Random models on regularity-integrability structures

Masato Hoshino

Osaka University

7 March, 2024

Joint work with Ismaël Bailleul (Université de Bretagne Occidentale)

2 Setting and the main result

3 Proof of the main result

・ロト ・回 ト ・ ヨト ・

2 Setting and the main result

Proof of the main result

イロト イヨト イヨト イヨト

BPHZ theorem

We consider singular SPDEs with renormalization, e.g., the dynamical Φ^4 model

$$(\partial_t - \Delta)\phi = \xi - (\phi^3 - \infty \phi) \quad \text{on } (0, \infty) \times \mathbb{R}^d.$$

How to prove the renormalizability? We use the local expansion

$$\phi(\cdot) \simeq \sum_{\tau} \phi_{\tau}(x)(\Pi_x \tau)(\cdot) \quad \text{near each } x \in (0,\infty) \times \mathbb{R}^d$$

by explicit random objects $\Pi_x \tau$.

Analytic & Algebraic steps of Regularity Structures

If all random objects $\Pi_x \tau$ and the products of up to 3 of them "make sense" (well-defined via renormalization), then ϕ^3 also makes sense.

The topic of this talk is

Probabilistic step of Regularity Structures

How to build the random objects?

(= BPHZ (Bogoliubov–Parasiuk–Hepp–Zimmerman) theorem)

Main result (rough)

We consider a class of SPDEs

$$(\partial_t - \Delta)u = F(u, \nabla u, \xi) \quad \text{on } (0, \infty) \times \mathbb{R}^d,$$

where ξ is the space or space-time white noise and F is a polynomial of $u, \nabla u$, and ξ but may contain the factor f(u) for a sufficiently regular f if $u \in C^{0+}$.

Ingredients from Regularity Structures (defined later)

- A family \mathcal{F} of random objects (functionals of ξ) under consideration.
- An "expected regularity" $r: \mathcal{F} \to \mathbb{R}$.
- BPHZ model $\hat{\Pi}_x : \mathcal{F} \to \mathcal{S}'$ (uniquely defined from the law of ξ).

BPHZ Theorem (Hairer–Steele '23+, Bailleul–H '23+)

If $\inf r(\mathcal{F} \setminus \{\xi\}) > -\frac{d+2}{2}$, then $\hat{\Pi}_x \tau$ makes sense for each $\tau \in \mathcal{F}$.

- The result holds for many SPDEs: Φ^4_d (d < 4), 1d qgKPZ,...
- The same result holds for any stationary ξ satisfying Poincaré inequality.

(1) Feynman diagram approach. Stochastic estimates lead to the bounds of complicated iterated integrals \rightarrow Graph theoretical arguments.

- Direct calculations (Hairer '14, H '16,...) have limitations on the size of $\sharp \mathcal{F}$.
- A general proof by Chandra–Hairer '16+ is tough reading (at least for me).

(2) Diagram-free approach. An inductive proof based on Poincaré inequality: There exists a constant C > 0 and it holds that

$\mathbb{E}\big[|F(\xi) - \mathbb{E}[F(\xi)]|^2\big] \le C\mathbb{E}\big[\|\nabla F(\xi)\|_{L^2}^2\big]$

for any bounded and smooth cylindrical functions $F: \mathcal{S}'(\mathbb{R}^{1+d}) \to \mathbb{R}$, where ∇ is the gradient operator along Cameron–Martin space $L^2(\mathbb{R}^{1+d})$.

- Linares-Otto-Tempelmayr-Tsatsoulis '21+ (Multiindex structure).
- Hairer-Steele '23+ (Pointed modelled distributions).
- Bailleul-H '23+ (Regularity-Integrability Structure).

