# Particle approximation of the doubly parabolic Keller-Segel equation in the plane 

Milica Tomasevic
CNRS - CMAP Ecole Polytechnique with N. Fournier (LPSM, SU), (JFA, 2023)

Franco-Japanese Conference IHES, 6-8/03/2024

## Overview

Motivations

Particle approximation

Main Result

Strategy of proof
"Markovianization" argument

## Overview

Motivations

## Particle approximation

Main Result

## Strategy of proof

"Markovianization" argument

## Keller-Segel model for chemotaxis (1970)

- Chemotaxis: directed movement of a cell population guided by chemical stimuli in their environment (that cells may emit) .
- Coupled non linear system on population density - $\rho(t, x)$ and chemo-attractant concentration - $c(t, x)$ :

$$
\left\{\begin{array}{l}
\partial_{t} \rho(t, x)=\Delta \rho-\chi \nabla \cdot(\rho \nabla c), \quad t>0, x \in \mathbb{R}^{2},  \tag{1}\\
\theta \partial_{t} c(t, x)=\Delta c-\lambda c+\rho, \quad t>0, x \in \mathbb{R}^{2} . \\
\rho(0, x)=\rho_{0}(x), c(0, x)=c_{0}(x),
\end{array}\right.
$$

- Parameters:

$\square$


## Keller-Segel model for chemotaxis (1970)

- Chemotaxis: directed movement of a cell population guided by chemical stimuli in their environment (that cells may emit).
- Coupled non linear system on population density - $\rho(t, x)$ and chemo-attractant concentration - $c(t, x)$ :

$$
\left\{\begin{array}{l}
\partial_{t} \rho(t, x)=\Delta \rho-\chi \nabla \cdot(\rho \nabla c), \quad t>0, x \in \mathbb{R}^{2}  \tag{1}\\
\theta \partial_{t} c(t, x)=\Delta c-\lambda c+\rho, \quad t>0, x \in \mathbb{R}^{2} \\
\rho(0, x)=\rho_{0}(x), c(0, x)=c_{0}(x)
\end{array}\right.
$$

- Parameters:
- $\chi>0$ : chemotactic sensitivity,
- $\theta>0$ : ratio between the diffusion time scales of cells and chemical,
- $\lambda \geq 0$ : death rate of the chemo-attractant,
- $\int \rho_{0}(d x)=1$ total mass of cells rescaled.
- $\theta=0$ : parabolic-elliptic case (decoupled),
$\theta>0$ : doubly parabolic (strongly coupled).


## Finite Time Blow Up VS Global Existence in $\mathbb{R}^{2}$

- FTBU: An agglomeration of cells emerges due to mutual cell attraction (some norm explodes in FT).
- Well known for parabolic-elliptic case:
- $\chi<8 \pi$ : GE (Blanchet-Dolbeault-Perthame, '06),
- $\chi>8 \pi$ : FTBU for $\int|x|^{2} \rho_{0}(d x)<\infty$,
- $\chi=8 \pi$ : BU as $t \rightarrow \infty$.
(See e.g. Perthame survey '05)
- Doubly parabolic:
$\chi<8 \pi$ : GE (Calvez-Corrias '08)
(Biler-Guerra-Karch '15, Corrias-Escobedo-Matos '14)
FTBU open, recent result for $\chi>8 \pi$ and a class of $\left(\rho_{0}, c_{0}\right)$ (Mizoguchi '21)
Our goal: derive the system (1) as a mean-field limit of an Interacting particle system.


