# Global solutions to quadratic systems of stochastic reaction-diffusion equations in space-dimension two 

Marta Leocata ${ }^{1}$ and Julien Vovelle ${ }^{2}$

French Japanese Conference on Probability \& Interactions, IHES, March 2024

[^0]
## Plan of the talk

1. Modelling of chemical reactions
2. Stochastic system of reaction-diffusion equations
3. Some elementary facts
4. Main result and main steps of the proof

Modelling of chemical reactions

## Modelling of chemical reactions

Probabilistic modelling: jump process on a family of $N$ particles.

## Modelling of chemical reactions

Probabilistic modelling: jump process on a family of $N$ particles.
Deterministic modelling (in most cases, limit $N$ large of the probabilistic modelling): systems of ODEs/ system of reaction-diffusion equations (PDEs) if displacement is taken into account.

## Modelling of chemical reactions

Probabilistic modelling:
jump process on a family of $N$ particles.
Deterministic modelling:
(in most cases, limit $N$ large of the probabilistic modelling) systems of ODEs/ system of reaction-diffusion equations (PDEs) if displacement is taken into account.

## Related Questions:

1. Justify the limit $N \rightarrow+\infty$ : [Ethier-Kurtz 1986], [Oelschläger 1989], [Lim, Lu, Nolen 2020].

## Modelling of chemical reactions

Probabilistic modelling: jump process on a family of $N$ particles.

## Deterministic modelling:

(in most cases, limit $N$ large of the probabilistic modelling) systems of ODEs/ system of reaction-diffusion equations (PDEs) if displacement is taken into account.

## Related Questions:

1. Justify the limit $N \rightarrow+\infty$ : [Ethier-Kurtz 1986], [Oelschläger 1989], [Lim, Lu, Nolen 2020].
2. Study the system of reaction-diffusion equations, in particular: impact of the structure of the system on the existence of global weak/classical solutions (and subsequently, large-time behaviour). [...], [Survey M. Pierre 2010].

## Modelling of chemical reactions: second-order approximation

Consider the binary reversible chemical reaction

$$
A_{1}+A_{3} \rightleftharpoons A_{2}+A_{4}
$$

Each reaction happens at a random exponential time, with rates

$$
r_{\rightarrow}=\lambda_{\rightarrow} \frac{1}{N} N_{1} N_{3}, \quad r_{\leftarrow}=\lambda_{\leftarrow} \frac{1}{N} N_{2} N_{4},
$$

where $N$ is the total number of reactants and $N_{i}$ the number of molecules of type $i$.

Modelling of chemical reactions: second-order approximation

Generator $\mathscr{L}_{N}$ of the rescaled process $A_{N}(t)=\left(N_{i}(t) / N\right)_{1 \leq i \leq 4}$ :

$$
\mathscr{L}_{N} \varphi(a)=\sum_{\ell} N \eta_{\ell}(a)[\varphi(a+\ell / N)-\varphi(a)]
$$

where $a \in \mathbb{R}^{4}$,

$$
\ell_{\rightarrow}=(-1,1,-1,1), \quad \ell_{\leftarrow}=-\ell_{\rightarrow},
$$

and (with $\lambda_{\rightarrow}=\lambda_{\leftarrow}=1$ )

$$
\eta_{\ell_{\rightarrow}}(a)=a_{1} a_{3}, \quad \eta_{\ell_{\leftarrow}}(a)=a_{2} a_{4} .
$$

Modelling of chemical reactions: second-order approximation

Expand $\mathscr{L}_{N}$ :
$\mathscr{L}_{N} \varphi(a)=f(a) \cdot D_{a} \varphi(a)+\frac{1}{N} \sum_{\ell} \eta_{\ell}(a) \ell \ell^{*}: D_{a}^{2} \varphi(a)+\mathcal{O}\left(\frac{1}{N^{2}}\right)$,
where

$$
f(a)=\sum_{\ell} \ell \eta_{\ell}(a), \quad A: B=\sum_{i, j} A_{i j} B_{i j} .
$$

Modelling of chemical reactions: second-order approximation

Expand $\mathscr{L}_{N}$ :
$\mathscr{L}_{N} \varphi(a)=f(a) \cdot D_{a} \varphi(a)+\frac{1}{N} \sum_{\ell} \eta_{\ell}(a) \ell \ell^{*}: D_{a}^{2} \varphi(a)+\mathcal{O}\left(\frac{1}{N^{2}}\right)$,
where

$$
f(a)=\sum_{\ell} \ell \eta_{\ell}(a), \quad A: B=\sum_{i, j} A_{i j} B_{i j} .
$$

