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Cépa and Lépingle work :
β-Dyson particles



β-Dyson particles

1 Solution when it exists of

dλi (t) = dBi (t) + β
∑
j 6=i

dt

λi (t)− λj(t)
, 1 ≤ i ≤ N.

2 It does for β ∈ {1/2, 1, 2} : eigenvalues of matrix-valued
Brownian motions (symmetric real, Hermitian complex,
self-dual quaternionic).

3 No collision between particles for these values of β.
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Cépa and Lépingle’s Theorems

Theorem
For any initial data (λi (0))ni=1, the β-Dyson differential system has
a unique strong global (in time) solution.

Theorem
If β ≥ 1/2 then the first collision time is a.s. infinite. Otherwise, it
is a.s. finite.

Remark
Similar results for a particle system on the circle and its hyperbolic
version : general framework.
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Multivalued SDE

D : convex closed domain in RN .
Φ : RN → R : lsc convex such that

1 C 1 in Int(D).
2 blows-up on Int(D)c .

n(x), x ∈ D \ Int(D), : outward normal vector at x .



Theorem
For any initial data X (0) ∈ D, the ‘multivalued’ SDE

dX (t) = dB(t)−∇Φ(X (t))dt − n(X (t)) dL(t)︸ ︷︷ ︸
Continuous boundary process

has a unique strong global solution valued in D. Moreover,

E
[∫ t

0
1{Xs∈∂D}ds

]
= 0,

and

E
[∫ t

0
|∇Φ(Xs)|ds

]
<∞.



Application to β-Dyson particles

Φ(x) = −β
∑

1≤i<j≤N
ln(xi − xj), x1 > · · · > xN︸ ︷︷ ︸

Int(D)

,

and Φ = +∞ otherwise.
The boundary process vanishes.

Other choices :
1 Particles on the circle :

Φ(x) = −β
∑

1≤i<j≤N
ln sin(xi − xj), xN +2π > x1 > · · · > xN .

2 Hyperbolic version :

Φ(x) = −β
∑

1≤i<j≤N
ln sinh(xi − xj), x1 > · · · > xN .
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Extension to radial Dunkl
processes



Root systems

(RN , 〈, 〉).
Reflection orthogonal to α 6= 0 :

σα(x) = x − 2
〈α, x〉
〈α, α〉

α.

Definition

A root system R is a collection of vectors in Rd \ {0} such
that σα(R) = R for any α ∈ R .
It is reduced if

Rα ∩ R = {±α}, ∀α ∈ R.
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Positive system

1 Pick v /∈ R, v 6= 0 :

R+ := {α ∈ R, 〈α, v〉 > 0}.

2 R = R+ ∪ R−.

Example (Type A)

R = {±(ei − ej), 1 ≤ i < j ≤ N}.
R+ = {(ei − ej), 1 ≤ i < j ≤ N}.
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Simple System

Theorem
Unique subset S ⊂ R+ s.t. every root system is a positive LC of
vectors in S .

Definition
S is the simple system associated to R+. α ∈ S is a simple root
and |S | is the rank of R .

Example (Type A)

R = {±(ei − ej), 1 ≤ i < j ≤ N}.
R+ = {(ei − ej), 1 ≤ i < j ≤ N}.
S = {ei − ei+1, 1 ≤ i ≤ N − 1} ⇒ r = N − 1.
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Weyl chamber and reflection groups

(R,R+,S) :

Definition
The Weyl chamber is the cone :

C := {x ∈ Rd , 〈α, x〉 > 0, α ∈ R+}
= {x ∈ Rd , 〈α, x〉 > 0, α ∈ S}.

Definition
The reflection group is generated by {σα, α ∈ R}.

Proposition

|W | is finite.
C is a fundamental domain for the W -action on RN :

Rd =
⋃

w∈W
wC .
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Examples

Type A :
1

CA = {x1 > · · · > xN}.
2 W = SN .