## Finite Time Blow Up VS Global Existence in $\mathbb{R}^{2}$

- FTBU: An agglomeration of cells emerges due to mutual cell attraction (some norm explodes in FT).
- Well known for parabolic-elliptic case:
- $\chi<8 \pi$ : GE (Blanchet-Dolbeault-Perthame, '06),
- $\chi>8 \pi$ : FTBU for $\int|x|^{2} \rho_{0}(d x)<\infty$,
- $\chi=8 \pi$ : BU as $t \rightarrow \infty$.
(See e.g. Perthame survey '05)
- Doubly parabolic:
- $\chi<8 \pi$ : GE (Calvez-Corrias '08),
- $c_{0} \equiv 0$, GE for any $\chi \leq \chi_{\theta}$ where $\chi_{\theta} \rightarrow \infty$ as $\theta \rightarrow \infty$ (Biler-Guerra-Karch '15, Corrias-Escobedo-Matos '14)
- FTBU open, recent result for $\chi>8 \pi$ and a class of $\left(\rho_{0}, c_{0}\right)$. (Mizoguchi '21)
Our goal: derive the system (1) as a mean-field limit of an Interacting particle system.


## Overview

## Motivations

Particle approximation

## Main Result

## Strategy of proof

"Markovianization" argument

## Mean field limit

Typical particle when $N=\infty$ with a 2 step approach:

1. Follows the potential $c$ :

$$
d X_{t}=\sqrt{2} d W_{t}+\chi \nabla c_{t}\left(X_{t}\right) d t
$$

Denote $\rho_{t}:=\mathcal{L}\left(X_{t}\right)$, for $t>0$.
2. Feynman-Kac for $c$ with $\rho$ as source term:

where we denoted, for $(t, x) \in(0, \infty) \times \mathbb{R}^{2}$,


## Mean field limit

Typical particle when $N=\infty$ with a 2 step approach:

1. Follows the potential $c$ :

$$
d X_{t}=\sqrt{2} d W_{t}+\chi \nabla c_{t}\left(X_{t}\right) d t
$$

Denote $\rho_{t}:=\mathcal{L}\left(X_{t}\right)$, for $t>0$.
2. Feynman-Kac for $c$ with $\rho$ as source term:

$$
c_{t}(x)=b_{t}^{c_{0}, \theta, \lambda}(x)+\int_{0}^{t}\left(K_{t-s}^{\theta, \lambda} * \rho_{s}\right)(x) \mathrm{d} s
$$

where we denoted, for $(t, x) \in(0, \infty) \times \mathbb{R}^{2}$,

$$
\begin{aligned}
g_{t}^{\theta}(x) & :=\frac{\theta}{4 \pi t} e^{-\frac{\theta}{4 t}|x|^{2}}, \quad K_{t}^{\theta, \lambda}(x):=\frac{1}{\theta} e^{-\frac{\lambda}{\theta} t} g_{t}^{\theta}(x), \\
b_{t}^{c_{0}, \theta, \lambda}(x) & :=e^{-\frac{\lambda}{\theta} t}\left(g_{t}^{\theta} * c_{0}\right)(x)
\end{aligned}
$$

## Mean field limit

Putting everything together,

$$
\left\{\begin{array}{l}
X_{t}=X_{0}+\sqrt{2} W_{t}+\chi \int_{0}^{t} \nabla b_{s}^{c_{0}, \theta, \lambda}\left(X_{s}\right) \mathrm{d} s+\chi \int_{0}^{t} \int_{0}^{s}\left(\nabla K_{s-u}^{\theta, \lambda} * \rho_{u}\right)\left(X_{s}\right) \mathrm{d} u \mathrm{~d} s \\
\rho_{s}=\operatorname{Law}\left(X_{s}\right), s \geq 0
\end{array}\right.
$$

## Notice

1. Past laws dependence,
2. Singular interaction in $\nabla K$.
(well posedness with $L^{p}$ spaces (T. '20) in $\mathbb{R}^{2}$ )

## Mean field limit

Putting everything together,

$$
\left\{\begin{array}{l}
X_{t}=X_{0}+\sqrt{2} W_{t}+\chi \int_{0}^{t} \nabla b_{s}^{c_{0}, \theta, \lambda}\left(X_{s}\right) \mathrm{d} s+\chi \int_{0}^{t} \int_{0}^{s}\left(\nabla K_{s-u}^{\theta, \lambda} * \rho_{u}\right)\left(X_{s}\right) \mathrm{d} u \mathrm{~d} s, \\
\rho_{s}=\operatorname{Law}\left(X_{s}\right), s \geq 0
\end{array}\right.
$$

