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© Cépa and Lépingle work : 3-Dyson particles.
@ Extension to radial Dunkl processes.
© Reflected Brownian motion in Weyl chambers.

@ Intertwining operator and simple Hurwitz numbers.
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[B-Dyson particles

@ Solution when it exists of
dt
d\i(t) = dB;(t) + 8 —, 1<i<N.
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@ It does for § € {1/2,1,2} : eigenvalues of matrix-valued
Brownian motions (symmetric real, Hermitian complex,
self-dual quaternionic).

© No collision between particles for these values of 3.
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Theorem

If 3 > 1/2 then the first collision time is a.s. infinite. Otherwise, it
is a.s. finite.

| \

Remark

| A\

Similar results for a particle system on the circle and its hyperbolic
version : general framework.

‘ \



Multivalued SDE

@ D : convex closed domain in RV.
e ®: RN 5 R : Isc convex such that
©Q C!inInt(D).
@ blows-up on Int(D)c.

e n(x),x € D\ Int(D), : outward normal vector at x.



Theorem
For any initial data X(0) € D, the ‘multivalued” SDE

dX(t) = dB(t) — VO(X(t))dt — n(X(t)) du(t)

Continuous boundary process

has a unique strong global solution valued in D. Moreover,

t
B | [ 1pcconids| =0

E [/Ot|Vd>(Xs)|ds] < 0.

and




Application to S-Dyson particles

L
x)=-6 ) Xi—X), X1 > > XN,
e
1<i<j<N Int(D)

and ® = +o00 otherwise.

@ The boundary process vanishes.



Application to S-Dyson particles

X)==B Y In(xi—x), x>->x,
—_———
1<i<j<N Int(D)

and ® = +o00 otherwise.
@ The boundary process vanishes.
Other choices :

@ Particles on the circle :

x)=—p Z Insin(x; —x;), Xxn+2m > x> > xp.
1<i<j<N

@ Hyperbolic version :

x)= -0 Z Insinh(x; — x;), x1 > -+ > xn.

1<i<j<N



Extension to radial Dunkl
processes
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Root systems

o (RY, ().
@ Reflection orthogonal to o # 0 :

(o, x)
(o, q)

ga(x)=x—-2

o A root system R is a collection of vectors in R\ {0} such
that 0,(R) = R for any o € R.

o It is reduced if

RanNR={*a}, VYaecR.
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Positive system

© Pick v¢ R,v#0:
Ry :={a € R,{(a,v) > 0}.

@ R=R,.UR_.

Example (Type A)

R:{j:(e,-—ej),lgi<j§N}.
R+:{(e,-—ej),1§i<j§N}.

o
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Simple System

Unique subset S C Ry s.t. every root system is a positive LC of
vectors in S.

S is the simple system associated to Ry. o € S is a simple root
and |S| is the rank of R.

Example (Type A)

R:{j:(e,-—ej),lgi<j§N}.

Ry ={(ei—¢),1<i<j< N}
S:{e,-—e,-+1,1§i§N—1} =r=N-—1.
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Weyl chamber and reflection groups

(R7 R+75) :

Definition

The Weyl chamber is the cone :

C:={xeR (a,x) >0,a€ R}
= {xeR9 (a,x) >0,ac S}

Definition

The reflection group is generated by {0, € R}.

Proposition
o |W| is finite.

o C is a fundamental domain for the W-action on RN :

RY = U wC.
weWw



Type A :
o
CA:{X1>"'>XN}.

Q@ W=35y.



Type A :
o
Ca={x1>->xn}.

Q@ W =S5y.
Type B :
Q@ R={£(ei—¢),1<i<j<d +e,1<i<N}
QO R ={(ei—¢),1<i<j<N,en}.
o

Cg={x1> - >xy >0}

Q W= 5/\/ X (Zg)N.
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Multiplicity function

Definition

A multiplicity function is a map k : R — C s.t.

k(o) = k(wa), we W,aeR.

= Takes as many values as the orbit space |R/W/|.

Examples (Types A et B)

o ‘RA/WA‘ =N wﬂ,
° [Rp/Wg| =2~ (8,6).




The radial Dunkl process

(R,R.,S,W,C,k >0), R reduced.



The radial Dunkl process

(R,R.,S,W,C,k >0), R reduced.

X is the C-valued diffusion with generator :
1 k(o)
L)) = AN + 3 Z (). xeC
acERy
0a(f)(x) =0, x€ar.




Type B : Wishart and Laguerre processes

@ 1 <i<N,andany kg, >0,

BZ{ A )*A,-(t)ixju)]’
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Type B : Wishart and Laguerre processes

@ 1 <i<N,andany kg, >0,

BZ{ A )*A,-(t)ixju)]’

in CB:{)\I > Ao >)\N>0}.
e Wishart and Laguerre processes (singular values of
real /complex rectangular Brownian matrices) :

dAi(t) = dB;(t)+

Bef1,2}, k=p(n—N+1)/2, n>N.
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Extension of Cépa-Lépingle results

B = (B;)¢_, : Brownian motion.

