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Overview
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Keller-Segel model for chemotaxis (1970)

» Chemotaxis: directed movement of a cell population guided
by chemical stimuli in their environment (that cells may emit) .

» Coupled non linear system on population density - p(t, x)
and chemo-attractant concentration -
Op(t,x) = Ap—xV - (pVe), t>0, z€R?
00, =Ac—Ac+p, t>0, z€R2 (1)
p(o, ‘T) = pg(x), 0(0733) = Co(CC),
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Keller-Segel model for chemotaxis (1970)

» Chemotaxis: directed movement of a cell population guided
by chemical stimuli in their environment (that cells may emit) .

» Coupled non linear system on population density - p(t, x)
and chemo-attractant concentration -

Op(t,z) = Ap—xV - (pVe), t>0, z€R?,
00, =Ac—Ac+p, t>0, xR (1)
p(o, ‘T) = pg(x), C(O,:L“) = Co(x),

» Parameters:
- x > 0: chemotactic sensitivity,
- 6 > 0: ratio between the diffusion time scales of cells and
chemical,
- X > 0: death rate of the chemo-attractant,
- [ po(dz) =1 total mass of cells rescaled.

» 0 = 0: parabolic-elliptic case (decoupled),
6 > 0: doubly parabolic (strongly coupled).
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Finite Time Blow Up VS Global Existence in R?

» FTBU: An agglomeration of cells emerges due to mutual
cell attraction (some norm explodes in FT).

» Well known for parabolic-elliptic case:
- x < 8m: GE (Blanchet-Dolbeault-Perthame, '06),
- x> 8m: FTBU for [ |z|%po(dr) < o,
- x=8m BUast— oc.
(See e.g. Perthame survey '05)
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Finite Time Blow Up VS Global Existence in R?

» FTBU: An agglomeration of cells emerges due to mutual
cell attraction (some norm explodes in FT).

» Well known for parabolic-elliptic case:
- x < 8m: GE (Blanchet-Dolbeault-Perthame, '06),
- x> 8m: FTBU for [ |z|%po(dr) < o,
- x=8m BUast— oo.
(See e.g. Perthame survey '05)

» Doubly parabolic:
- x < 8m: GE (Calvez-Corrias '08) ,
- ¢g =0, GE for any x < xg where xyg — 00 as 0 — oo
(Biler-Guerra-Karch '15, Corrias-Escobedo-Matos '14)
- FTBU open, recent result for x > 87 and a class of (pg, ¢p).
(Mizoguchi '21)
Our goal: derive the system (1) as a mean-field limit of an
Interacting particle system.
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Mean field limit

Typical particle when N = oo with a 2 step approach:

1. Follows the potential ¢:
dX; = V2dW; + xVer(Xy)dt.

Denote p; := L(X), for t > 0.
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Mean field limit

Typical particle when N = oo with a 2 step approach:

1. Follows the potential ¢:
dXt \/>th + XVCt (Xt)d

Denote p; := L(X), for t > 0.

2. Feynman-Kac for ¢ with p as source term:

() = B () + /0 (K % o) ()ds,

where we denoted, for (¢,z) € (0,00) x R?,

0
gtg(x) : ﬂ€ 4t|x‘2

c /\
BN () = e 7 (gf % o) ().

K[ ) = 5e 0] (),
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Mean field limit

Putting everything together,

X¢ = Xo + V2Wi + x [y VOO X )ds + x fo [ (VKSR % p,)(X,)duds,
ps = Law(Xy),s > 0.
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Mean field limit

Putting everything together,

X¢ = Xo + V2Wi + x [y VOO X )ds + x fo [ (VKSR % p,)(X,)duds,
ps = Law(Xy),s > 0.

Notice
1. Past laws dependence,
2. Singular interaction in VK.
(well posedness with L? spaces (T. '20) in R?)
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Particle system

For N > 2 it reads
XZ’N = XS’N + \/il/VtZ + x/ ngo’e’k(s, Xg’N)ds

Z//VK(M (X2N — XN duds.
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Particle system

For N > 2 it reads
XZ’N = XS’N + \/il/VtZ + x/ Vb‘;“’e’)‘(s, Xg’N)ds
Z/ / VK(M (X2N — XN duds.