At first order:

$$
\mathscr{L} \varphi(a)=f(a) \cdot D_{a} \varphi(a)
$$

is the generator associated to the ODE

$$
\frac{d a}{d t}=f(a)
$$

## Modelling of chemical reactions: second-order approximation

 Expand $\mathscr{L}_{N}$ :$\mathscr{L}_{N} \varphi(a)=f(a) \cdot D_{a} \varphi(a)+\frac{1}{N} \sum_{\ell} \eta_{\ell}(a) \ell \ell^{*}: D_{a}^{2} \varphi(a)+\mathcal{O}\left(\frac{1}{N^{2}}\right)$,
where

$$
f(a)=\sum_{\ell} \ell \eta_{\ell}(a), \quad A: B=\sum_{i, j} A_{i j} B_{i j} .
$$

At second order (diffusion-approximation):

$$
\mathscr{L} \varphi(a)=f(a) \cdot D_{a} \varphi(a)+\frac{1}{N} \sum_{\ell} \eta_{\ell}(a) \ell \ell^{*}: D_{a}^{2} \varphi(a)
$$

is the generator associated to the SDE

$$
d a=f(a) d t+\sqrt{\frac{2}{N}} \sum_{\ell} \ell \sqrt{\eta_{\ell}(a(t))} d B_{\ell}(t)
$$

where the $\left(B_{\ell}\right)_{\ell}$ are independent one-dimensional Wiener processes.

## Soon to come



Stochastic system of reaction-diffusion equations

## Stochastic system of reaction-diffusion equations

On the torus $\mathbb{T}^{d}$, we consider the system

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t)
$$

with initial data

$$
a_{i}(0)=a_{i 0}, \quad a_{i 0}: \mathbb{T}^{d} \rightarrow \mathbb{R}_{+},
$$

for $i=1, \ldots, 4$, where

$$
f_{i}(a)=(-1)^{i}\left(a_{1} a_{3}-a_{2} a_{4}\right)
$$

## Stochastic system of reaction-diffusion equations

On the torus $\mathbb{T}^{d}$, we consider the system

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t)
$$

with initial data

$$
a_{i}(0)=a_{i 0}, \quad a_{i 0}: \mathbb{T}^{d} \rightarrow \mathbb{R}_{+},
$$

for $i=1, \ldots, 4$, where

$$
f_{i}(a)=(-1)^{i}\left(a_{1} a_{3}-a_{2} a_{4}\right) .
$$

The diffusion coefficients $\kappa_{i}$ are positive constants, $\nu$ is a small constant (remember the factor $N^{-1}$ in the second-order expansion).

## Stochastic system of reaction-diffusion equations

System

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t)
$$

## Stochastic system of reaction-diffusion equations

System

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t) .
$$

Finite number of independent one-dimensional Wiener processes $\left\{B_{\alpha} ; 1 \leq \alpha \leq d_{W}\right\}$.

## Stochastic system of reaction-diffusion equations

Coefficients $\sigma_{i}^{\alpha}(a)$ of the type

$$
\sigma_{i}^{1}(a)=(-1)^{i} \sqrt{a_{1} a_{3}}, \quad \sigma_{i}^{2}(a)=(-1)^{i} \sqrt{a_{2} a_{4}}, \quad \sigma_{i}^{\alpha}=0, \forall \alpha \geq 3
$$

However, we need the cancellation condition

$$
\begin{equation*}
a_{i}=0 \Rightarrow \sigma_{i}^{\alpha}(a)=0, \forall i, \alpha \tag{1}
\end{equation*}
$$

to ensure that the solutions stay non-negative, so asymptotic structure only: for $\alpha \in \mathbb{N} \backslash\{0\}, \sigma_{i}^{\alpha}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a smooth function satisfying (1) and the growth condition

$$
\begin{equation*}
\forall i, \sum_{\alpha}\left|\sigma_{i}^{\alpha}(a)\right|^{2} \leq\left(a_{1} a_{3}+a_{2} a_{4}\right) \tag{2}
\end{equation*}
$$

## Global existence of regular solutions

Suppose that the initial data $a_{i 0}$ are smooth: $a_{i 0} \in C^{\infty}\left(\mathbb{T}^{d}\right)$.
Central question: does the system

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t)
$$

with initial data

$$
a_{i}(0)=a_{i 0}
$$

admit global smooth solutions?

