Dunkl processes, random matrices and Hurwitz numbers

N. Demni, Aix-Marseille university

French Japanese Conference on Probability \& Interactions

March, 6-8, 2024

Plan

(1) Cépa and Lépingle work: β-Dyson particles.
(2) Extension to radial Dunkl processes.
(3) Reflected Brownian motion in Weyl chambers.
(9) Intertwining operator and simple Hurwitz numbers.

Cépa and Lépingle work: β-Dyson particles

β-Dyson particles

(1) Solution when it exists of

$$
d \lambda_{i}(t)=d B_{i}(t)+\beta \sum_{j \neq i} \frac{d t}{\lambda_{i}(t)-\lambda_{j}(t)}, \quad 1 \leq i \leq N .
$$

(2) It does for $\beta \in\{1 / 2,1,2\}$: eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
(3) No collision between particles for these values of β.

β-Dyson particles

(1) Solution when it exists of

$$
d \lambda_{i}(t)=d B_{i}(t)+\beta \sum_{j \neq i} \frac{d t}{\lambda_{i}(t)-\lambda_{j}(t)}, \quad 1 \leq i \leq N .
$$

(2) It does for $\beta \in\{1 / 2,1,2\}$: eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
(3) No collision between particles for these values of β.

β-Dyson particles

(1) Solution when it exists of

$$
d \lambda_{i}(t)=d B_{i}(t)+\beta \sum_{j \neq i} \frac{d t}{\lambda_{i}(t)-\lambda_{j}(t)}, \quad 1 \leq i \leq N .
$$

(2) It does for $\beta \in\{1 / 2,1,2\}$: eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
(3) No collision between particles for these values of β.

Cépa and Lépingle's Theorems

Theorem

For any initial data $\left(\lambda_{i}(0)\right)_{i=1}^{n}$, the β-Dyson differential system has a unique strong global (in time) solution.

Theorem
If $\beta \geq 1 / 2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework

Cépa and Lépingle's Theorems

Theorem

For any initial data $\left(\lambda_{i}(0)\right)_{i=1}^{n}$, the β-Dyson differential system has a unique strong global (in time) solution.

Theorem

If $\beta \geq 1 / 2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite.

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework

Cépa and Lépingle's Theorems

Theorem

For any initial data $\left(\lambda_{i}(0)\right)_{i=1}^{n}$, the β-Dyson differential system has a unique strong global (in time) solution.

Theorem

If $\beta \geq 1 / 2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite.

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework.

Multivalued SDE

- D : convex closed domain in \mathbb{R}^{N}.
- $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$: Isc convex such that
(1) C^{1} in $\operatorname{Int}(D)$.
(2) blows-up on $\operatorname{Int}(D)^{c}$.
- $n(x), x \in D \backslash \operatorname{Int}(D)$, outward normal vector at x.

Theorem

For any initial data $X(0) \in D$, the 'multivalued' SDE

$$
d X(t)=d B(t)-\nabla \Phi(X(t)) d t-n(X(t)) \quad \underbrace{d L(t)}
$$

Continuous boundary process
has a unique strong global solution valued in D. Moreover,

$$
\mathbb{E}\left[\int_{0}^{t} 1_{\left\{X_{s} \in \partial D\right\}} d s\right]=0
$$

and

$$
\mathbb{E}\left[\int_{0}^{t}\left|\nabla \Phi\left(X_{s}\right)\right| d s\right] \quad<\infty
$$

Application to β-Dyson particles

-

$$
\Phi(x)=-\beta \sum_{1 \leq i<j \leq N} \ln \left(x_{i}-x_{j}\right), \quad \underbrace{x_{1}>\cdots>x_{N}}_{\operatorname{Int}(D)},
$$

and $\Phi=+\infty$ otherwise.

- The boundary process vanishes.
(1) Particles on the circle

(2) Hyperbolic version

Application to β-Dyson particles

-

$$
\Phi(x)=-\beta \sum_{1 \leq i<j \leq N} \ln \left(x_{i}-x_{j}\right), \quad \underbrace{x_{1}>\cdots>x_{N}}_{\operatorname{Int}(D)}
$$

and $\Phi=+\infty$ otherwise.

- The boundary process vanishes.