Notice

1. Past laws dependence,
2. Singular interaction in $\nabla K$.
(well posedness with $L^{p}$ spaces (T. '20) in $\mathbb{R}^{2}$ )

## Particle system

For $N \geq 2$ it reads

$$
\begin{aligned}
& X_{t}^{i, N}=X_{0}^{i, N}+\sqrt{2} W_{t}^{i}+\chi \int_{0}^{t} \nabla b_{s}^{c_{0}, \theta, \lambda}\left(s, X_{s}^{i, N}\right) \mathrm{d} s \\
& \quad+\frac{\chi}{N-1} \sum_{j \neq i} \int_{0}^{t} \int_{0}^{s} \nabla K_{s-u}^{\theta, \lambda}\left(X_{s}^{i, N}-X_{u}^{j, N}\right) \mathrm{d} u \mathrm{~d} s
\end{aligned}
$$

## Notice

## 1. Non-Markovian system!

2. Singular interaction

## Particle system

For $N \geq 2$ it reads

$$
\begin{aligned}
& X_{t}^{i, N}=X_{0}^{i, N}+\sqrt{2} W_{t}^{i}+\chi \int_{0}^{t} \nabla b_{s}^{c_{0}, \theta, \lambda}\left(s, X_{s}^{i, N}\right) \mathrm{d} s \\
& \quad+\frac{\chi}{N-1} \sum_{j \neq i} \int_{0}^{t} \int_{0}^{s} \nabla K_{s-u}^{\theta, \lambda}\left(X_{s}^{i, N}-X_{u}^{j, N}\right) \mathrm{d} u \mathrm{~d} s
\end{aligned}
$$

Notice

1. Non-Markovian system!
2. Singular interaction

$$
\nabla K_{t}^{\theta, \lambda}(x)=-\frac{\theta}{8 \pi t^{2}} e^{-\frac{\lambda}{\theta} t} e^{-\frac{\theta}{4 t}|x|^{2}} x
$$

$\left(\mathrm{pb}: X_{s}^{i}=X_{s}^{j}\right)$

## How singular?

Roughly speaking, if for some $R \in \mathbb{R}^{2}$ we have

$$
X_{t}^{1, N}=X_{s}^{2, N}+R, \quad s \in[t-1, t]
$$

then the corresponding interaction (in the drift of $X^{1, N}$ ) looks like, e.g. when $\lambda=0$,

$$
\begin{aligned}
\int_{t-1}^{t} \nabla K_{t-s}^{\theta, \lambda}\left(X_{t}^{1, N}-X_{s}^{2, N}\right) \mathrm{d} s & =-\frac{\theta R}{8 \pi} \int_{t-1}^{t} \frac{1}{(t-s)^{2}} e^{-\frac{\theta}{4(t-s)}|R|^{2}} \mathrm{~d} s \\
& =-\frac{R}{2 \pi|R|^{2}} e^{-\frac{\theta|R|^{2}}{4}|R| \rightarrow 0} \stackrel{R}{\sim}-\frac{R}{2 \pi|R|^{2}}
\end{aligned}
$$

(Of course, this is an exaggerated situation.)

## A simulation of the Particle system in $d=2$



Figure: $(\mathrm{a})-(\mathrm{d}): \chi$ large; (e)-(h): $\chi$ small.

## Related works

- Doubly parabolic case
- in $1 \boldsymbol{d}: \nabla K_{t}^{1 d}(x) \sim \frac{x}{t^{3 / 2}} e^{-\frac{x^{2}}{4 t}}$.

Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov transforms (impossible here as particles should collide, higher dimension $\rightarrow$ more singularity).
in any $d$ : two particle system with mollified interaction by Stevens ('01).