・ロト ・四ト ・ヨト ・ヨト

2 Setting and the main result

Proof of the main result

イロト イヨト イヨト イヨ

Settings

Key ingredients $\left| \mathcal{F}, r, \hat{\Pi} \right|$

Duhamel form

$$(\partial_t - \Delta)u = F(u, \nabla u, \xi)$$

$$\Leftrightarrow \quad u = I(F(u, \nabla u, \xi)) + (i.c.) \qquad (I = (\partial_t - \Delta)^{-1})$$

• Given $F(u, \nabla u, \xi)$, we define a family \mathcal{F} of ξ -functionals sufficiently large to express the Duhamel equation. For example, if $F = -u^3 + \xi$, we can recursively define \mathcal{F} by

(1)
$$\xi \in \mathcal{F}$$
,
(2) $\tau_1, \tau_2, \tau_3 \in \mathcal{F} \implies I(\tau_1), I(\tau_1)I(\tau_2), I(\tau_1)I(\tau_2)I(\tau_3) \in \mathcal{F}$,
(3) $(+ "Polynomials")$

Thus $\mathcal{F} = \{\xi, I(\xi), I(\xi)^2, I(\xi)^3, I(I(\xi)), I(I(\xi))I(\xi), ...\}.$

We rather write Ξ, I(Ξ), I(Ξ)², ... instead of ξ, I(ξ), I(ξ)², ... to distinguish abstract symbols from real functions/distributions.

- We introduce another symbol $\dot{\Xi}$ expressing elements of CM space L^2 .
- Note that each τ ∈ F is multilinear with respect to Ξ. Define the family F
 of first order derivatives of ξ-functionals by

$$\dot{\mathcal{F}} = \left\{ \tau(\underline{\Xi}, \dots, \underline{\dot{\Xi}}, \dots, \underline{\Xi}) \, ; \, \tau \in \mathcal{F}, \, 1 \le i \le n \right\}.$$

• We also define the abstract derivative $D:\langle {\cal F}
angle o \langle \dot{{\cal F}}
angle$ by

$$D\Xi = \dot{\Xi}, \quad D\mathcal{I}(\tau) = \mathcal{I}(D\tau), \quad D(\tau\sigma) = (D\tau)\sigma + \tau(D\sigma),$$

that is,

$$D\tau(\underline{\Xi}_1,\ldots,\underline{\Xi}) = \sum_{i=1}^n \tau(\underline{\Xi}_1,\ldots,\underline{\Xi}_i,\ldots,\underline{\Xi}).$$

e.g., $D \Xi \mathcal{I}(\Xi) = \dot{\Xi} \mathcal{I}(\Xi) + \Xi \mathcal{I}(\dot{\Xi}).$

- Fix $p \in [2, \infty]$.
- \bullet The "expected regularity" $r_p: \mathcal{F} \cup \dot{\mathcal{F}} \to \mathbb{R}$ defined by

$$\begin{split} r_p(\Xi) &= -\frac{d+2}{2} - \varepsilon \quad \text{for fixed } \varepsilon > 0, \\ r_p(\dot{\Xi}) &= r_p(\Xi) + \frac{d+2}{p}, \\ r_p(\tau\sigma) &= r_p(\tau) + r_p(\sigma), \\ r_p(\mathcal{I}(\tau)) &= r_p(\tau) + 2. \end{split}$$

cf. The number $r_p(\dot{\Xi})$ comes from the interpolation

$$\underset{\mathsf{CM sp.}}{L^2} \subset B_{2,\infty}^{-\varepsilon} \subset B_{p,\infty}^{-(d+2)(1/2-1/p)-\varepsilon} \subset B_{\infty,\infty}^{-(d+2)/2-\varepsilon}$$
 Noise sp.

• The "expected integrability" $i_p: \mathcal{F} \cup \dot{\mathcal{F}} \to \mathbb{R}$ defined by

$$i_p(\tau) = \begin{cases} \infty & (\tau \in \mathcal{F}), \\ p & (\tau \in \dot{\mathcal{F}}). \end{cases}$$

• A grading by (r_p, i_p) leads the concept of regularity-integrability structures.

