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Modelling of chemical reactions

Probabilistic modelling: jump process on a family of N particles.

Deterministic modelling (in most cases, limit N large of the
probabilistic modelling): systems of ODEs/ system of
reaction-diffusion equations (PDEs) if displacement is taken into
account.
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Related Questions:

1. Justify the limit N → +∞: [Ethier-Kurtz 1986], [Oelschläger
1989], [Lim, Lu, Nolen 2020].

2. Study the system of reaction-diffusion equations, in particular:
impact of the structure of the system on the existence of
global weak/classical solutions (and subsequently, large-time
behaviour). [...], [Survey M. Pierre 2010].
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Modelling of chemical reactions: second-order approximation

Consider the binary reversible chemical reaction

A1 +A3 
 A2 +A4.

Each reaction happens at a random exponential time, with rates

r→ = λ→
1

N
N1N3, r← = λ←

1

N
N2N4,

where N is the total number of reactants and Ni the number of
molecules of type i.



Modelling of chemical reactions: second-order approximation

Generator LN of the rescaled process AN (t) = (Ni(t)/N)1≤i≤4:

LNϕ(a) =
∑
`

Nη`(a) [ϕ(a+ `/N)− ϕ(a)] ,

where a ∈ R4,

`→ = (−1, 1,−1, 1), `← = −`→,

and (with λ→ = λ← = 1)

η`→(a) = a1a3, η`←(a) = a2a4.



Modelling of chemical reactions: second-order approximation

Expand LN :

LNϕ(a) = f(a) ·Daϕ(a) +
1

N

∑
`

η`(a)``∗ : D2
aϕ(a) +O

(
1

N2

)
,

where
f(a) =

∑
`

`η`(a), A : B =
∑
i,j

AijBij .

At first order:
Lϕ(a) = f(a) ·Daϕ(a)

is the generator associated to the ODE

da

dt
= f(a).
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Modelling of chemical reactions: second-order approximation
Expand LN :

LNϕ(a) = f(a) ·Daϕ(a) +
1

N

∑
`

η`(a)``∗ : D2
aϕ(a) +O

(
1

N2

)
,

where
f(a) =

∑
`

`η`(a), A : B =
∑
i,j

AijBij .

At second order (diffusion-approximation):

Lϕ(a) = f(a) ·Daϕ(a) +
1

N

∑
`

η`(a)``∗ : D2
aϕ(a)

is the generator associated to the SDE

da = f(a)dt+

√
2

N

∑
`

`
√
η`(a(t))dB`(t),

where the (B`)` are independent one-dimensional Wiener processes.



Soon to come
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Stochastic system of reaction-diffusion equations

On the torus Td, we consider the system

dai − div (κi∇ai) dt = fi(a)dt+
√
νσαi (a)dBα(t),

with initial data

ai(0) = ai0, ai0 : Td → R+,

for i = 1, . . . , 4, where

fi(a) = (−1)i(a1a3 − a2a4).

The diffusion coefficients κi are positive constants, ν is a small
constant (remember the factor N−1 in the second-order expansion).
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Stochastic system of reaction-diffusion equations

System

dai − div (κi∇ai) dt = fi(a)dt+
√
νσαi (a)dBα(t).

Finite number of independent one-dimensional Wiener processes
{Bα; 1 ≤ α ≤ dW }.



Stochastic system of reaction-diffusion equations

Coefficients σαi (a) of the type

σ1
i (a) = (−1)i

√
a1a3, σ2

i (a) = (−1)i
√
a2a4, σαi = 0, ∀α ≥ 3.

However, we need the cancellation condition

ai = 0⇒ σαi (a) = 0, ∀i, α (1)

to ensure that the solutions stay non-negative, so asymptotic
structure only: for α ∈ N \ {0}, σαi : Rd → R is a smooth function
satisfying (1) and the growth condition

∀i,
∑
α

|σαi (a)|2 ≤ (a1a3 + a2a4). (2)



Global existence of regular solutions

Suppose that the initial data ai0 are smooth: ai0 ∈ C∞(Td).

Central question: does the system

dai − div (κi∇ai) dt = fi(a)dt+
√
νσαi (a)dBα(t),

with initial data
ai(0) = ai0,

admit global smooth solutions?

This question is related to the following topics:
1. Global existence for deterministic systems of reaction-diffusion

equations,
2. Maximum principle, L∞-estimates for parabolic scalar

equations.
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Global existence of smooth solutions for the (deterministic)
four-species quadratic reaction-diffusion system

A variety of approaches:
1. De Giorgi’s iteration scheme, based on truncation of the

entropy [Goudon, Vasseur 2010, d=1,2], [Caputo, Goudon,
Vasseur, 2017].