Other choices:
(1) Particles on the circle :

$$
\Phi(x)=-\beta \sum_{1 \leq i<j \leq N} \ln \sin \left(x_{i}-x_{j}\right), \quad x_{N}+2 \pi>x_{1}>\cdots>x_{N}
$$

(2) Hyperbolic version:

$$
\Phi(x)=-\beta \sum_{1 \leq i<j \leq N} \ln \sinh \left(x_{i}-x_{j}\right), \quad x_{1}>\cdots>x_{N}
$$

Extension to radial Dunkl processes

Root systems

- ($\left.\mathbb{R}^{N},\langle\rangle,\right)$.
- Reflection orthogonal to $\alpha \neq 0$:

$$
\sigma_{\alpha}(x)=x-2 \frac{\langle\alpha, x\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

Definition

- Δ root system R is a collection of vectors in $\mathbb{R}^{d} \backslash\{0\}$ such that $\sigma_{\alpha}(R)=R$ for any $\alpha \in R$.
- It is reduced if

Root systems

- $\left(\mathbb{R}^{N},\langle\rangle,\right)$.
- Reflection orthogonal to $\alpha \neq 0$:

$$
\sigma_{\alpha}(x)=x-2 \frac{\langle\alpha, x\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

Definition

- A root system R is a collection of vectors in $\mathbb{R}^{d} \backslash\{0\}$ such that $\sigma_{\alpha}(R)=R$ for any $\alpha \in R$.
- It is reduced if

$$
\mathbb{R} \alpha \cap R=\{ \pm \alpha\}, \quad \forall \alpha \in R
$$

Positive system

(1) Pick $v \notin R, v \neq 0$:

$$
R_{+}:=\{\alpha \in R,\langle\alpha, v\rangle>0\} .
$$

(2) $R=R_{+} \cup R_{-}$

Example (Type A)

$R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$
$R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$.

Positive system

(1) Pick $v \notin R, v \neq 0$:

$$
R_{+}:=\{\alpha \in R,\langle\alpha, v\rangle>0\} .
$$

(c) $R=R_{+} \cup R_{-}$.

Example (Type A)

$R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$
$R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$

Positive system

(1) Pick $v \notin R, v \neq 0$:

$$
R_{+}:=\{\alpha \in R,\langle\alpha, v\rangle>0\} .
$$

(2) $R=R_{+} \cup R_{-}$.

Example (Type A)

$R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$.
$R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\}$.
©

Simple System

Theorem

Unique subset $S \subset R_{+}$s.t. every root system is a positive LC of vectors in S.

Definition

S is the simple system associated to $R_{+} . \alpha \in S$ is a simple root and $|S|$ is the rank of R.

Example (Type A)

Simple System

Theorem

Unique subset $S \subset R_{+}$s．t．every root system is a positive LC of vectors in S ．

Definition

S is the simple system associated to $R_{+} . \alpha \in S$ is a simple root and $|S|$ is the rank of R ．

Example（Type A）

Simple System

Theorem

Unique subset $S \subset R_{+}$s.t. every root system is a positive LC of vectors in S.

Definition

S is the simple system associated to $R_{+} . \alpha \in S$ is a simple root and $|S|$ is the rank of R.

Example (Type A)

$$
\begin{aligned}
& R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\} \\
& R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N\right\} \\
& S=\left\{e_{i}-e_{i+1}, 1 \leq i \leq N-1\right\} \quad \Rightarrow r=N-1
\end{aligned}
$$

Weyl chamber and reflection groups

$\left(R, R_{+}, S\right):$

Definition

The Weyl chamber is the cone

$$
\begin{aligned}
C & :=\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in R_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in S\right\} .
\end{aligned}
$$

Definition

The reflection group is generated by $\left\{\sigma_{\alpha}, \alpha \in R\right\}$

Proposition

- $|W|$ is finite.
- \bar{C} is a fundamental domain for the W-action on \mathbb{R}^{N}

$$
\mathbb{R}^{d}=\bigcup w \bar{C}
$$

Weyl chamber and reflection groups

(R, R_{+}, S) :

Definition

The Weyl chamber is the cone :

$$
\begin{aligned}
C & :=\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in R_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in S\right\}
\end{aligned}
$$

Definition

The reflection group is generated by $\left\{\sigma_{\alpha}, \alpha \in R\right\}$

Proposition

- $|W|$ is finite.
- \bar{C} is a fundamental domain for the W-action on \mathbb{R}^{N}

Weyl chamber and reflection groups

(R, R_{+}, S) :