## Global existence of regular solutions

Suppose that the initial data $a_{i 0}$ are smooth: $a_{i 0} \in C^{\infty}\left(\mathbb{T}^{d}\right)$.
Central question: does the system

$$
d a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right) d t=f_{i}(a) d t+\sqrt{\nu} \sigma_{i}^{\alpha}(a) d B_{\alpha}(t)
$$

with initial data

$$
a_{i}(0)=a_{i 0},
$$

admit global smooth solutions?
This question is related to the following topics:

1. Global existence for deterministic systems of reaction-diffusion equations,
2. Maximum principle, $L^{\infty}$-estimates for parabolic scalar equations.

## Global existence of smooth solutions for the (deterministic) four-species quadratic reaction-diffusion system

A variety of approaches:

1. De Giorgi's iteration scheme, based on truncation of the entropy [Goudon, Vasseur 2010, d=1,2], [Caputo, Goudon, Vasseur, 2017].
2. Maximum principle, gain of regularity in parabolic equations, interpolation [Kanel 1990], [Souplet 2018], [Fellner, Morgan, Tang, 2020] ${ }^{3}$.
[^1]
## Global existence of smooth solutions for the (deterministic) four-species quadratic reaction-diffusion system

A variety of approaches:

1. De Giorgi's iteration scheme, based on truncation of the entropy [Goudon, Vasseur 2010, d=1,2], [Caputo, Goudon, Vasseur, 2017].
2. Maximum principle, gain of regularity in parabolic equations, interpolation [Kanel 1990], [Souplet 2018], [Fellner, Morgan, Tang, 2020] ${ }^{4}$.
[^2]
## $L^{\infty}$-estimates in parabolic SPDEs

Here also, there is a variety of approaches

1. De Giorgi's iteration scheme [Dareiotis, Gerencsér, 2017], [Hsu, Wang, Wang, 2017], [Qiu, 2020],
2. Moser's approach by iterative estimates on the $L^{p}$-norms [Denis, Matoussi, Stoica, 2005], [Wang, 2018], [Dareiotis, Gess, 2019],
3. in [Debussche, de Moor, Hofmanová, 2015], the "Da Prato Debussche" trick is used, and estimates separately given on the stochastic convolution and deterministic parabolic equations (the latter exploiting in particular the theory [Ladyženskaja, Solonnikov, Ural'ceva, 1968], where truncations as in De Giorgi's approach are used at some point).
4. Duality and Boccardo-Gallouët estimates [Leocata, Vovelle, 2023].

## Some elementary facts

(on the deterministic system)

## Some elementary facts

Case of equal diffusions: $\kappa_{i}=\kappa$ for all $i$
Add up the four equations

$$
\partial_{t} a_{i}-\kappa \Delta a_{i}=(-1)^{i}\left(a_{1} a_{3}-a_{2} a_{4}\right), \quad 1 \leq i \leq 4
$$

to obtain

$$
\partial_{t} z-\kappa \Delta z=0 \quad z=\sum_{i=1}^{4} a_{i}
$$

Maximum principle on $z$ and $a_{i} \geq 0$ imply the uniform bound $\left\|a_{i}(t)\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \lesssim 1$.

## Some elementary facts

Conservation of mass
Add up the four equations

$$
\partial_{t} a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right)=(-1)^{i}\left(a_{1} a_{3}-a_{2} a_{4}\right),
$$

to obtain

$$
\partial_{t} z-\Delta(K z)=0 \quad z=\sum_{i=1}^{4} a_{i}, \quad K=\sum_{i=1}^{4} \frac{a_{i}}{z} \kappa_{i} .
$$

In particular,

$$
\int_{\mathbb{T}^{d}} z(x, t) d t=\int_{\mathbb{T}^{d}} z(x, 0) d x,
$$

for all $t$.

## Some elementary facts

## Entropy estimate

Multiply each equation

$$
\partial_{t} a_{i}-\operatorname{div}\left(\kappa_{i} \nabla a_{i}\right)=(-1)^{i}\left(a_{1} a_{3}-a_{2} a_{4}\right),
$$

by $\log \left(a_{i}\right)$ and sum up the result to obtain (after integration):

$$
\begin{aligned}
& \int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x+\iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
= & \int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x-\iint_{Q_{t}} \sum_{i=1}^{4}\left(a_{1} a_{3}-a_{2} a_{4}\right)\left(\log \left(a_{1} a_{3}\right)-\log \left(a_{2} a_{4}\right)\right) d x d s
\end{aligned}
$$

where $\mathcal{H}(a):=\sum_{i=1}^{4}\left(a_{i} \log \left(a_{i}\right)-a_{i}+1\right) \geq 0$.