- Parabolic-elliptic case in 2d: $c_{0}=0, \lambda=0$

where $\nabla K(x)=-\frac{x}{2 \pi|x|^{2}}$.
Existence and convergence along subsequences $\chi \leq 2 \pi$ in
Fournier-Jourdain ('17), $\chi \leq 8 \pi$ Tardy ('21).


## Related works

- Doubly parabolic case
- in $1 d: \nabla K_{t}^{1 d}(x) \sim \frac{x}{t^{3 / 2}} e^{-\frac{x^{2}}{4 t}}$.

Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov transforms (impossible here as particles should collide, higher dimension $\rightarrow$ more singularity).

- in any $d$ : two particle system with mollified interaction by Stevens ('01).
- Parabolic-elliptic case in 2d: $c_{0}=0, \lambda=0$

$$
d X_{t}^{i}=\sqrt{2} d W_{t}^{i}+\frac{\chi}{N} \nabla K\left(X_{t}^{i}-X_{t}^{j}\right) d t
$$

where $\nabla K(x)=-\frac{x}{2 \pi|x|^{2}}$.
Existence and convergence along subsequences $\chi \leq 2 \pi$ in
Fournier-Jourdain ('17), $\chi \leq 8 \pi$ Tardy ('21).

## Overview

## Motivations

## Particle approximation

Main Result

## Strategy of proof

"Markovianization" argument

## Main result

We set $\mu^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\left(X_{t}^{i, N}\right)_{t \geq 0}} \in \mathcal{P}\left(C\left([0, \infty), \mathbb{R}^{2}\right)\right)$ a.s. and, for each $t \geq 0, \mu_{t}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i, N}} \in \mathcal{P}\left(\mathbb{R}^{2}\right)$ a.s.
Theorem
For each $\theta>0$, there is $\chi_{\theta}>0$ such that if $\chi \leq \chi_{\theta}$, then the system has a solution (for any exchangeable initial condition) for each $N \geq 2$ and, up to extraction of a subsequence, $\left(\mu_{t}^{N}\right)_{t \geq 0}$ converges to a solution $\left(\rho_{t}\right)_{t \geq 0}$ of $(K S)$ if $\mu_{0}^{N} \xrightarrow{\mathbb{P}} \rho_{0}$.
(of course we have as well the tightness of $\mu^{N}$ and convergence to a MP...)

## About the threshold

The particular form is quite complicated (but explicit) and independent of $\rho_{0}, c_{0}$. Optimizing the condition numerically we have:

$$
\begin{aligned}
& \chi_{\theta=1}=1.39 \\
& \chi_{\theta=0.00001}=3.28 \\
& \chi_{\theta} \stackrel{\theta \rightarrow \infty}{\sim} \frac{1.65}{\sqrt{\theta}}
\end{aligned}
$$

(The last point is troubling, as at least when $c_{0} \equiv 0$ one can find for any $\chi$ a $\theta$ such that the limit is well posed.)

## Some comments

- The only information about the limit for all $t \geq 0$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{2}} \int_{0}^{s} \int_{\mathbb{R}^{2}}\left(K_{s-u}^{\theta, \lambda}(x-y)+\left|\nabla K_{s-u}^{\theta, \lambda}(x-y)\right|\right) \rho_{u}(\mathrm{~d} y) \mathrm{d} u \rho_{s}(\mathrm{~d} x) \mathrm{d} s<\infty
$$

$\rightarrow$ very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) $\rightarrow$ not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)),
- Initial condition only exchangeable particles (can be a dirac); initial concentration $c_{0}$ only in $L^{2^{+}}\left(\mathbb{R}^{2}\right)$


## Some comments

- The only information about the limit for all $t \geq 0$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{2}} \int_{0}^{s} \int_{\mathbb{R}^{2}}\left(K_{s-u}^{\theta, \lambda}(x-y)+\left|\nabla K_{s-u}^{\theta, \lambda}(x-y)\right|\right) \rho_{u}(\mathrm{~d} y) \mathrm{d} u \rho_{s}(\mathrm{~d} x) \mathrm{d} s<\infty
$$