Definition

The Weyl chamber is the cone :

$$
\begin{aligned}
C & :=\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in R_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in S\right\}
\end{aligned}
$$

Definition

The reflection group is generated by $\left\{\sigma_{\alpha}, \alpha \in R\right\}$.
Proposition

- $|W|$ is finite.
- \bar{C} is a fundamental domain for the W-action on \mathbb{R}^{N}

Weyl chamber and reflection groups

$\left(R, R_{+}, S\right)$:

Definition

The Weyl chamber is the cone :

$$
\begin{aligned}
C & :=\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in R_{+}\right\} \\
& =\left\{x \in \mathbb{R}^{d},\langle\alpha, x\rangle>0, \alpha \in S\right\}
\end{aligned}
$$

Definition

The reflection group is generated by $\left\{\sigma_{\alpha}, \alpha \in R\right\}$.

Proposition

- $|W|$ is finite.
- \bar{C} is a fundamental domain for the W-action on \mathbb{R}^{N} :

$$
\mathbb{R}^{d}=\bigcup_{w \in W} w \bar{C}
$$

Examples

Type A :
(1)

$$
C_{A}=\left\{x_{1}>\cdots>x_{N}\right\} .
$$

(2) $W=S_{N}$.

Type B
(1) $R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq d, \pm e_{i}, 1 \leq i \leq N\right\}$.
(2) $R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N, e_{N}\right\}$.

$$
C_{B}=\left\{x_{1}>\cdots>x_{N}>0\right\} .
$$

(9) $W=S_{N} \rtimes\left(\mathbb{Z}_{2}\right)^{N}$.

Examples

Type A:
(1)

$$
C_{A}=\left\{x_{1}>\cdots>x_{N}\right\}
$$

(2) $W=S_{N}$.

Type B :
(1) $R=\left\{ \pm\left(e_{i}-e_{j}\right), 1 \leq i<j \leq d, \pm e_{i}, 1 \leq i \leq N\right\}$.
(2) $R_{+}=\left\{\left(e_{i}-e_{j}\right), 1 \leq i<j \leq N, e_{N}\right\}$.
©

$$
C_{B}=\left\{x_{1}>\cdots>x_{N}>0\right\}
$$

(9) $W=S_{N} \rtimes\left(\mathbb{Z}_{2}\right)^{N}$.

Multiplicity function

Definition

A multiplicity function is a map $k: R \rightarrow \mathbb{C}$ s.t.

$$
k(\alpha)=k(w \alpha), \quad w \in W, \alpha \in R .
$$

\Rightarrow Takes as many values as the orbit space $|R / W|$.

Examples (Types A et B)

- $\left|R_{B} / W_{B}\right|=2 \rightsquigarrow(\beta, \delta)$.

Multiplicity function

Definition

A multiplicity function is a map $k: R \rightarrow \mathbb{C}$ s.t.

$$
k(\alpha)=k(w \alpha), \quad w \in W, \alpha \in R
$$

\Rightarrow Takes as many values as the orbit space $|R / W|$.

Examples (Types A et B)

Multiplicity function

Definition

A multiplicity function is a map $k: R \rightarrow \mathbb{C}$ s.t.

$$
k(\alpha)=k(w \alpha), \quad w \in W, \alpha \in R
$$

\Rightarrow Takes as many values as the orbit space $|R / W|$.

Examples (Types A et B)

- $\left|R_{A} / W_{A}\right|=1 \rightsquigarrow \beta$,
- $\left|R_{B} / W_{B}\right|=2 \rightsquigarrow(\beta, \delta)$.

The radial Dunkl process

$\left(R, R_{+}, S, W, \bar{C}, k \geq 0\right), R$ reduced.

Definition

X is the \bar{C}-valued diffusion with generator $\mathscr{L}_{x}(f)(x)=\frac{1}{2} \Delta(f)(x)+\sum_{\alpha \in R} \frac{K^{\prime}(\alpha)}{\langle x, \alpha)} \partial_{\alpha}(f)(x)$,

$$
\partial_{\alpha}(f)(x)=0
$$

The radial Dunkl process
($R, R_{+}, S, W, \bar{C}, k \geq 0$), R reduced.