## Sooner to come



Main result and main steps of the proof

## Main result

Theorem
Assume $d \leq 2$. Let $a$ be a regular solution defined up to the blow-up time $\tau$. There exists a constant $C \geq 0$ depending on $d$ and $\left(\kappa_{i}\right)_{1 \leq i \leq 4}$ only such that, if

$$
\begin{equation*}
C \nu \leq 1, \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{E}\left[\log \left(\log \left(\|a\|_{L^{\infty}\left(\mathbb{T}^{d} \times(0, \tau)\right)}\right)\right)\right] \lesssim 1 \tag{4}
\end{equation*}
$$

and thus $\tau=+\infty$ a.s.

## Ingredient 1

## Entropy estimate

Remember the deterministic entropy equation

$$
\begin{aligned}
& \int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x+\iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
= & \int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x-\iint_{Q_{t}} \sum_{i=1}^{4}\left(a_{1} a_{3}-a_{2} a_{4}\right)\left(\log \left(a_{1} a_{3}\right)-\log \left(a_{2} a_{4}\right)\right) d x d s
\end{aligned}
$$

where

$$
\mathcal{H}(a):=\sum_{i=1}^{4}\left(a_{i} \log \left(a_{i}\right)-a_{i}+1\right)
$$

## Ingredient 1

## Entropy estimate

For the stochastic system, we get

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x\right]+\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
& \quad=\mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x\right]+\frac{\nu}{2} \mathbb{E} \iint_{Q_{t}} \sum_{i, \alpha} \frac{\left|\sigma_{i}^{\alpha}\left(a_{i}\right)\right|^{2}}{a_{i}} d x d s \\
& \quad-\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4}\left(a_{1} a_{3}-a_{2} a_{4}\right)\left(\log \left(a_{1} a_{3}\right)-\log \left(a_{2} a_{4}\right)\right) d x d s
\end{aligned}
$$

## Ingredient 1

## Entropy estimate

For the stochastic system, we get

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x\right]+\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
& \quad=\mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x\right]+\frac{\nu}{2} \mathbb{E} \iint_{Q_{t}} \sum_{i, \alpha} \frac{\left|\sigma_{i}^{\alpha}\left(a_{i}\right)\right|^{2}}{a_{i}} d x d s \\
& \quad-\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4}\left(a_{1} a_{3}-a_{2} a_{4}\right)\left(\log \left(a_{1} a_{3}\right)-\log \left(a_{2} a_{4}\right)\right) d x d s
\end{aligned}
$$

and after suitable estimates...

## Ingredient 1

Entropy estimate

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x\right]+\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
& \lesssim \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x\right]
\end{aligned}
$$

## Ingredient 1

Entropy estimate

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(t) d x\right]+\mathbb{E} \iint_{Q_{t}} \sum_{i=1}^{4} \kappa_{i} \frac{\left|\nabla a_{i}\right|^{2}}{a_{i}} d x d s \\
& \lesssim \mathbb{E}\left[\int_{\mathbb{T}^{d}} \mathcal{H}(a)(0) d x\right]
\end{aligned}
$$

Taking also into account the martingale term, we get similar estimates on the moments of the entropy and entropy dissipation.

## Ingredient 2

An $L^{2}$ estimate by duality
Remember the equation for the total mass (in the deterministic case)

$$
\begin{equation*}
\partial_{t} z-\Delta(K z)=0 \quad z=\sum_{i=1}^{4} a_{i}, \quad K=\sum_{i=1}^{4} \frac{a_{i}}{z} \kappa_{i}, \tag{5}
\end{equation*}
$$

In (5), the coefficient $K$ is measurable, bounded from above and from below:

$$
\min _{1 \leq i \leq 4} \kappa_{i} \leq K(x, t) \leq \max _{1 \leq i \leq 4} \kappa_{i}
$$

This allows for an estimate by duality.