Theorem (Demni)

@ Assume k() > OVa € R. Then for any Xp € C,

dX; = dB; + Z

aER

Ko)
(o, Xe)

admits a unique strong (global in time) solution.
Q@ IfXo=x¢€ C and0 < k(a) < 1/2 for some « then

Py ({a, X;) = 0) = 1.
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Consequences

@ Improve existence and uniqueness results for eigenvalues of
matrix-valued processes.

@ Extend to the affine setting :

Weyl group (finite) ~» Affine Weyl group (infinite).

e Weyl chamber ~» Weyl alcove.

o Eigenvalues of Brownian motions in compact groups and
matrix-valued Jacobi processes.

o Non compact case : Heckman-Opdam processes

© Provides a proof of a conjecture due to Gallardo and Yor
(Jumps of Dunkl processes).



The opposite direction :

Reflected Brownian motion in
Weyl chambers
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What happens when k(a) = 0 for some (any) a« € R7?

Brownian motions in convex polyhedra : widely studied by
Williams et al..

A lack of a concrete construction : defined as a solution of a
martingale problem.

e Extension of Tanaka's formula (N =1) :
1
d{Wl: = dB: + EL?(\WD = dB; + LY(W),

to higher dimensions N > 2.

Concrete construction using folding operators.



Folding operators

For any a € Ry, we set :

({, )™

fa(x) = x+2 (0;,04)
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Folding operators

For any a € Ry, we set :

fa(x) = x + 2(<<O;;)Z>)_a.
fu(x) = x, (a,x) >0,

f, projects onto the positive half-space {{a, x) > 0}. ‘
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Group-geometric facts

@ The Weyl group is finite < It admits a longest element wy
(with respect to o, @ € Ry, length = |Ry|).

@ wp admits different equivalent (braid relations) reduced
expressions.

© To any reduced expression wp = o, .. . Tayg, | We associate

fwo = foq -+ -

YR "

Proposition (Demni-Lépingle)

fwe s independent of the reduced expression and takes values in C.

o



Tanaka-type formula

B : RN-valued Brownian motion.



Tanaka-type formula

B : RN-valued Brownian motion.
Theorem (Demni-Lépingle)
@ There exists a RN Brownian motion G such that
Fuo(Be) = funl(Bo) + e+ 5 3 L9 (a1 (B o
a€eS
@ Ifa € S is the unique simple root in its orbit W« then

S0 (B = 3 19(0B)).

’Y€R+QWOL




Example : B,

S={a,B} CR2
Two orbits.



Example : B,

S ={a,B} CR2
Two orbits.




Dunkl Intertwining operator
and simple Hurwitz numbers



Dunkl operators

£eRy\ {0} :
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Dunkl operators

£ eRy\ {0} :
De(K)F(x) = 8eF(x) + > k(a){a, &) U“<X) ) floax) = )
acRy
k=0
U

Theorem (Dunkl)

For any reduced root system, the algebra generated by
{D¢(k,R),& € Ry \ {0}} is commutative.




Dunkl Intertwining operator

Seek a (linear) isomorphism Vj such that
@ Vi1 =1 (normalization).
(2] Vkr@n C e@n.
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Dunkl Intertwining operator

Seek a (linear) isomorphism Vj such that
@ Vi1 =1 (normalization).
(2] Vkr@n C e@n.
© D:(k)Vi = V.

Theorem (Dunkl-Opdam-DelJeu)

If k takes values in
Mreg = {ﬂng(k) = (C},

Then V| exists and is unique.
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Probabilistic interpretation

Intertwining of generators :

AV = VA

@ Rank-one case :

@ k =1: Pitman Theorem (from Brownian motion to 3-Bessel
process).
@ k > 0 : explicit integral representation.

(]

Higher ranks and k = 1 : Extended Pitman Theorem through
Duistermaat-Heckman measure (Biane-Bougerol-O'connell).

Dihedral and A-type root systems.



Final answer

Theorem (Deléaval-D-Youssfi)
If k € M,y then for any p € &,,n > 1,

Vi(p)() = > CaWn)Coor(w, "Wi1) ... Co(wy 'wi)

wi,...,wp €W

where for any w € W,

and

Owpx - - - Oy x(P)(X),




k =1 : Simple Hurwitz numbers

o k=1:
¢m(w) = |number of factorisations of w into m reflections|.

e W = Sy : simple Hurwitz numbers.

@ W-invariant Dunkl theory is connected to Harish-Chandra
integrals over compact groups.