Definition

X is the \bar{C}-valued diffusion with generator :

$$
\begin{gathered}
\mathscr{L}_{X}(f)(x)=\frac{1}{2} \Delta(f)(x)+\sum_{\alpha \in R_{+}} \frac{k(\alpha)}{\langle x, \alpha\rangle} \partial_{\alpha}(f)(x), \quad x \in C, \\
\partial_{\alpha}(f)(x)=0, \quad x \in \alpha^{\perp} .
\end{gathered}
$$

- $1 \leq i \leq N$, and any $k_{0}, \beta \geq 0$,

$$
d \lambda_{i}(t)=d B_{i}(t)+\frac{k_{0}}{\lambda_{i}(t)} d t+\frac{\beta}{2} \sum_{j \neq i}\left[\frac{1}{\lambda_{i}(t)-\lambda_{j}(t)}+\frac{1}{\lambda_{i}(t)+\lambda_{j}(t)}\right]
$$

$$
\text { in } C_{B}=\left\{\lambda_{1}>\lambda_{2} \cdots>\lambda_{N}>0\right\} .
$$

- Wishart and Laguerre processes (singular values of real/complex rectangular Brownian matrices)
- $1 \leq i \leq N$, and any $k_{0}, \beta \geq 0$,

$$
d \lambda_{i}(t)=d B_{i}(t)+\frac{k_{0}}{\lambda_{i}(t)} d t+\frac{\beta}{2} \sum_{j \neq i}\left[\frac{1}{\lambda_{i}(t)-\lambda_{j}(t)}+\frac{1}{\lambda_{i}(t)+\lambda_{j}(t)}\right]
$$

$$
\text { in } C_{B}=\left\{\lambda_{1}>\lambda_{2} \cdots>\lambda_{N}>0\right\} .
$$

- Wishart and Laguerre processes (singular values of real/complex rectangular Brownian matrices) :

$$
\beta \in\{1,2\}, \quad k_{0}=\beta(n-N+1) / 2, \quad n \geq N
$$

Extension of Cépa-Lépingle results

$B=\left(B_{i}\right)_{i=1}^{d}$: Brownian motion.

Theorem (Demni)

(1) Assume $k(\alpha)>0 \forall \alpha \in R$. Then for any $X_{0} \in \bar{C}$,

> admits a unique strong (global in time) solution.
> (2) If $X_{0}=x \in C$ and $0 \leq k(\alpha)<1 / 2$ for some α then

$$
\mathbb{P}_{x}\left(\left\langle\alpha, X_{t}\right\rangle=0\right)=1 .
$$

Extension of Cépa-Lépingle results

$B=\left(B_{i}\right)_{i=1}^{d}$: Brownian motion.

Theorem (Demni)

(1) Assume $k(\alpha)>0 \forall \alpha \in R$. Then for any $X_{0} \in \bar{C}$,

$$
d X_{t}=d B_{t}+\sum_{\alpha \in R_{+}} \frac{k(\alpha)}{\left\langle\alpha, X_{t}\right\rangle} \alpha
$$

admits a unique strong (global in time) solution.
(2) If $X_{0}=x \in C$ and $0 \leq k(\alpha)<1 / 2$ for some α then

$$
\mathbb{P}_{x}\left(\left\langle\alpha, X_{t}\right\rangle=0\right)=1
$$

Consequences

(1) Improve existence and uniqueness results for eigenvalues of matrix-valued processes.
(2) Extend to the affine setting

- Weyl group (finite) \rightsquigarrow Affine Weyl group (infinite).
- Weyl chamber \rightsquigarrow Weyl alcove.
- Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
- Non compact case : Heckman-Opdam processes
(-) Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes)

Consequences

(1) Improve existence and uniqueness results for eigenvalues of matrix-valued processes.
(2) Extend to the affine setting:

- Weyl group (finite) \rightsquigarrow Affine Weyl group (infinite).
- Weyl chamber \rightsquigarrow Weyl alcove.
- Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
- Non compact case : Heckman-Opdam processes
(3) Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes).

Consequences

(1) Improve existence and uniqueness results for eigenvalues of matrix-valued processes.
(2) Extend to the affine setting:

- Weyl group (finite) \rightsquigarrow Affine Weyl group (infinite).
- Weyl chamber \rightsquigarrow Weyl alcove.
- Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
- Non compact case: Heckman-Opdam processes
(3) Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes).

The opposite direction : Reflected Brownian motion in Weyl chambers

Motivation

- What happens when $k(\alpha)=0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula $(N=1)$

$$
d|W|_{t}=d B_{t}+\frac{1}{2} L_{t}^{0}(|W|)=d B_{t}+L_{t}^{0}(W)
$$

to higher dimensions $N \geq 2$.