$\rightarrow$ very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) $\rightarrow$ not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)).
- Initial condition only exchangeable particles (can be a dirac); initial concentration $c_{0}$ only in $L^{2^{+}}\left(\mathbb{R}^{2}\right)$


## Some comments

- The only information about the limit for all $t \geq 0$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{2}} \int_{0}^{s} \int_{\mathbb{R}^{2}}\left(K_{s-u}^{\theta, \lambda}(x-y)+\left|\nabla K_{s-u}^{\theta, \lambda}(x-y)\right|\right) \rho_{u}(\mathrm{~d} y) \mathrm{d} u \rho_{s}(\mathrm{~d} x) \mathrm{d} s<\infty
$$

$\rightarrow$ very weak, measure valued solution to (KS) (slightly different then the ones in Biler et al and Corrias et al).

- Difficult to show uniqueness to (KS) of such solutions (or propagation of regularity) $\rightarrow$ not a propagation of chaos result (does not coincide with the MP in more regular spaces, see T. (2020)).
- Initial condition only exchangeable particles (can be a dirac); initial concentration $c_{0}$ only in $L^{2^{+}}\left(\mathbb{R}^{2}\right)$


## Overview

## Motivations

## Particle approximation

Main Result

Strategy of proof
"Markovianization" argument

## Strategy $\left(\theta=1, \lambda=0, c_{0} \equiv 0\right)$

- Remember that $\nabla K_{t}(x)=\nabla g_{t}(x) \sim-\frac{x}{t^{2}} e^{\frac{-|x|^{2}}{4 t}}$.
- Control a priori the 2-by-2 interaction. Set

$$
D_{s}^{1,2, N}:=\int_{0}^{s} \nabla K_{s-u}\left(X_{s}^{1, N}-X_{u}^{2, N}\right) \mathrm{d} u
$$

we prove there exists $\gamma \in\left(\frac{3}{2}, 2\right)$ s.t.

$$
\sup _{N \geq 2} \mathbb{E}\left[\int_{0}^{t}\left|D_{s}^{1,2, N}\right|^{2(\gamma-1)} \mathrm{d} s\right]<\infty \quad \text { for all } t>0
$$

Then, you can do this on a $\varepsilon$-regularised PS and get tightness, pass to the limit....

## Key idea

- We want to perform a "Markovianization" of the interaction. Informally

$$
\left|D_{t}^{1,2, N}\right| \sim \frac{1}{\left|X_{t}^{1, N}-X_{t}^{2, N}\right|}
$$

- Rigorously, we will prove that for $\chi$ small, there exists $\gamma \in\left(\frac{3}{2}, 2\right)$ and $C$ (independent of $N$ ) such that


> We bound the path dependent interaction by a current time dependent one of elliptic order.

## Key idea

- We want to perform a "Markovianization" of the interaction. Informally

$$
\left|D_{t}^{1,2, N}\right| \sim \frac{1}{\left|X_{t}^{1, N}-X_{t}^{2, N}\right|}
$$

- Rigorously, we will prove that for $\chi$ small, there exists $\gamma \in\left(\frac{3}{2}, 2\right)$ and $C$ (independent of $N$ ) such that

$$
\mathbb{E}\left[\int_{0}^{t}\left|D_{s}^{1,2, N}\right|^{2(\gamma-1)} \mathrm{d} s\right] \leq C \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1, N}-X_{s}^{2, N}\right|^{-2(\gamma-1)} d s\right]
$$

We bound the path dependent interaction by a current time dependent one of elliptic order.

Now, as the interaction is of order $\frac{1}{|x|}$, we can proceed as in the elliptic case to treat it (Fournier-Jourdain).

