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Keller-Segel model for chemotaxis (1970)

▶ Chemotaxis: directed movement of a cell population guided
by chemical stimuli in their environment (that cells may emit) .

▶ Coupled non linear system on population density - ρ(t, x)
and chemo-attractant concentration - c(t, x):

∂tρ(t, x) = ∆ρ− χ∇ · (ρ∇c), t > 0, x ∈ R2,

θ∂tc(t, x) = △c− λc+ ρ, t > 0, x ∈ R2.

ρ(0, x) = ρ0(x), c(0, x) = c0(x),

(1)

▶ Parameters:
· χ > 0: chemotactic sensitivity,
· θ > 0: ratio between the diffusion time scales of cells and

chemical,
· λ ≥ 0: death rate of the chemo-attractant,
·
∫
ρ0(dx) = 1 total mass of cells rescaled.

▶ θ = 0: parabolic-elliptic case (decoupled),
θ > 0: doubly parabolic (strongly coupled). 3 / 23
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Finite Time Blow Up VS Global Existence in R2

▶ FTBU: An agglomeration of cells emerges due to mutual
cell attraction (some norm explodes in FT).

▶ Well known for parabolic-elliptic case:
· χ < 8π: GE (Blanchet-Dolbeault-Perthame, ’06),
· χ > 8π: FTBU for

∫
|x|2ρ0(dx) < ∞,

· χ = 8π: BU as t → ∞.
(See e.g. Perthame survey ’05)

▶ Doubly parabolic:
· χ < 8π: GE (Calvez-Corrias ’08) ,
· c0 ≡ 0, GE for any χ ≤ χθ where χθ → ∞ as θ → ∞

(Biler-Guerra-Karch ’15, Corrias-Escobedo-Matos ’14)
· FTBU open, recent result for χ > 8π and a class of (ρ0, c0).

(Mizoguchi ’21)

Our goal: derive the system (1) as a mean-field limit of an
Interacting particle system.
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Mean field limit

Typical particle when N = ∞ with a 2 step approach:
1. Follows the potential c:

dXt =
√
2dWt + χ∇ct(Xt)dt.

Denote ρt := L(Xt), for t > 0.
2. Feynman-Kac for c with ρ as source term:

ct(x) = bc0,θ,λt (x) +

∫ t

0
(Kθ,λ

t−s ∗ ρs)(x)ds,

where we denoted, for (t, x) ∈ (0,∞)× R2,

gθt (x) :=
θ

4πt
e−

θ
4t
|x|2 , Kθ,λ

t (x) :=
1

θ
e−

λ
θ
tgθt (x),

bc0,θ,λt (x) := e−
λ
θ
t(gθt ∗ c0)(x).
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Mean field limit

Putting everything together,

{
Xt = X0 +

√
2Wt + χ

∫ t

0
∇bc0,θ,λs (Xs)ds+ χ

∫ t

0

∫ s

0
(∇Kθ,λ

s−u ∗ ρu)(Xs)duds,
ρs = Law(Xs), s ≥ 0.

Notice
1. Past laws dependence,
2. Singular interaction in ∇K.

(well posedness with Lp spaces (T. ’20) in R2)
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Particle system

For N ≥ 2 it reads

Xi,N
t = Xi,N

0 +
√
2W i

t + χ

∫ t

0
∇bc0,θ,λs (s,Xi,N

s )ds

+
χ

N − 1

∑
j ̸=i

∫ t

0

∫ s

0
∇Kθ,λ

s−u(X
i,N
s −Xj,N

u )duds.

Notice
1. Non-Markovian system!
2. Singular interaction

∇Kθ,λ
t (x) = − θ

8πt2
e−

λ
θ
te−

θ
4t
|x|2x.

(pb: Xi
s = Xj

s )
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How singular?

Roughly speaking, if for some R ∈ R2 we have

X1,N
t = X2,N

s +R, s ∈ [t− 1, t]

then the corresponding interaction (in the drift of X1,N ) looks like,
e.g. when λ = 0,∫ t

t−1
∇Kθ,λ

t−s(X
1,N
t −X2,N

s )ds = −θR

8π

∫ t

t−1

1

(t− s)2
e
− θ

4(t−s)
|R|2ds

= − R

2π|R|2
e−

θ|R|2
4

|R|→0∼ − R

2π|R|2
.