- Concrete construction using folding operators.

Motivation

- What happens when $k(\alpha)=0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula $(N=1)$

$$
d|W|_{t}=d B_{t}+\frac{1}{2} L_{t}^{0}(|W|)=d B_{t}+L_{t}^{0}(W)
$$

to higher dimensions $N \geq 2$.

- Concrete construction using folding operators.

Motivation

- What happens when $k(\alpha)=0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula $(N=1)$

$$
d|W|_{t}=d B_{t}+\frac{1}{2} L_{t}^{0}(|W|)=d B_{t}+L_{t}^{0}(W)
$$

to higher dimensions $N \geq 2$.

- Concrete construction using folding operators.

Motivation

- What happens when $k(\alpha)=0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula $(N=1)$:

$$
d|W|_{t}=d B_{t}+\frac{1}{2} L_{t}^{0}(|W|)=d B_{t}+L_{t}^{0}(W)
$$

to higher dimensions $N \geq 2$.

- Concrete construction using folding operators.

Motivation

- What happens when $k(\alpha)=0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula $(N=1)$:

$$
d|W|_{t}=d B_{t}+\frac{1}{2} L_{t}^{0}(|W|)=d B_{t}+L_{t}^{0}(W)
$$

to higher dimensions $N \geq 2$.

- Concrete construction using folding operators.

Folding operators

For any $\alpha \in R_{+}$, we set :

$$
f_{\alpha}(x)=x+2 \frac{(\langle\alpha, x\rangle)^{-}}{\langle\alpha, \alpha\rangle} \alpha
$$

Folding operators

For any $\alpha \in R_{+}$, we set :

$$
\begin{aligned}
f_{\alpha}(x) & =x+2 \frac{(\langle\alpha, x\rangle)^{-}}{\langle\alpha, \alpha\rangle} \alpha \\
f_{\alpha}(x) & =x, \quad\langle\alpha, x\rangle \geq 0 \\
& =\sigma_{\alpha}(x), \quad\langle\alpha, x\rangle \leq 0
\end{aligned}
$$

Folding operators

For any $\alpha \in R_{+}$, we set :

$$
\begin{aligned}
f_{\alpha}(x) & =x+2 \frac{(\langle\alpha, x\rangle)^{-}}{\langle\alpha, \alpha\rangle} \alpha . \\
f_{\alpha}(x) & =x, \quad\langle\alpha, x\rangle \geq 0 \\
& =\sigma_{\alpha}(x), \quad\langle\alpha, x\rangle \leq 0 .
\end{aligned}
$$

f_{α} projects onto the positive half-space $\{\langle\alpha, x\rangle \geq 0\}$.

Group-geometric facts

(1) The Weyl group is finite $\Leftrightarrow \mathrm{It}$ admits a longest element w_{0} (with respect to $\sigma_{\alpha}, \alpha \in R_{+}$, length $=\left|R_{+}\right|$).
(2) w_{0} admits different equivalent (braid relations) reduced expressions.
(3) To any reduced expression $w_{0}=\sigma_{\alpha_{1}}$
we associate

$$
f_{w_{0}}=f_{\alpha_{1}} \ldots f_{\alpha_{\mid R_{+}+}}
$$

Proposition (Demni-Lépingle)
 $f_{w_{0}}$ is independent of the reduced expression and takes values in \bar{C}

Group-geometric facts

(1) The Weyl group is finite $\Leftrightarrow \mathrm{It}$ admits a longest element w_{0} (with respect to $\sigma_{\alpha}, \alpha \in R_{+}$, length $=\left|R_{+}\right|$).
(2) w_{0} admits different equivalent (braid relations) reduced expressions.
(3) To any reduced expression $w_{0}=\sigma_{\alpha_{1}}$
we associate

$$
f_{w_{0}}=f_{\alpha_{1}} \ldots f_{\alpha_{\left|R_{+}\right|} \mid}
$$

Proposition (Demni-Lépingle)
 $f_{w_{0}}$ is independent of the reduced expression and takes values in \bar{C}.