For $\alpha \in(0,1)$ applying Ito and using exchangeability :
$\frac{d}{d t} \mathbb{E}\left|X_{t}^{1}-X_{t}^{2}\right|^{\alpha} \geq C_{\alpha} \mathbb{E}\left|X_{t}^{1}-X_{t}^{2}\right|^{\alpha-2}-\frac{\chi}{N-1} C_{\alpha} \sum_{j=2}^{N} \mathbb{E}\left[\left|X_{t}^{1}-X_{t}^{2}\right|^{\alpha-1}\left|D_{t}^{1, j}\right|\right]$
Using Holder, exchangeability and the Markovianization

$$
\frac{d}{d t} \mathbb{E}\left|X_{t}^{1}-X_{t}^{2}\right|^{\alpha} \geq\left(C_{\alpha}-C \chi C_{\alpha}\right) \mathbb{E}\left|X_{t}^{1}-X_{t}^{2}\right|^{\alpha-2}
$$

Choose $\alpha=4-2 \gamma \in(0,1)$, suppose $\chi$ small and rearrange

$$
\int_{0}^{T} \mathbb{E}\left|X_{t}^{1}-X_{t}^{2}\right|^{2(1-\gamma)} d t \leq A_{T}
$$

## Overview

## Motivations

## Particle approximation

## Main Result

## Strategy of proof

"Markovianization" argument

## 3 ingredients

- A suitable Itô formula for the path dependent interaction,
- Apply it to a convenient function,
- A key functional inequality.


## Time-space Itô

Denote $R_{t, s}^{i, j}:=X_{t}^{i}-X_{s}^{j}$

Let $F: \mathbb{R}_{+} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class $C_{b}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{2}\right)$. For all $t>0$,

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{t} F\left(t-s, R_{t, s}^{1,2}\right) d s\right] & =\mathbb{E}\left[\int_{0}^{t} F\left(0, R_{s, s}^{1,2}\right) d s\right] \\
+ & \mathbb{E}\left[\int_{0}^{t} \int_{0}^{u}\left(\partial_{t} F+\Delta F\right)\left(u-s, R_{u, s}^{1,2}\right) d s d u\right] \\
& +\frac{\chi}{N-1} \sum_{j=2}^{N} \mathbb{E}\left[\int_{0}^{t}\left(\int_{0}^{u} \nabla F\left(u-s, R_{u, s}^{1,2}\right) d s\right) \cdot D_{u}^{1, j} d u\right]
\end{aligned}
$$

(Ito between $s$ and $t$ on $X^{1}$ with $X_{s}^{2}$ fixed + integrate in $s+$
Fubini.)

## A good F

Notice that

$$
\left|\nabla g_{t}(x)\right| \leq \frac{C_{\beta}}{\left(t+\beta|x|^{2}\right)^{\frac{3}{2}}}, \quad \beta>0 .
$$

Choose

$$
F(t, x)=-\left(t+\beta|x|^{2}\right)^{1-\gamma}, \quad \gamma \in\left(\frac{3}{2}, 2\right)
$$

So that

$$
\left(\partial_{t} F+\Delta F\right)(t, x) \geq C_{\beta}\left(t+\beta|x|^{2}\right)^{-\gamma}, \quad \text { for } \beta \text { small },
$$

and

$$
|\nabla F| \leq C\left(t+\beta|x|^{2}\right)^{\frac{1}{2}-\gamma}
$$

## Plugging this $F$

Using exchangeability

$$
\begin{aligned}
\text { (negative) } & =-\mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1}-X_{s}^{2}\right|^{2(1-\gamma)} d s\right] \\
& +(\text { geq }) \mathbb{E}\left[\int_{0}^{t} \int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{-\gamma} d s d u\right] \\
& -(\text { leq }) C_{\chi} \mathbb{E}\left[\int_{0}^{t}\left(\int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{\frac{1}{2}-\gamma} d s\right)\left|D_{u}^{1,3}\right| d u\right]
\end{aligned}
$$

Remember $\left|D_{u}^{1,3}\right| \leq C_{\beta} \int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{3}\right|^{2}\right)^{-\frac{3}{2}} d s$