- First we define the canonical model.
- Fix a sequence $\{\varrho_n\}_{n=1}^{\infty} \subset C_0^{\infty}(\mathbb{R}^{1+d})$ converging to δ_0 as $n \to \infty$.
- For any $\xi \in B_{\infty,\infty}^{-(d+2)/2-\varepsilon}$, $h \in L^2$, $n \in \mathbb{N}$, $p \in [2,\infty]$, and $x \in \mathbb{R}^{1+d}$, we define the map

$$\Pi_x = \Pi_x^{\xi,h,n,p} : \mathcal{F} \cup \dot{\mathcal{F}} \to C^{\infty}(\mathbb{R}^{1+d})$$

as follows.

$$\begin{aligned} (\Pi_x \Xi)(\cdot) &= \xi_n(\cdot) := (\xi * \varrho_n)(\cdot), \\ (\Pi_x \dot{\Xi})(\cdot) &= h_n(\cdot) := (h * \varrho_n)(\cdot), \\ (\Pi_x(\tau\sigma))(\cdot) &= (\Pi_x \tau)(\cdot)(\Pi_x \sigma)(\cdot), \\ (\Pi_x \mathcal{I}(\tau))(\cdot) &= I(\Pi_x \tau)(\cdot) - \sum_{k \in \mathbb{N}^{1+d}, \ |k|_s < r_p(\mathcal{I}(\tau))} \frac{(\cdot - x)^k}{k!} \partial^k I(\Pi_x \tau)(x), \end{aligned}$$

where $|k|_s := 2k_0 + \sum_{i=1}^d k_i$ is the parabolic scale of $k = (k_i)_{i=0}^d \in \mathbb{N}^{1+d}$. Point. The order of the Taylor expansion varies depending on p.

• (+ Operators Γ_{yx} describing the consistency of $\{\Pi_x\}$.)

- Q. Does the canonical model $\{\Pi_x^{\xi,h,n,p}\}$ converge as $n \to \infty$?
- A. False in general. We need a transformation

$$\Pi^{\xi,h,n,p}_x\mapsto \hat{\Pi}^{\xi,h,n,p}_x$$

to obtain a convergence result.

Following Bruned-Hairer-Zambotti '18, we can define the unique BPHZ model Î₁ = Î₁^{ξ,h,n,p} by canceling the expectations.
 e.g., Î₁(𝔅(𝔅))² = Π_x(𝔅(𝔅))² − C_n.

イロト イヨト イヨト イヨト

Main result

Theorem (Bailleul–H '23+)

Assume $\inf r_{\infty}(\mathcal{F} \setminus \{\Xi\}) > -\frac{d+2}{2}$. For any $h \in L^2$ and $p \in [2, \infty]$, the BPHZ model $\{\hat{\Pi}_x^n = \hat{\Pi}_x^{\xi,h,n,p}\}$ converges as $n \to \infty$ in the sense that, there exists a family $\{\hat{\Pi}_x \tau\}_{\tau \in \mathcal{F} \cup \dot{\mathcal{F}}}$ of random Schwartz distributions such that

$$\sup_{\theta \in (0,1]} \frac{\theta^{-r_p(\tau)/4}}{\|e^{-a|x|}} P_{\theta}(\hat{\Pi}_x^n \tau - \hat{\Pi}_x \tau)(x)\|_{L_x^{i_p(\tau)}} \xrightarrow{n \to \infty} 0$$

in probability, for any $\tau \in \mathcal{F} \cup \dot{\mathcal{F}}$ and a > 0. The convergence is uniform over h such that $\|h\|_{L^2} \leq 1$.

(+ Convergence results for Γ operators.)

•
$$P_{\theta} := e^{\theta(\partial_t - \Delta)(\partial_t + \Delta)} \ (\theta > 0).$$

• Besov norm for $\alpha < 0$ and $p \in [1, \infty]$:

$$\|\xi\|_{B^{\alpha}_{p,\infty}} \asymp \sup_{\theta \in (0,1]} \theta^{-\alpha/4} \|P_{\theta}\xi\|_{L^p}. \qquad (\xi \in \mathcal{S}'(\mathbb{R}^{1+d}))$$

< ロ > < 同 > < 回 > < 回 >

1 BPHZ theorem

2 Setting and the main result

Proof of the main result

・ロト ・回 ト ・ ヨト ・

Strategy

- We may assume that $\sharp \mathcal{F} < \infty$. (For each $\tau \in \mathcal{F}$, we consider only the minimum sector containing τ .)
- We define the order $\mathcal{F} = \{\tau_1, \ldots, \tau_N\}$ based on the "complicatedness" and define $\mathcal{F}_i = \{\tau_1, \ldots, \tau_i\}.$

•
$$\dot{\mathcal{F}}_i := \left\{ \tau(\underline{\Xi}_1, \dots, \underline{\Xi}_k, \dots, \underline{\Xi}_n); \ \tau \in \mathcal{F}_i, \ 1 \le k \le n \right\}.$$

Induction

• The result for $\dot{\mathcal{F}}_1 \iff h_n \to h$ in $B_{2\infty}^{-\varepsilon}$ is trivial.