(Of course, this is an exaggerated situation.)
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A simulation of the Particle system in d = 2

(a) t = 0 (b) t = 0.1 (c) t = 0.3 (d) t = 1

(e) t = 0 (f) t = 0.1 (g) t = 0.3 (h) t = 1

Figure: (a)-(d): χ large; (e)-(h): χ small.
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Related works

▶ Doubly parabolic case
· in 1d: ∇K1d

t (x) ∼ x
t3/2

e−
x2

4t .
Propagation of chaos in Jabir-Talay-T. (’18) using Girsanov
transforms (impossible here as particles should collide, higher
dimension → more singularity).

· in any d: two particle system with mollified interaction by
Stevens (’01).

▶ Parabolic-elliptic case in 2d: c0 = 0, λ = 0

dXi
t =

√
2dW i

t +
χ

N
∇K(Xi

t −Xj
t )dt

where ∇K(x) = − x
2π|x|2 .

Existence and convergence along subsequences χ ≤ 2π in
Fournier-Jourdain (’17) , χ ≤ 8π Tardy (’21).
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Main result

We set µN := 1
N

∑N
i=1 δ(Xi,N

t )t≥0
∈ P(C([0,∞),R2)) a.s. and, for

each t ≥ 0, µN
t := 1

N

∑N
i=1 δXi,N

t
∈ P(R2) a.s.

Theorem

For each θ > 0, there is χθ > 0 such that if χ ≤ χθ, then the
system has a solution (for any exchangeable initial condition) for
each N ≥ 2 and, up to extraction of a subsequence, (µN

t )t≥0

converges to a solution (ρt)t≥0 of (KS) if µN
0

P→ ρ0 .

(of course we have as well the tightness of µN and convergence to
a MP...)
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About the threshold

The particular form is quite complicated (but explicit) and
independent of ρ0, c0. Optimizing the condition numerically we
have:

· χθ=1 = 1.39,
· χθ=0.00001 = 3.28,

· χθ
θ→∞∼ 1.65√

θ
.

(The last point is troubling, as at least when c0 ≡ 0 one can find
for any χ a θ such that the limit is well posed.)
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Some comments

▶ The only information about the limit for all t ≥ 0,∫ t

0

∫
R2

∫ s

0

∫
R2

(Kθ,λ
s−u(x−y)+|∇Kθ,λ

s−u(x−y)|)ρu(dy)duρs(dx)ds < ∞,

→ very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).

▶ Difficult to show uniqueness to (KS) of such solutions (or
propagation of regularity) → not a propagation of chaos
result (does not coincide with the MP in more regular spaces,
see T. (2020)).

▶ Initial condition only exchangeable particles (can be a dirac);
initial concentration c0 only in L2+(R2)
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Strategy (θ = 1, λ = 0, c0 ≡ 0)

▶ Remember that ∇Kt(x) = ∇gt(x) ∼ − x
t2
e

−|x|2
4t .

▶ Control a priori the 2-by-2 interaction. Set

D1,2,N
s :=

∫ s

0
∇Ks−u(X

1,N
s −X2,N

u )du,

we prove there exists γ ∈ (32 , 2) s.t.

sup
N≥2

E
[ ∫ t

0
|D1,2,N

s |2(γ−1)ds
]
< ∞ for all t > 0.

Then, you can do this on a ε-regularised PS and get tightness,
pass to the limit....

14 / 23



Key idea

▶ We want to perform a "Markovianization" of the interaction.
Informally

|D1,2,N
t | ∼ 1

|X1,N
t −X2,N

t |
▶ Rigorously, we will prove that for χ small, there exists

γ ∈ (32 , 2) and C (independent of N) such that

E
[ ∫ t

0
|D1,2,N

s |2(γ−1)ds
]
≤ CE

[ ∫ t

0
|X1,N

s −X2,N
s |−2(γ−1)ds

]
.

We bound the path dependent interaction by a current time
dependent one of elliptic order.
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Now, as the interaction is of order 1
|x| , we can proceed as in the

elliptic case to treat it (Fournier-Jourdain).