## Plugging this $F$

Using exchangeability

$$
\begin{aligned}
\text { (negative) } & =-\mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1}-X_{s}^{2}\right|^{2(1-\gamma)} d s\right] \\
& +(\text { geq }) \mathbb{E}\left[\int_{0}^{t} \int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{-\gamma} d s d u\right] \\
& -(\text { leq }) C_{\chi} \mathbb{E}\left[\int_{0}^{t}\left(\int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{\frac{1}{2}-\gamma} d s\right)\left|D_{u}^{1,3}\right| d u\right]
\end{aligned}
$$

Remember $\left|D_{u}^{1,3}\right| \leq C_{\beta} \int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{3}\right|^{2}\right)^{-\frac{3}{2}} d s$

Now, it we would have some kind of Holder inequality to compare the terms on RHS we would be very happy.

## Key functional inequality

Let $b>a>0$ and $t>0$. For any measurable function $f:[0, t] \rightarrow \mathbb{R}_{+}$, we have

$$
\int_{0}^{t} \frac{1}{(s+f(s))^{1+a}} d s \leq \kappa(a, b)\left(\int_{0}^{t} \frac{1}{(s+f(s))^{1+b}} d s\right)^{\frac{a}{b}}
$$

where

$$
\kappa(a, b)=\frac{a+1}{a}\left[\frac{b}{b+1}\right]^{\frac{a}{b}} .
$$

(The constant $\kappa(a, b)$ is optimal (for any value of $t>0$ ) )

Everything magically comes into place as applying FI

- for $a=1 / 2, b=\gamma-1$ we have

$$
\begin{gathered}
\left|D_{u}^{1,3}\right| \leq C_{\beta} \int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{3}\right|^{2}\right)^{-\frac{3}{2}} d s \\
\leq \tilde{C}(\gamma, \beta)\left(\int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{3}\right|^{2}\right)^{-\gamma} d s\right)^{\frac{1}{2(\gamma-1)}}
\end{gathered}
$$

- for $a=\gamma-\frac{3}{2}, b=\gamma-1$ we have

$$
\begin{gathered}
\int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{\frac{1}{2}-\gamma} d s \\
\leq \bar{C}(\gamma, \beta)\left(\int_{0}^{u}\left(u-s+\beta\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{-\gamma} d s\right)^{\frac{2 \gamma-3}{2(\gamma-1)}}
\end{gathered}
$$

and most importantly $\frac{1}{2(\gamma-1)}+\frac{2 \gamma-3}{2(\gamma-1)}=1$.

A classical Holder in both $\mathbb{E}$ and $\int_{0}^{t}$ separates the two terms and after exchangeability and rearranging lead to, provided $\chi$ small,

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{t} \int_{0}^{u}\left(u-s+\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{-\gamma} d s d u\right] \\
& \leq C(\chi, \gamma, \beta) \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1}-X_{s}^{2}\right|^{2(1-\gamma)} d s\right]
\end{aligned}
$$

Combine the drift bound from the previous slide and the above to finally get the Markovianization


A classical Holder in both $\mathbb{E}$ and $\int_{0}^{t}$ separates the two terms and after exchangeability and rearranging lead to, provided $\chi$ small,

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{t} \int_{0}^{u}\left(u-s+\left|X_{u}^{1}-X_{s}^{2}\right|^{2}\right)^{-\gamma} d s d u\right] \\
& \leq C(\chi, \gamma, \beta) \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1}-X_{s}^{2}\right|^{2(1-\gamma)} d s\right]
\end{aligned}
$$

Combine the drift bound from the previous slide and the above to finally get the Markovianization

$$
\mathbb{E}\left[\int_{0}^{t}\left|D_{s}^{1,2, N}\right|^{2(\gamma-1)} \mathrm{d} s\right] \leq C \mathbb{E}\left[\int_{0}^{t}\left|X_{s}^{1, N}-X_{s}^{2, N}\right|^{-2(\gamma-1)} d s\right]
$$