Notice
1. Non-Markovian system!

2. Singular interaction

0
VKA x) = T —ptewilal’ s,

(pb: X = X1)
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How singular?

Roughly speaking, if for some R € R? we have

XN =X2N 4R, selt—1,14

then the corresponding interaction (in the drift of X1V) looks like,

e.g. when A =0,
t t
OR 1 8
VKA (XIN - x2Nyds = 2= [ e a0 g,
i1 8m Ji_1 (t— )
_ R 6_% |R|0 R
- 27m|R? 27| R|?

(Of course, this is an exaggerated situation.)
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A simulation of the Particle system in d = 2

(b) t=0.1

(&) t=0 (f)t =01 (g)t=0.3 (hyt=1

Figure: (a)-(d): x large; (e)-(h): x small.
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Related works

» Doubly parabolic case

- in 1d: VK}!4(x) ~ t;”/Ze*%.
Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov
transforms (impossible here as particles should collide, higher
dimension — more singularity).

- in any d: two particle system with mollified interaction by
Stevens ('01).
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Related works

» Doubly parabolic case

- in 1d: VK}!4(x) ~ tg%e*%.
Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov
transforms (impossible here as particles should collide, higher
dimension — more singularity).

- in any d: two particle system with mollified interaction by
Stevens ('01).

» Parabolic-elliptic case in 2d: ¢cg =0, A =0
dX] = V2AW] + VK (X] - X])dt

where VK (7) = — 5.

||
Existence and convergence along subsequences y < 27 in
Fournier-Jourdain ('17) , x < 87 Tardy ('21).
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Main result

We set /¥ := 4 LV, (5(X¢N) € P(C([0,x),R?)) a.s. and, for
each t > 0, ¥ = NZZ 1 XzN € P(R?) as.

Theorem

For each 6 > 0, there is xy > 0 such that if x < xg, then the
system has a solution (for any exchangeable initial condition) for
each N > 2 and, up to extraction of a subsequence, (11 )¢>0

converges to a solution (p;)i>o of (KS) if ud 5 Po -

(of course we have as well the tightness of 1" and convergence to
a MP...)
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About the threshold

The particular form is quite complicated (but explicit) and
independent of pg, cy. Optimizing the condition numerically we
have:

- Xo=1 — 139,

© X6=0.00001 = 3.28,
6—o0 1.65

X6 Vo

(The last point is troubling, as at least when ¢y = 0 one can find
for any x a 6 such that the limit is well posed.)

12/23



Some comments

» The only information about the limit for all ¢ > 0,

/ / / / KO (=) H VK, (2—9) ) pu(dy)dups (d)ds < oo,
R2 R2

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).
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R2 R2

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).

» Difficult to show uniqueness to (KS) of such solutions (or
propagation of regularity) — not a propagation of chaos
result (does not coincide with the MP in more regular spaces,
see T. (2020)).
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Some comments

» The only information about the limit for all ¢ > 0,

/ / / / KO (=) H VK, (2—9) ) pu(dy)dups (d)ds < oo,
R2 R2

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).

» Difficult to show uniqueness to (KS) of such solutions (or
propagation of regularity) — not a propagation of chaos
result (does not coincide with the MP in more regular spaces,
see T. (2020)).

» Initial condition only exchangeable particles (can be a dirac);
initial concentration ¢g only in L2 (R2)

13/23



Overview

Strategy of proof



Strategy (0 = 1,A =0,¢y = 0)

—|x|?

» Remember that VK;(7) = Vgi(z) ~ —5e 4.
» Control a priori the 2-by-2 interaction. Set

S
DL2N .— / VK, o(XPV — X2N)du,
0
we prove there exists v € (2,2) s.t.

t
sup ]E[/ |D;’2’N|2(7_1)d3} < 00 for all t > 0.
N>2 LJo

Then, you can do this on a e-regularised PS and get tightness,

pass to the limit....
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Key idea

> We want to perform a "Markovianization" of the interaction.
Informally
‘D1,2,N‘ N 1
t LN 2N
(X = X
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Key idea

> We want to perform a "Markovianization" of the interaction.
Informally
1
DN~ —
LN 2N
X =X
» Rigorously, we will prove that for x small, there exists
v € (3,2) and C (independent of N) such that

t t
E[/ \D;’Q’N]Q(V_l)ds} < CE[/ X1V —vaN\—W—l)ds]
0 0

We bound the path dependent interaction by a current time
dependent one of elliptic order.
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Now, as the interaction is of order ﬁ we can proceed as in the

elliptic case to treat it (Fournier-Jourdain).