2. Maximum principle, gain of regularity in parabolic equations,
interpolation [Kanel 1990], [Souplet 2018], [Fellner, Morgan,
Tang, 2020]3.

3does not use the entropic structure
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L∞-estimates in parabolic SPDEs

Here also, there is a variety of approaches
1. De Giorgi’s iteration scheme [Dareiotis, Gerencsér, 2017],

[Hsu, Wang, Wang, 2017], [Qiu, 2020],
2. Moser’s approach by iterative estimates on the Lp-norms

[Denis, Matoussi, Stoica, 2005], [Wang, 2018], [Dareiotis,
Gess, 2019],

3. in [Debussche, de Moor, Hofmanová, 2015], the “Da Prato -
Debussche” trick is used, and estimates separately given on the
stochastic convolution and deterministic parabolic equations
(the latter exploiting in particular the theory [Ladyženskaja,
Solonnikov, Ural′ceva, 1968], where truncations as in De
Giorgi’s approach are used at some point).

4. Duality and Boccardo-Gallouët estimates [Leocata, Vovelle,
2023].



Some elementary facts

(on the deterministic system)



Some elementary facts

Case of equal diffusions: κi = κ for all i
Add up the four equations

∂tai − κ∆ai = (−1)i(a1a3 − a2a4), 1 ≤ i ≤ 4,

to obtain

∂tz − κ∆z = 0 z =
4∑
i=1

ai.

Maximum principle on z and ai ≥ 0 imply the uniform bound
‖ai(t)‖L∞(Td) . 1.



Some elementary facts

Conservation of mass
Add up the four equations

∂tai − div(κi∇ai) = (−1)i(a1a3 − a2a4),

to obtain

∂tz −∆(Kz) = 0 z =

4∑
i=1

ai, K =

4∑
i=1

ai
z
κi.

In particular, ∫
Td
z(x, t)dt =

∫
Td
z(x, 0)dx,

for all t.



Some elementary facts

Entropy estimate
Multiply each equation

∂tai − div(κi∇ai) = (−1)i(a1a3 − a2a4),

by log(ai) and sum up the result to obtain (after integration):

∫
Td
H(a)(t)dx+

∫∫
Qt

4∑
i=1

κi
|∇ai|2

ai
dxds

=

∫
Td
H(a)(0)dx−

∫∫
Qt

4∑
i=1

(a1a3−a2a4)(log(a1a3)−log(a2a4))dxds,

where H(a) :=
∑4

i=1(ai log(ai)− ai + 1) ≥ 0.



Sooner to come



Main result and main steps of the proof



Main result

Theorem
Assume d ≤ 2. Let a be a regular solution defined up to the
blow-up time τ . There exists a constant C ≥ 0 depending on d and
(κi)1≤i≤4 only such that, if

Cν ≤ 1, (3)

then
E
[
log
(

log
(
‖a‖L∞(Td×(0,τ))

))]
. 1, (4)

and thus τ = +∞ a.s.



Ingredient 1

Entropy estimate
Remember the deterministic entropy equation

∫
Td
H(a)(t)dx+

∫∫
Qt

4∑
i=1

κi
|∇ai|2

ai
dxds

=

∫
Td
H(a)(0)dx−

∫∫
Qt

4∑
i=1

(a1a3−a2a4)(log(a1a3)−log(a2a4))dxds,

where

H(a) :=

4∑
i=1

(ai log(ai)− ai + 1).



Ingredient 1

Entropy estimate
For the stochastic system, we get

E
[∫

Td
H(a)(t)dx

]
+ E

∫∫
Qt

4∑
i=1

κi
|∇ai|2

ai
dxds

= E
[∫

Td
H(a)(0)dx

]
+
ν

2
E
∫∫

Qt

∑
i,α

|σαi (ai)|2

ai
dxds

− E
∫∫

Qt

4∑
i=1

(a1a3 − a2a4)(log(a1a3)− log(a2a4))dxds,

and after suitable estimates...
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Taking also into account the martingale term, we get similar
estimates on the moments of the entropy and entropy dissipation.
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Ingredient 2

An L2 estimate by duality
Remember the equation for the total mass (in the deterministic
case)

∂tz −∆(Kz) = 0 z =

4∑
i=1

ai, K =

4∑
i=1

ai
z
κi, (5)

In (5), the coefficient K is measurable, bounded from above and
from below:

min
1≤i≤4

κi ≤ K(x, t) ≤ max
1≤i≤4

κi.

This allows for an estimate by duality.



