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Modelling of chemical reactions

Probabilistic modelling:

jump process on a family of N particles.

Deterministic modelling:

(in most cases, limit N large of the probabilistic modelling) systems
of ODEs/ system of reaction-diffusion equations (PDEs) if
displacement is taken into account.

Related Questions:

1. Justify the limit N — +o00: [Ethier-Kurtz 1986], [Oelschlager
1989], [Lim, Lu, Nolen 2020].

2. Study the system of reaction-diffusion equations, in particular:
impact of the structure of the system on the existence of
global weak/classical solutions (and subsequently, large-time
behaviour). [...], [Survey M. Pierre 2010].



Modelling of chemical reactions: second-order approximation

Consider the binary reversible chemical reaction
A1+ As = As + Ay
Each reaction happens at a random exponential time, with rates
r, = /\_>iN1N3, ro = )\<_iN2N4,
N N

where N is the total number of reactants and N; the number of
molecules of type 7.



Modelling of chemical reactions: second-order approximation

Generator £y of the rescaled process Ay (t) = (Ni(t)/N)i<i<a:

Znp(a ZNW pla+E/N) —p(a)],

where a € R?,
= (—]-a 1,-1, 1)a b =—Ll,

ne_,(a) = araz, ne_(a) = azay.
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where

fla) = ang(a), A:B= ZAijBij~
)4

i,J
At first order:
Zp(a) = f(a) - Dawp(a)
is the generator associated to the ODE

da
a = f(a).



Modelling of chemical reactions: second-order approximation
Expand Zy:

Lupla) = @) Dupla) + 5 S mla)t”: Dipla) + 0 (11 ).
0

where
f(a) = Zﬁng(a), A:B= ZAZJBZ]
14 &J
At second order (diffusion-approximation):

1 * 2
Zp(a) = f(a) - Dapla) + & %: ne(a)ll” : Digp(a)
is the generator associated to the SDE

da = f(@)dt + | = 3 e/n(a®)dBe(t),
N
V4

where the (By), are independent one-dimensional Wiener processes.



Soon to come
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Stochastic system of reaction-diffusion equations

On the torus T%, we consider the system
da; — div (k;Va;) dt = fi(a)dt + /vo(a)dBa(t),
with initial data
ai(0) = ajo, ai: T — R,
fori=1,...,4, where
fi(a) = (=1)'(a1a3 — azay).

The diffusion coefficients x; are positive constants, v is a small
constant (remember the factor N1 in the second-order expansion).
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Stochastic system of reaction-diffusion equations

System

da; — div (k;Va;) dt = fi(a)dt + Vvol(a)dB,(1).

Finite number of independent one-dimensional Wiener processes
{Ba;1 < a <dw}.



Stochastic system of reaction-diffusion equations

Coefficients of*(a) of the type
ola) = (~1)'Vaas, o¥a) = (~1)'Vazai, of =0, Ya > 3.
However, we need the cancellation condition

a; =0=0i(a) =0, Vi,« (1)

to ensure that the solutions stay non-negative, so asymptotic
structure only: for a € N'\ {0}, 0#: R — R is a smooth function
satisfying (1) and the growth condition

Vi, > lof(a)? < (aras + azas). (2)
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Suppose that the initial data a; are smooth: a;y € C*°(T9).
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with initial data
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Global existence of regular solutions

Suppose that the initial data a; are smooth: a;y € C*°(T9).

Central question: does the system

da; — div (k;Va;) dt = fi(a)dt + vod(a)dBa(t),

with initial data
a;(0) = ao,

admit global smooth solutions?

This question is related to the following topics:
1. Global existence for deterministic systems of reaction-diffusion
equations,
2. Maximum principle, L>°-estimates for parabolic scalar
equations.



Global existence of smooth solutions for the (deterministic)
four-species quadratic reaction-diffusion system

A variety of approaches:

1. De Giorgi's iteration scheme, based on truncation of the
entropy [Goudon, Vasseur 2010, d=1,2], [Caputo, Goudon,
Vasseur, 2017].

2. Maximum principle, gain of regularity in parabolic equations,
interpolation [Kanel 1990], [Souplet 2018], [Fellner, Morgan,
Tang, 2020]3.