Group-geometric facts

(1) The Weyl group is finite $\Leftrightarrow \mathrm{It}$ admits a longest element w_{0} (with respect to $\sigma_{\alpha}, \alpha \in R_{+}$, length $=\left|R_{+}\right|$).
(2) w_{0} admits different equivalent (braid relations) reduced expressions.
(3) To any reduced expression $w_{0}=\sigma_{\alpha_{1}} \ldots \sigma_{\alpha_{\left|R_{+}\right|}}$, we associate

$$
f_{w_{0}}=f_{\alpha_{1}} \ldots f_{\alpha_{\left|R_{+}\right|}} .
$$

Proposition (Demni-Lépingle)

$f_{w_{0}}$ is indenendent of the reduced expression and takes values in \bar{C}

Group-geometric facts

(1) The Weyl group is finite \Leftrightarrow It admits a longest element w_{0} (with respect to $\sigma_{\alpha}, \alpha \in R_{+}$, length $=\left|R_{+}\right|$).
(2) w_{0} admits different equivalent (braid relations) reduced expressions.
(3) To any reduced expression $w_{0}=\sigma_{\alpha_{1}} \ldots \sigma_{\alpha_{\left|R_{+}\right|}}$, we associate

$$
f_{w_{0}}=f_{\alpha_{1}} \ldots f_{\alpha_{\left|R_{+}\right|}} .
$$

Proposition (Demni-Lépingle)

$f_{w_{0}}$ is independent of the reduced expression and takes values in \bar{C}.
(1)

Tanaka-type formula
$B: \mathbb{R}^{N}$-valued Brownian motion.

Theorem (Demni-Lépingle)

(1) There exists a \mathbb{R}^{N} Brownian motion G such that

$$
f_{w_{0}}\left(B_{t}\right)=f_{w_{0}}\left(B_{0}\right)+G_{t}+\frac{1}{2} \sum_{\alpha \in S} L_{t}^{0}\left(\left\langle\alpha, f_{w_{0}}(B)\right\rangle\right) \alpha
$$

(2) If $\alpha \in S$ is the unique simple root in its orbit $W \alpha$ then

$$
\frac{1}{2} L_{t}^{0}\left(\left\langle\alpha, f_{w_{0}}(B)\right\rangle\right)=\sum_{\gamma \in R \in w_{0}} L_{t}^{0}(\langle\gamma, B\rangle) .
$$

Tanaka-type formula

$B: \mathbb{R}^{N}$-valued Brownian motion.

Theorem (Demni-Lépingle)

(1) There exists a \mathbb{R}^{N} Brownian motion G such that

$$
f_{w_{0}}\left(B_{t}\right)=f_{w_{0}}\left(B_{0}\right)+G_{t}+\frac{1}{2} \sum_{\alpha \in S} L_{t}^{0}\left(\left\langle\alpha, f_{w_{0}}(B)\right\rangle\right) \alpha
$$

(2) If $\alpha \in S$ is the unique simple root in its orbit $W \alpha$ then

$$
\frac{1}{2} L_{t}^{0}\left(\left\langle\alpha, f_{w_{0}}(B)\right\rangle\right)=\sum_{\gamma \in R_{+} \cap W \alpha} L_{t}^{0}(\langle\gamma, B\rangle) .
$$

Example : B_{2}

$S=\{\alpha, \beta\} \subset \mathbb{R}^{2}$.
Two orbits.

Example : B_{2}

$S=\{\alpha, \beta\} \subset \mathbb{R}^{2}$.
Two orbits.

Dunkl Intertwining operator and simple Hurwitz numbers

Dunkl operators

$\xi \in \mathbb{R}_{N} \backslash\{0\}:$

$$
\begin{gathered}
D_{\xi}(k) f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in R_{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f\left(\sigma_{\alpha} x\right)-f(x)}{\langle\alpha, x\rangle} . \\
\frac{k=0}{\Downarrow} \\
D_{\xi}(0) f(x)=\partial_{\xi} f(x) .
\end{gathered}
$$

Theorem (Dunkl)
For any reduced root system, the algebra generated by
$\left\{D_{\xi}(k, R), \xi \in \mathbb{R}_{N} \backslash\{0\}\right\}$ is commutative.

Dunkl operators

$\xi \in \mathbb{R}_{N} \backslash\{0\}:$

$$
\begin{gathered}
D_{\xi}(k) f(x)=\partial_{\xi} f(x)+\sum_{\alpha \in R_{+}} k(\alpha)\langle\alpha, \xi\rangle \frac{f\left(\sigma_{\alpha} x\right)-f(x)}{\langle\alpha, x\rangle} . \\
\frac{k=0}{\Downarrow} \\
D_{\xi}(0) f(x)=\partial_{\xi} f(x) .
\end{gathered}
$$

Theorem (Dunkl)

For any reduced root system, the algebra generated by $\left\{D_{\xi}(k, R), \xi \in \mathbb{R}_{N} \backslash\{0\}\right\}$ is commutative.

