zy > 0} sup{f > 0[lim Z1 > 0}
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Tail exponent

We suppose that the distribution of w(i, n) has a compact support.
Let p.(B) :=sup{p > 0| supy E[Zn(B)P] < oo} (tail exponent).

Theorem (Junk 22+)

In the weak disorder regime, it holds

d+2
—

P*(ﬁ) >

Moreover, for a certain class of weight distribution (finite support),

d+2

ﬂ<ﬂc<:>p*(ﬁ) > T
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Fluctuation for SHE in weak disorder regime

We define p, := p.(8) as before.
Let £ :=¢&(B) = -9 + ﬁ (fluctuation exponent).

Theorem (Junk 22+)

Given a compactly supported function f : R? — R, we define the
fluctuation of discrete SHE as

xn(F) == N2 3" £(x/VN)(Zn(x) — EZu(x)).

xezd

In the weak disorder regime, for any ¢ > 0 and f # 0, it holds

lim P(n=¢7¢ < [xn(f)| < n7¢F¢) = 1.
N— oo
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Equivalence of fluctuation between SHE and KPZ

From now on, we assume the following:

* p(B) > %-
® w(i,x) has a compact support.

Given a compactly supported function f : RY — R, we define the
fluctuation of discrete KPZ as

kn(f) = N792 3" f(x/VN)(log Zn(x) — E log Zu(x)).

x€Z4

Theorem (Junk-N 23+)

There exists § > 0 such that

Jim B(hon() — (P < V7€) = 1.
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Theorem (Junk-N 23+)

There exists 6 > 0 such that

lim B(|xn(f) — () < NE0) =1,

Together with the result of [Junk 22] (|xn(f)] = N=¢F°(M), we conclude:

Corollary (Junk-N 23+)
Forany e >0 and f #0,

P(N~57¢ < [sn(F)] < N=8F¢) — 1.

Moreover, there exists § > 0 such that

| w(F)— mn(A) s\
. P(min{m(f)m(f)} =N > =t
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Why | was surprised

® For 3 € (B2, 8¢), it is believed that

xn(f) == N2 3" £(x/VN)(Zn(x) — EZn(x)) — Stable.

® We can prove that
e sup E[(log Zy)?] < oo
NeN
o lim supE[(log Zn(x) — Elog Zn(x))(log Zn(y) — Elog Zn(y))] = 0.
[x—y[|—00 NEN
® Hence | believed that

kn(f) = N~9/2 Z f(x/VN)(log Zn(x) — Elog Zn(x)) — Gauss.

x€eZ4
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Why | was surprised

® For 3 € (B2, 8¢), it is believed that

xn(f) == N2 3" £(x/VN)(Zn(x) — EZn(x)) — Stable.

® We can prove that
e sup E[(log Zy)?] < oo
NeN
o lim supE[(log Zn(x) — Elog Zn(x))(log Zn(y) — Elog Zn(y))] = 0.
[x—y[|—00 NEN
® Hence | believed that

kn(f) = N~9/2 Z f(x/VN)(log Zn(x) — Elog Zn(x)) — Gauss.

x€eZ4

® |t was not the case, and | was really reluctant..
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Outline of the proof

Let £ := k'/8 and Ex(y) := e®(k¥) — 1. We define

pu(f) == N=92 3" f(x/VN) Z S Z4 (k) Ely)pn(x, v)

x€Z4 k=1 yezd
We will prove that

xn(f) = pn(f) (Approximation for SHE),
kn(f) = pn(f)  (Approximation for KPZ).
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Sketch proof (Approximation for SHE)

Let £ := k'/8 and E(y) := e®(k¥)=2(5) — 1. We have the following
approximation for x,:

xu(f) = N=92 % f(x/VN)(Zn(x) ~ 1)

) )
= N2 57N E(y) | ST F/VN)Zi(x, v )pe(x, y)
yGZd k=1 _XGZd

~ N2 ST S E(y) | S V) Z o (K, y)pu(xov) | = on(F),

yezd k=1 | xezd

where we have used law of large numbers (similar to Zx ~ Z,).
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Some ingredients

As before, we assume:
(1) p<(B) > <52, (2) w(i, x) has a compact support.

The following play an important role in the proof below:

Theorem (Junk 23+)

Let Zy(x,y) := EX[ef Tia' @k X)=(N=DAB)| X\ = y]. Let £y := NY/8,
For any p < p.() and c > 0, it holds

. %
lim sup E|Zn(x,y) = Zuoy Z 0y (N, y)|P = 0.
N=00 el Nie, Ni—

Theorem (Junk-N 23+)
There exists C = C(f) > 0 such that for any u > 1 and N € N,

P(Zy < 1/u) < Ce (logw)’/C.
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Some ingredients

It holds:

. R
lim sup E|Zn(x,y) — Zoy Z ¢,y (N, y)|P =0,
N—oo X,y €[—N1=¢,N1=¢]

P(Zy < 1/u) < Ce (8 ®)*/C.

We define the polymer measure:

B335 wlk,Xe)—nA(B)
E, [e k=1 K ]-X,,:y _ ZN(X,y)PN(XaY)

ZN_l(X) ZN_l(X)

MN(X7y) =
%
By Zk(x,y) = Zy,(x) Z ¢, (k,y) and Zy, (x), Zk(x) = Zso(x), they imply

-
p(x,y) = Zk(Xz’ky_)ﬁkf)X’y) ~ ZZk(X)ZZZ:Eﬁkiipk(X7Y) ~ Z 4, (k,y)pi(x,)-

Shuta Nakajima Joint work with Stefan Junk (Gakushuin University)

Equivalence of fluctuations between SHE and KPZ equation in weak disorder regime



Main result
0000000000000 e0

Sketch proof (Approximation for KPZ 1)

For k,, we consider the following Martingale decomposition:

kn(f) = N=92 3 " £(x/V/N)(log Zn(x) — E[log Zn(x)])

xezZd
N
Z(x)
= f(x/VN)(lo Z(x) log | Fi-1])
ng:dkz:; ,1(X) |: Zkfl(X) }
N
Zi(x) Z(x)
) Zf (x/VIV) (] log S ol Fia| ~E[log ZH(X)})
N
YD /YN Y k(x v)Eil(y),
xezd k=1 y€zZd
where pi(x, y) = %ﬁkg’y), Ei(y) := eP«kx)=AB) — 1 and used
Z
|ong(X) |og(1+ > i, y)Eily ) > 1%, y)Eily
k—1(x) yezd yezd
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Sketch proof (Approximation for KPZ I1)

Let £ := k*/8 and E(y) := e®*(k¥) — 1. Recall that

<—
pk(x,y) = Z o (k, y)pe(x, y).

Hence, we have the following approximation for x,:

N
rn(f) = N792 NN F(x/VN) Y () Exly)

x€74d k=1 y€zd
N
A NN (x/VN) Y [Zk(k,y)Ek(y)pN(x’y)} = pn(f).
x€74d k=1 y€ezd

Therefore, we have xn(f) =~ kn(f).
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