3does not use the entropic structure
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L>-estimates in parabolic SPDEs

Here also, there is a variety of approaches

1. De Giorgi's iteration scheme [Dareiotis, Gerencsér, 2017],
[Hsu, Wang, Wang, 2017], [Qiu, 2020],

2. Moser's approach by iterative estimates on the LP-norms
[Denis, Matoussi, Stoica, 2005], [Wang, 2018], [Dareiotis,
Gess, 2019],

3. in [Debussche, de Moor, Hofmanova, 2015], the “Da Prato -
Debussche” trick is used, and estimates separately given on the
stochastic convolution and deterministic parabolic equations
(the latter exploiting in particular the theory [Ladyzenskaja,
Solonnikov, Ural’ceva, 1968], where truncations as in De
Giorgi's approach are used at some point).

4. Duality and Boccardo-Gallouét estimates [Leocata, Vovelle,
2023).



Some elementary facts

(on the deterministic system)



Some elementary facts

Case of equal diffusions: k; = « for all 4
Add up the four equations

Ora; — kAa; = (—1)i(a1a3 —agay), 1<i<4,

to obtain A
Oz —kAz=0 z= Zai.
i=1
Maximum principle on z and a; > 0 imply the uniform bound
llai ()] oo (ray S 1.



Some elementary facts

Conservation of mass
Add up the four equations

Gtai — diV(Hivai) = (—l)i(alag — a2a4),

to obtain
4 4,
Oz — A(Kz)=0 z:z;ai, K:z;;/{i.
= 1=

In particular,

/Td 2z, t)dt = /Td 2(z,0)dz,

for all ¢.



Some elementary facts

Entropy estimate
Multiply each equation

Gtai — diV(Hivai) = (—1)i(a1a3 — a2a4),
by log(a;) and sum up the result to obtain (after integration):
a (t)dx+// Z W“" dzds
Qt 7» 1

= 0)dz— // Zalag agay)(log(ayas)—log(asay))dxds,

t =1

where H(a) := 31, (a;log(a;) — a; +1) > 0.



Sooner to come




Main result and main steps of the proof



Main result

Theorem

Assume d < 2. Let a be a regular solution defined up to the
blow-up time 7. There exists a constant C' > 0 depending on d and
(KZZ')ISI'SAL only such that, if

Cv <1, (3)

then
E [log (10g (||a||Loo(1rdx(o,T))>>} S, (4)

and thus 7 = +00 a.s.



Ingredient 1

Entropy estimate

Remember the deterministic entropy equation

da;+//t

0)dz— // Zalag agay)(log(aias)—log(agay))dxds,

t =1

dd

i=1

where
4

H(a) := Z(ai log(a;) —a; +1).

i=1



Ingredient 1

Entropy estimate
For the stochastic system, we get

E[ TdH(a)(t)dx] HE//Qtz Va Z|2dxd

=1

B lof (a;)]
_E[Tdy( dx}—i— E//tg o2 @)l* ;g

—E// Z aras — asay)(log(aras) — log(asay))dxds,
¢ =1




Ingredient 1

Entropy estimate
For the stochastic system, we get

E[ TdH(a)(t)dx] HE//Qtz Va Z|2d:cd

=1

B lof (a;)]
_E[Tdy( dx}—i— E//tg o2 @)l* ;g

—E// Z ajas — azaq)(log(aias) — log(azay))dxds,
¢ =1

and after suitable estimates...



Ingredient 1

Entropy estimate

E[ Td?—[(a)(t)dx] —i—IE//QtimWCZiFdxds

i=1

<E [ H(a)(O)dw]

Td



Ingredient 1

Entropy estimate

[ H(a dx]JrE//tZ Waz'dd

SE[

%(a)(())dx]

Td

Taking also into account the martingale term, we get similar
estimates on the moments of the entropy and entropy dissipation.



Ingredient 2

An L? estimate by duality

Remember the equation for the total mass (in the deterministic
case)

4 4
8tZ — A(KZ) =0 =z= Zai, K= Z %Hiv (5)
=1 =1

In (5), the coefficient K is measurable, bounded from above and
from below:

min k; < K(z,t) < max k;.

1<i<4 1<i<4

This allows for an estimate by duality.