## Ingredient 2

An $L^{2}$ estimate by duality
For the dual equation

$$
\begin{equation*}
\partial_{t} \psi+K \Delta \psi=H, \quad H \text { given, } \psi(T)=0 \tag{6}
\end{equation*}
$$

we have the maximal regularity result

$$
\left\|\partial_{t} \psi\right\|_{L^{2}\left(Q_{T}\right)}+\|\Delta \psi\|_{L^{2}\left(Q_{T}\right)} \lesssim\|H\|_{L^{2}\left(Q_{T}\right)}
$$

from which follows the bound

$$
\sup _{t \in[0, T]}\|\psi\|_{L^{2}\left(\mathbb{T}^{d}\right)}+\|\psi\|_{L^{2}\left(0, T ; W^{2,2}\left(\mathbb{T}^{d}\right)\right)} \lesssim\|H\|_{L^{2}\left(Q_{T}\right)}
$$

which can be exploited to give in turn an estimate

$$
\|z\|_{L^{2}\left(Q_{t}\right)} \lesssim\|z(0)\|_{L^{2}\left(\mathbb{T}^{d}\right)}
$$

## Ingredient 2

An $L^{2}$ estimate by duality
Estimate

$$
\|z\|_{L^{2}\left(Q_{t}\right)} \lesssim\|z(0)\|_{L^{2}\left(\mathbb{T}^{d}\right)} .
$$

Use a similar trick starting from the entropy equation, to obtain a $L^{2} \log \left(L^{2}\right)$ estimate. [Desvillettes, Fellner, Pierre, Vovelle 2007, Global existence of weak solutions].

## Ingredient 2

An $L^{2}$ estimate by duality
For the stochastic system, this idea can still be exploited, by considering the backward stochastic parabolic equation

$$
d \psi(t)+K \Delta \psi(t) d t=H(t) d t+q^{\alpha}(t) d B_{\alpha}(t)
$$

with terminal condition

$$
\psi(T)=0, \quad x \in \mathbb{T}^{d}
$$

We use the analysis by [Du, Tang 2012] in particular.

## Ingredient 3

De Giorgi's iteration scheme
[Goudon, Vasseur, 2010] Analysis of the decay in $\xi$ of the entropy truncated at level $\xi$ :

$$
\mathcal{H}(a ; \xi):=\sum_{i=1}^{4}\left(1+\left(a_{i}-\xi\right)^{+}\right) \log \left(1+\left(a_{i}-\xi\right)^{+}\right)-\left(a_{i}-\xi\right)^{+} .
$$

Aim: show that the decay is fast enough to get cancellation for a finite $\bar{\xi}$ :

$$
\mathcal{H}(a ; \bar{\xi})=0 \Longleftrightarrow \forall i, a_{i} \leq \bar{\xi}
$$

## Ingredient 3

Standard De Giorgi's iteration scheme
Analysis of the energy truncated at level $\xi$ :

$$
\mathcal{E}(u ; \xi):=\int\left|(u-\xi)^{+}\right|^{2} d x
$$

where $u$ solves the parabolic equation

$$
\partial_{t} u-\operatorname{div}(k \nabla u)=f,\left.\quad u\right|_{t=0}=0 .
$$

## Ingredient 3

## Standard De Giorgi's iteration scheme

Analysis of the energy truncated at level $\xi$ :

$$
\mathcal{E}(u ; \xi):=\int\left|(u-\xi)^{+}\right|^{2} d x
$$

where $u$ solves the parabolic equation

$$
\partial_{t} u-\operatorname{div}(k \nabla u)=f,\left.\quad u\right|_{t=0}=0 .
$$

Proposition: if $k$ is measurable and $\lambda \leq k \leq \lambda^{-1}$ for a constant $\lambda>0$, then, for all $\mu>1+\frac{d}{2}$, we have, for all $T>0$,

$$
\|u\|_{L^{\infty}\left(Q_{T}\right)} \leq C(d, \lambda, \mu, T)\|f\|_{L^{\mu}\left(Q_{T}\right)}
$$

## Ingredient 3

Supremum estimate for stochastic parabolic equations
Let $u$ solve

$$
d u-\Delta u d t=f d t+g^{\alpha} d B_{\alpha}(t),\left.\quad u\right|_{t=0}=0
$$

Proposition: for all $\mu>1+\frac{d}{2}$, we have, for all $T>0$, for all $p \geq 1$,

$$
\begin{align*}
& \mathbb{E}\left[\|u\|_{L^{\infty}\left(Q_{T}\right)}^{p}\right] \\
& \quad \leq C(d, \lambda, \mu, T, P)\left(\|f\|_{L^{\mu}\left(\Omega \times Q_{T}\right)}+\left\||g|_{\ell^{2}}\right\|_{L^{2 \mu}\left(\Omega \times Q_{T}\right)}\right)^{p} \tag{7}
\end{align*}
$$