For a € (0, 1) applying Ito and using exchangeability :

d al :
ZEIX} - XP| > CLEIX] — X772 - A= Ca Y E[IX] - X217 | D}

N -1
j=2

Using Holder, exchangeability and the Markovianization
d (03 a—
SE|X} X7 > (Cu— OXCW)BIX] — X7

Choose v =4 — 2y € (0,1), suppose x small and rearrange

T
/ E|X}! — X220 dt < Ag.
0
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3 ingredients

> A suitable Itdé formula for the path dependent interaction,
> Apply it to a convenient function,

> A key functional inequality.
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Time-space Itd

Denote Rt’j = X — X!

Let F: R, x R? = R be of class C} (R x R?). Forall t > 0,

E[/OtF(ts,Rtlf)ds} _E[/t F(0, RV 2)d}

// (9,F + AF)( u—sRm)dsdu}

%1 ZE[/O (/Ou VEF(u— s,R;ﬁ)ds> : D}L’jdu]
=2

(Ito between s and t on X! with X2 fixed + integrate in s +
Fubini.)
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A good F

Notice that

Cp
Vgi(z)| < ———, B>0.
(t+ Blaf?)2
Choose 5
Flta) =~ + 8?7, v e (5,2).
So that

(O, F + AF)(t,x) > Cg(t + Blz*)™7, for B small,

and )
VF| < Ot + Blaf2)3 .
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Plugging this F

Using exchangeability
t

(negative) = —E[ / X! - XSZ\Q(l’V)ds}
0

+ (geq)E[/Ot /Ou(u — s+ 81X - X211 ds du]

- (|eq)cxﬂ«:[/t (/u(u s BIX — X2P)3ds ) DY dul
0 0

Remember | Dy < Cp Jo'(u—s+p|X, — X§|2)_%ds

20/23



Plugging this F

Using exchangeability
t

(negative) = —E[ / X! - X§\2<1*V>ds}
0

+ (geq)E[/Ot /Ou(u — s+ 81X - X211 ds du}

- (qu)CxE[/t (/u(u — s+ BIXL - XS?\?)%*Vds) |DL3 du}
0 0

Remember | Dy < Cp Jo'(u—s+p|X, — X§|2)_%ds

Now, it we would have some kind of Holder inequality to compare
the terms on RHS we would be very happy.
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Key functional inequality

Let b > a > 0 and ¢t > 0. For any measurable function
f:]0,t] = R, we have

t 1 t 1 %
|| e rmymets < sen( | gy

where

(The constant «(a, b) is optimal (for any value of ¢ > 0) )
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Everything magically comes into place as applying Fl
» fora=1/2,b=~ —1 we have
w 3
D <G [ u— s+ BIxL - X3P Has
0

1

< COuB)( [ (um s+ AIXE - X3 7ds) T

> forazy—%,b: — 1 we have

u
/ (u—s+BIXL - X2?)27ds
0

2v—3
2(v—1)

< 0O [ (- s+ 1t - X2 )

and most importantly ﬁ + % -1
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A classical Holder in both [E and fg separates the two terms and
after exchangeability and rearranging lead to, provided x small,

t u
E[/ / (u—s+| X! — X2|%)~ds du]
0 JO

t
< COvn E[ [ 1} - X270 as],
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A classical Holder in both [E and fg separates the two terms and
after exchangeability and rearranging lead to, provided x small,

t u
E[/ / (u—s+| X! — X2|%)~ds du]
0 JO

t
< COvn E[ [ 1} - X270 as],

Combine the drift bound from the previous slide and the above to
finally get the Markovianization

t t
E[/ \Di’z’N\z(%l)ds} < CE[/ XLV _ x2N-20-1) ]
0 0
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