Poincaré ineq.

• Induction steps: $\begin{cases} (1) \ \mathcal{F}_{i-1} \cup \dot{\mathcal{F}}_i \to \mathcal{F}_i, & \text{Poincare me} \\ (2) \ \mathcal{F}_i \cup \dot{\mathcal{F}}_i \to \dot{\mathcal{F}}_{i+1} \text{ for } p = 2, & \text{Reconstruct} \\ (3) \ \mathcal{F}_i \cup \dot{\mathcal{F}}_i \to \dot{\mathcal{F}}_{i+1} \text{ for any } p \in [2,\infty], & \text{Taylor exp.} \end{cases}$ Reconstruction

Sketch of the proof

(1) Probabilistic step $(\mathcal{F}_{i-1} \cup \dot{\mathcal{F}}_i \to \mathcal{F}_i)$

For any $au \in \mathcal{F}_i$, stochastic moments of $\hat{\Pi}_x au$ are controlled by those of

 $\nabla_h \hat{\Pi}_x^{\xi,h,n,\infty} \tau = \hat{\Pi}_x^{\xi,h,n,\infty} D\tau.$

The result for $D\tau\in\dot{\mathcal{F}}_i$ is already known by induction.

(2) Analytic step $(\mathcal{F}_i \cup \dot{\mathcal{F}}_i \rightarrow \dot{\mathcal{F}}_{i+1} \text{ for } p=2)$

For any $au \in \dot{\mathcal{F}}_{i+1} \setminus {\dot{\Xi}}$, the assumption implies

$$r_\infty(au)>-rac{d+2}{2}$$
 hence $r_2(au)>0.$

In this case, the result for $\hat{\Pi}_x^{\xi,h,n,2}\tau$ is automatically obtained by the extended reconstruction theorem for the RIS with p = 2.

cf. $B^{\alpha}_{\infty,\infty} \times B^{\beta}_{2,\infty}$ is well-defined iff. $\alpha + \beta > 0$.

・ロト ・四ト ・ヨト ・ヨト

(3) Algebraic step $(\mathcal{F}_i \cup \dot{\mathcal{F}}_i \to \dot{\mathcal{F}}_{i+1}$ for any $p \in [2, \infty]$)

Point. BPHZ model $\hat{\Pi}_x^p = \hat{\Pi}_x^{\xi,h,n,p}$ discontinuously varies with respect to p. e.g.,

$$\hat{\Pi}_x^p \mathcal{I}(\dot{\Xi}) = \begin{cases} I(h_n)(\cdot) - I(h_n)(x) - \sum_{i=1}^d \partial_i I(h_n)(x)((\cdot)_i - x_i) & (p < \frac{6}{1+2\varepsilon}), \\ I(h_n)(\cdot) - I(h_n)(x) & (p \ge \frac{6}{1+2\varepsilon}). \end{cases}$$

Proposition

For any $au \in \dot{\mathcal{F}}_{i+1}$, we have the formula

$$\hat{\Pi}_x^p \tau = \hat{\Pi}_x^2 \tau + \sum_{\tau_1 \in \dot{\mathcal{F}}_i, \tau_2 \in \mathcal{F}_i} \mathbf{h}_x^p(\tau_1) \hat{\Pi}_x \tau_2,$$

where $h_x^p(\tau_1) \in L_x^{p(\tau_1)-}$ with $p(\tau_1) = \frac{d+2}{\frac{d+2}{2}-r_2(\tau_1)}$ (discontinuous points of $p \mapsto \hat{\Pi}_x^p \tau$).

The result for p = 2 is extended to all $p \in (2, \infty]$.

Merci!

▲□▶ ▲圖▶ ▲国▶ ▲国▶