Ingredient 2

An L? estimate by duality

For the dual equation
8t¢ + KAl/) = H, H given, ¢(T) =0, (6)
we have the maximal regularity result

10 L2 (@) + 1AV 2200y S 1H | 22(04)5

from which follows the bound

sup |9l L2eray + 19l L20,msw22(ray) S 1H ] 22(Q0)s
te[0,7

which can be exploited to give in turn an estimate

HZHLQ(Qt) S HZ(O)HLQ(W)‘



Ingredient 2

An L? estimate by duality
Estimate
HZHLQ(Qt) S HZ(O)HLQ(W)-
Use a similar trick starting from the entropy equation, to obtain a

L?log(L?) estimate. [Desvillettes, Fellner, Pierre, Vovelle 2007,
Global existence of weak solutions].



Ingredient 2

An L? estimate by duality

For the stochastic system, this idea can still be exploited, by
considering the backward stochastic parabolic equation

dy(t) + KAW(t)dt = H(t)dt + q*(t)dBa(t),
with terminal condition
Y(T) =0, =eT

We use the analysis by [Du, Tang 2012] in particular.



Ingredient 3

De Giorgi's iteration scheme

[Goudon, Vasseur, 2010] Analysis of the decay in £ of the entropy
truncated at level &:

4
H(a;€) =Y (14 (a; — &) log(1+ (a; = )F) = (@i — &)™

i=1

Aim: show that the decay is fast enough to get cancellation for a
finite &: ) )
H(a;€) =0 <= Vi, a; <&



Ingredient 3

Standard De Giorgi's iteration scheme
Analysis of the energy truncated at level &:

E(us &) == / ‘(u - f)+‘2d$,
where u solves the parabolic equation

Ou — div(kVu) = f,  ul=o = 0.



Ingredient 3

Standard De Giorgi's iteration scheme
Analysis of the energy truncated at level &:

E(us &) == / ‘(u - f)ﬂde‘,
where u solves the parabolic equation

Ou — div(kVu) = f,  ul=o = 0.

Proposition: if k is measurable and A < k < A~! for a constant
A >0, then, for all > 1+ g, we have, for all T > 0,

[ull oo (@ry < Cdy A s T f [l L (@)



Ingredient 3

Supremum estimate for stochastic parabolic equations
Let u solve

du — Audt = fdt + g*dB,(t), ul=o =0.
Proposition: for all pn > 1+ g, we have, for all T > 0, for all p > 1,

E [lull g
< C(d, M\ 1, T, P) (Il £l egoxqr) + gl ll2e@xon)” - (7)



Ingredient 3

Supremum estimate for stochastic parabolic equations
Let u solve

du — Audt = fdt + g“dB,(t), uli=0 = 0.

Proposition: for all pn > 1+ %, we have, for all T > 0, for all p > 1,

E [l[4l gy
< C(d, A, 1, T, P) (||l Logaxc@r) + gleel 2eox0m)” - (7)

Proof: [Dareiotis, Gess, 2019] (Moser's technique), [Hsu, Wang,
Wang, 2017] (where u = +00, and deterministic bound on the
data, De Giorgi's technique & exponential martingale inequalities).



Ingredient 3

Proof
[Leocata, Vovelle, 2023] Extension of [Hsu, Wang, Wang, 2017]
(any admissible exponent 1) by De Giorgi's approach.



Ingredient 3

Proof
[Leocata, Vovelle, 2023] Extension of [Hsu, Wang, Wang, 2017]
(any admissible exponent 1) by De Giorgi's approach.

Alternative proof by duality and Boccardo-Gallouét estimates:
Proposition [Boccardo, Gallouét, 1989]: let v solve

Oph + A =0 in T? x (0,7),
with terminal condition ¥ (T) = ¢ € L*(T¢). For any exponent

d+2

1<r<pp:= 4

we have
1] Lr@ry < Cd, )9l L1 (1a)-
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Remark: pf = 1+ ¢ (threshold for L estimate).



Ingredient 3

Proposition [Boccardo, Gallouét, 1989]: let 1) solve
Aph + A =0 in T x (0,7),

with terminal condition ¢ (T) = ¢ € L'(T%). Then, for any

exponent
d+2

1<r<pr:= 7

we have
1] r(@ry < Cd, )9l L1 (1a)-

Remark: pf = 1+ ¢ (threshold for L estimate).

Adaptation to the stochastic case: use a backward SPDE again!.



Open questions

1. Case d > 3 of course. Other boundary conditions.
2. Space-time white noise.
3. Large-time behaviour and, for possibly different stochastic

systems of reaction-diffusion equations, study of pattern
formation [Hausenblas, Randrianasolo, Thalhammer, 2020].



Thanks for your attention!

Welcome to the cocktail-dinner! Santé | Kanpai !
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