## Ingredient 3

Supremum estimate for stochastic parabolic equations
Let $u$ solve

$$
d u-\Delta u d t=f d t+g^{\alpha} d B_{\alpha}(t),\left.\quad u\right|_{t=0}=0
$$

Proposition: for all $\mu>1+\frac{d}{2}$, we have, for all $T>0$, for all $p \geq 1$,

$$
\begin{align*}
& \mathbb{E}\left[\|u\|_{L^{\infty}\left(Q_{T}\right)}^{p}\right] \\
& \quad \leq C(d, \lambda, \mu, T, P)\left(\|f\|_{L^{\mu}\left(\Omega \times Q_{T}\right)}+\left\||g|_{\ell^{2}}\right\|_{L^{2 \mu}\left(\Omega \times Q_{T}\right)}\right)^{p} \tag{7}
\end{align*}
$$

Proof: [Dareiotis, Gess, 2019] (Moser's technique), [Hsu, Wang, Wang, 2017] (where $\mu=+\infty$, and deterministic bound on the data, De Giorgi's technique \& exponential martingale inequalities).

## Ingredient 3

Proof
[Leocata, Vovelle, 2023] Extension of [Hsu, Wang, Wang, 2017] (any admissible exponent $\mu$ ) by De Giorgi's approach.

## Ingredient 3

## Proof

[Leocata, Vovelle, 2023] Extension of [Hsu, Wang, Wang, 2017] (any admissible exponent $\mu$ ) by De Giorgi's approach.

Alternative proof by duality and Boccardo-Gallouët estimates:
Proposition [Boccardo, Gallouët, 1989]: let $\psi$ solve

$$
\partial_{t} \psi+\Delta \psi=0 \text { in } \mathbb{T}^{d} \times(0, T),
$$

with terminal condition $\psi(T)=\phi \in L^{1}\left(\mathbb{T}^{d}\right)$. For any exponent

$$
1 \leq r<p_{F}:=\frac{d+2}{d}
$$

we have

$$
\|\psi\|_{L^{r}\left(Q_{T}\right)} \leq C(d, r)\|\phi\|_{L^{1}\left(\mathbb{T}^{d}\right)}
$$

## Ingredient 3

Proposition [Boccardo, Gallouët, 1989]: let $\psi$ solve

$$
\partial_{t} \psi+\Delta \psi=0 \text { in } \mathbb{T}^{d} \times(0, T)
$$

with terminal condition $\psi(T)=\phi \in L^{1}\left(\mathbb{T}^{d}\right)$. Then, for any exponent

$$
1 \leq r<p_{F}:=\frac{d+2}{d}
$$

we have

$$
\|\psi\|_{L^{r}\left(Q_{T}\right)} \leq C(d, r)\|\phi\|_{L^{1}\left(\mathbb{T}^{d}\right)}
$$

Remark: $p_{F}^{\prime}=1+\frac{d}{2}$ (threshold for $L^{\infty}$ estimate).

## Ingredient 3

Proposition [Boccardo, Gallouët, 1989]: let $\psi$ solve

$$
\partial_{t} \psi+\Delta \psi=0 \text { in } \mathbb{T}^{d} \times(0, T)
$$

with terminal condition $\psi(T)=\phi \in L^{1}\left(\mathbb{T}^{d}\right)$. Then, for any exponent

$$
1 \leq r<p_{F}:=\frac{d+2}{d}
$$

we have

$$
\|\psi\|_{L^{r}\left(Q_{T}\right)} \leq C(d, r)\|\phi\|_{L^{1}\left(\mathbb{T}^{d}\right)}
$$

Remark: $p_{F}^{\prime}=1+\frac{d}{2}$ (threshold for $L^{\infty}$ estimate).
Adaptation to the stochastic case: use a backward SPDE again!.

## Open questions

1. Case $d \geq 3$ of course. Other boundary conditions.
2. Space-time white noise.
3. Large-time behaviour and, for possibly different stochastic systems of reaction-diffusion equations, study of pattern formation [Hausenblas, Randrianasolo, Thalhammer, 2020].

Thanks for your attention!
Welcome to the cocktail-dinner! Santé! Kanpai!



[^0]:    ${ }^{1}$ LUISS, Roma
    ${ }^{2}$ CNRS, ENS de Lyon

[^1]:    ${ }^{3}$ does not use the entropic structure

[^2]:    ${ }^{4}$ does not use the entropic structure