Dunkl Intertwining operator

Seek a (linear) isomorphism V_{k} such that
(1) $V_{k} 1=1$ (normalization).
(2) $V_{k} \mathscr{P}_{n} \subset \mathscr{P}_{n}$.
(0) $D_{\xi}(k) V_{k}=V_{k} \partial_{\xi}$.

Theorem (Dunkl-Opdam-DeJeu)
If k takes values in

$$
M_{\text {reg }}:=\left\{\cap_{\xi} D_{\xi}(k)=\mathbb{C}\right\}
$$

Then V_{k} exists and is unique.

Dunkl Intertwining operator

Seek a (linear) isomorphism V_{k} such that
(1) $V_{k} 1=1$ (normalization).
(2) $V_{k} \mathscr{P}_{n} \subset \mathscr{P}_{n}$.
(3) $D_{\xi}(k) V_{k}=V_{k} \partial_{\xi}$.

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

$$
M_{\text {reg }}:=\left\{\cap_{\xi} D_{\xi}(k)=\mathbb{C}\right\},
$$

Then V_{k} exists and is unique.

Probabilistic interpretation

- Intertwining of generators:

$$
\Delta_{k} V_{k}=V_{k} \Delta \text {. }
$$

- Rank-one case
(1) $k=1$: Pitman Theorem (from Brownian motion to 3-Bessel process)
(2) $k \geq 0$: explicit integral representation.
- Higher ranks and $k=1$: Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

Probabilistic interpretation

- Intertwining of generators:

$$
\Delta_{k} V_{k}=V_{k} \Delta \text {. }
$$

- Rank-one case :
(1) $k=1$: Pitman Theorem (from Brownian motion to 3-Bessel process).
(2) $k \geq 0$: explicit integral representation.
- Higher ranks and $k=1$: Extended Pitman Theorem through

Duistermaat-Heckman measure (Biane-Bougerol-O'connell).

- Dihedral and A-type root systems.

Probabilistic interpretation

- Intertwining of generators:

$$
\Delta_{k} V_{k}=V_{k} \Delta \text {. }
$$

- Rank-one case :
(1) $k=1$: Pitman Theorem (from Brownian motion to 3-Bessel process).
(2) $k \geq 0$: explicit integral representation.
- Higher ranks and $k=1$: Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

Probabilistic interpretation

- Intertwining of generators:

$$
\Delta_{k} V_{k}=V_{k} \Delta \text {. }
$$

- Rank-one case :
(1) $k=1$: Pitman Theorem (from Brownian motion to 3-Bessel process).
(2) $k \geq 0$: explicit integral representation.
- Higher ranks and $k=1$: Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

Theorem (Deléaval-D-Youssfi)

If $k \in M_{\text {reg }}$ then for any $p \in \mathscr{P}_{n}, n \geq 1$,

$$
\begin{array}{r}
V_{k}(p)(x)=\sum_{w_{1}, \ldots, w_{n} \in W} C_{n}\left(w_{n}\right) C_{n-1}\left(w_{n}^{-1} w_{n-1}\right) \ldots C_{1}\left(w_{2}^{-1} w_{1}\right) \\
\partial_{w_{n} x} \ldots \partial_{w_{1} x}(p)(x),
\end{array}
$$

where for any $w \in W$,

$$
C_{n}(w):=\sum_{m=0}^{\infty} \frac{c_{m}(w)}{(n+\gamma)^{m+1}}, \quad \gamma:=\sum_{\alpha \in R_{+}} k(\alpha)
$$

and

$$
c_{m}(w)=\sum_{\sigma_{\alpha_{1} \ldots \sigma_{\alpha_{m}}=w}} k\left(\alpha_{1}\right) \ldots k\left(\alpha_{m}\right)
$$

$k \equiv 1:$ Simple Hurwitz numbers

- $k \equiv 1$:
$c_{m}(w)=\mid$ number of factorisations of w into m reflections \mid.
- $W=S_{N}$: simple Hurwitz numbers.
- W-invariant Dunkl theory is connected to Harish-Chandra integrals over compact groups.

Thanks!!!!!