Ingredient 2

An L2 estimate by duality
For the dual equation

∂tψ +K∆ψ = H, H given, ψ(T ) = 0, (6)

we have the maximal regularity result

‖∂tψ‖L2(QT ) + ‖∆ψ‖L2(QT ) . ‖H‖L2(QT ),

from which follows the bound

sup
t∈[0,T ]

‖ψ‖L2(Td) + ‖ψ‖L2(0,T ;W 2,2(Td)) . ‖H‖L2(QT ),

which can be exploited to give in turn an estimate

‖z‖L2(Qt) . ‖z(0)‖L2(Td).



Ingredient 2

An L2 estimate by duality
Estimate

‖z‖L2(Qt) . ‖z(0)‖L2(Td).

Use a similar trick starting from the entropy equation, to obtain a
L2 log(L2) estimate. [Desvillettes, Fellner, Pierre, Vovelle 2007,
Global existence of weak solutions].



Ingredient 2

An L2 estimate by duality
For the stochastic system, this idea can still be exploited, by
considering the backward stochastic parabolic equation

dψ(t) +K∆ψ(t)dt = H(t)dt+ qα(t)dBα(t),

with terminal condition

ψ(T ) = 0, x ∈ Td.

We use the analysis by [Du, Tang 2012] in particular.



Ingredient 3

De Giorgi’s iteration scheme
[Goudon, Vasseur, 2010] Analysis of the decay in ξ of the entropy
truncated at level ξ:

H(a; ξ) :=

4∑
i=1

(1 + (ai − ξ)+) log(1 + (ai − ξ)+)− (ai − ξ)+.

Aim: show that the decay is fast enough to get cancellation for a
finite ξ̄:

H(a; ξ̄) = 0⇐⇒ ∀i, ai ≤ ξ̄.



Ingredient 3

Standard De Giorgi’s iteration scheme
Analysis of the energy truncated at level ξ:

E(u; ξ) :=

∫ ∣∣(u− ξ)+
∣∣2 dx,

where u solves the parabolic equation

∂tu− div(k∇u) = f, u|t=0 = 0.

Proposition: if k is measurable and λ ≤ k ≤ λ−1 for a constant
λ > 0, then, for all µ > 1 + d

2 , we have, for all T > 0,

‖u‖L∞(QT ) ≤ C(d, λ, µ, T )‖f‖Lµ(QT ).
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Ingredient 3

Supremum estimate for stochastic parabolic equations
Let u solve

du−∆udt = fdt+ gαdBα(t), u|t=0 = 0.

Proposition: for all µ > 1 + d
2 , we have, for all T > 0, for all p ≥ 1,

E
[
‖u‖pL∞(QT )

]
≤ C(d, λ, µ, T, P )

(
‖f‖Lµ(Ω×QT ) + ‖|g|`2‖L2µ(Ω×QT )

)p
. (7)

Proof: [Dareiotis, Gess, 2019] (Moser’s technique), [Hsu, Wang,
Wang, 2017] (where µ = +∞, and deterministic bound on the
data, De Giorgi’s technique & exponential martingale inequalities).
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Ingredient 3

Proof
[Leocata, Vovelle, 2023] Extension of [Hsu, Wang, Wang, 2017]
(any admissible exponent µ) by De Giorgi’s approach.

Alternative proof by duality and Boccardo-Gallouët estimates:
Proposition [Boccardo, Gallouët, 1989]: let ψ solve

∂tψ + ∆ψ = 0 in Td × (0, T ),

with terminal condition ψ(T ) = φ ∈ L1(Td). For any exponent

1 ≤ r < pF :=
d+ 2

d

we have
‖ψ‖Lr(QT ) ≤ C(d, r)‖φ‖L1(Td).
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Ingredient 3

Proposition [Boccardo, Gallouët, 1989]: let ψ solve

∂tψ + ∆ψ = 0 in Td × (0, T ),

with terminal condition ψ(T ) = φ ∈ L1(Td). Then, for any
exponent

1 ≤ r < pF :=
d+ 2

d
,

we have
‖ψ‖Lr(QT ) ≤ C(d, r)‖φ‖L1(Td).

Remark: p′F = 1 + d
2 (threshold for L∞ estimate).

Adaptation to the stochastic case: use a backward SPDE again!.
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Open questions

1. Case d ≥ 3 of course. Other boundary conditions.

2. Space-time white noise.

3. Large-time behaviour and, for possibly different stochastic
systems of reaction-diffusion equations, study of pattern
formation [Hausenblas, Randrianasolo, Thalhammer, 2020].



Thanks for your attention!

Welcome to the cocktail-dinner! Santé ! Kanpai !
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