For α ∈ (0, 1) applying Ito and using exchangeability :

d

dt
E|X1

t −X2
t |α ≥ CαE|X1

t −X2
t |α−2 − χ

N − 1
Cα

N∑
j=2

E[|X1
t −X2

t |α−1|D1,j
t |]

Using Holder, exchangeability and the Markovianization

d

dt
E|X1

t −X2
t |α ≥ (Cα − CχCα)E|X1

t −X2
t |α−2

Choose α = 4− 2γ ∈ (0, 1), suppose χ small and rearrange∫ T

0
E|X1

t −X2
t |2(1−γ) dt ≤ AT .
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3 ingredients

▶ A suitable Itô formula for the path dependent interaction,
▶ Apply it to a convenient function,
▶ A key functional inequality.

17 / 23



Time-space Itô

Denote Ri,j
t,s := Xi

t −Xj
s

Let F : R+ × R2 → R be of class C1,2
b (R+ × R2). For all t > 0,

E
[ ∫ t

0

F (t− s,R1,2
t,s )ds

]
= E

[ ∫ t

0

F (0, R1,2
s,s)ds

]
+ E

[ ∫ t

0

∫ u

0

(∂tF +∆F )(u− s,R1,2
u,s)ds du

]
+

χ

N − 1

N∑
j=2

E
[ ∫ t

0

(∫ u

0

∇F (u− s,R1,2
u,s)ds

)
·D1,j

u du
]
.

(Ito between s and t on X1 with X2
s fixed + integrate in s +

Fubini.)
18 / 23



A good F

Notice that
|∇gt(x)| ≤

Cβ

(t+ β|x|2)
3
2

, β > 0.

Choose
F (t, x) = −(t+ β|x|2)1−γ , γ ∈ (

3

2
, 2).

So that

(∂tF +∆F )(t, x) ≥ Cβ(t+ β|x|2)−γ , for β small,

and
|∇F | ≤ C(t+ β|x|2)

1
2
−γ .
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Plugging this F

Using exchangeability

(negative) = −E
[ ∫ t

0
|X1

s −X2
s |2(1−γ)ds

]
+ (geq)E

[ ∫ t

0

∫ u

0
(u− s+ β|X1

u −X2
s |2)−γds du

]
− (leq)CχE

[ ∫ t

0

(∫ u

0
(u− s+ β|X1

u −X2
s |2)

1
2
−γds

)
|D1,3

u |du
]
.

Remember |D1,3
u | ≤ Cβ

∫ u
0 (u− s+ β|X1

u −X3
s |2)−

3
2ds

Now, it we would have some kind of Holder inequality to compare
the terms on RHS we would be very happy.
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Key functional inequality

Let b > a > 0 and t > 0. For any measurable function
f : [0, t] → R+, we have∫ t

0

1

(s+ f(s))1+a
ds ≤ κ(a, b)

(∫ t

0

1

(s+ f(s))1+b
ds
)a

b
,

where
κ(a, b) =

a+ 1

a

[ b

b+ 1

]a
b
.

(The constant κ(a, b) is optimal (for any value of t > 0) )
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Everything magically comes into place as applying FI
▶ for a = 1/2, b = γ − 1 we have

|D1,3
u | ≤ Cβ

∫ u

0
(u− s+ β|X1

u −X3
s |2)−

3
2ds

≤ C̃(γ, β)
(∫ u

0
(u− s+ β|X1

u −X3
s |2)−γds

) 1
2(γ−1)

▶ for a = γ − 3
2 , b = γ − 1 we have∫ u

0
(u− s+ β|X1

u −X2
s |2)

1
2
−γds

≤ C̄(γ, β)
(∫ u

0
(u− s+ β|X1

u −X2
s |2)−γds

) 2γ−3
2(γ−1)

and most importantly 1
2(γ−1) +

2γ−3
2(γ−1) = 1.
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A classical Holder in both E and
∫ t
0 separates the two terms and

after exchangeability and rearranging lead to, provided χ small,

E
[ ∫ t

0

∫ u

0
(u− s+ |X1

u −X2
s |2)−γds du

]
≤ C(χ, γ, β)E

[ ∫ t

0
|X1

s −X2
s |2(1−γ)ds

]
.

Combine the drift bound from the previous slide and the above to
finally get the Markovianization

E
[ ∫ t

0
|D1,2,N

s |2(γ−1)ds
]
≤ CE

[ ∫ t

0
|X1,N

s −X2,N
s |−2(γ−1)ds

]
.
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