Type B :
1 R = {±(ei − ej), 1 ≤ i < j ≤ d ,±ei , 1 ≤ i ≤ N}.
2 R+ = {(ei − ej), 1 ≤ i < j ≤ N, eN}.
3

CB = {x1 > · · · > xN > 0}.
4 W = SN o (Z2)N .
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Multiplicity function

Definition
A multiplicity function is a map k : R → C s.t.

k(α) = k(wα), w ∈W , α ∈ R.

⇒ Takes as many values as the orbit space |R/W |.

Examples (Types A et B)

|RA/WA| = 1 β,
|RB/WB | = 2 (β, δ).
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The radial Dunkl process

(R,R+,S ,W ,C , k ≥ 0), R reduced.

Definition

X is the C -valued diffusion with generator :

LX (f )(x) =
1
2

∆(f )(x) +
∑
α∈R+

k(α)

〈x , α〉
∂α(f )(x), x ∈ C ,

∂α(f )(x) = 0, x ∈ α⊥.
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Type B : Wishart and Laguerre processes

1 ≤ i ≤ N, and any k0, β ≥ 0,

dλi (t) = dBi (t)+
k0

λi (t)
dt+

β

2

∑
j 6=i

[
1

λi (t)− λj(t)
+

1
λi (t) + λj(t)

]
,

in CB = {λ1 > λ2 · · · > λN > 0}.
Wishart and Laguerre processes (singular values of
real/complex rectangular Brownian matrices) :

β ∈ {1, 2}, k0 = β(n − N + 1)/2, n ≥ N.
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Extension of Cépa-Lépingle results

B = (Bi )
d
i=1 : Brownian motion.

Theorem (Demni)

1 Assume k(α) > 0∀α ∈ R . Then for any X0 ∈ C ,

dXt = dBt +
∑
α∈R+

k(α)

〈α,Xt〉
α

admits a unique strong (global in time) solution.
2 If X0 = x ∈ C and 0 ≤ k(α) < 1/2 for some α then

Px(〈α,Xt〉 = 0) = 1.



Extension of Cépa-Lépingle results

B = (Bi )
d
i=1 : Brownian motion.

Theorem (Demni)

1 Assume k(α) > 0∀α ∈ R . Then for any X0 ∈ C ,

dXt = dBt +
∑
α∈R+

k(α)

〈α,Xt〉
α

admits a unique strong (global in time) solution.
2 If X0 = x ∈ C and 0 ≤ k(α) < 1/2 for some α then

Px(〈α,Xt〉 = 0) = 1.



Consequences

1 Improve existence and uniqueness results for eigenvalues of
matrix-valued processes.

2 Extend to the affine setting :
Weyl group (finite)  Affine Weyl group (infinite).
Weyl chamber  Weyl alcove.
Eigenvalues of Brownian motions in compact groups and
matrix-valued Jacobi processes.
Non compact case : Heckman-Opdam processes

3 Provides a proof of a conjecture due to Gallardo and Yor
(Jumps of Dunkl processes).
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The opposite direction :
Reflected Brownian motion in

Weyl chambers



Motivation

What happens when k(α) = 0 for some (any) α ∈ R ?
Brownian motions in convex polyhedra : widely studied by
Williams et al..
A lack of a concrete construction : defined as a solution of a
martingale problem.
Extension of Tanaka’s formula (N = 1) :

d |W |t = dBt +
1
2
L0
t (|W |) = dBt + L0

t (W ),

to higher dimensions N ≥ 2.
Concrete construction using folding operators.



Motivation

What happens when k(α) = 0 for some (any) α ∈ R ?
Brownian motions in convex polyhedra : widely studied by
Williams et al..
A lack of a concrete construction : defined as a solution of a
martingale problem.
Extension of Tanaka’s formula (N = 1) :

d |W |t = dBt +
1
2
L0
t (|W |) = dBt + L0

t (W ),

to higher dimensions N ≥ 2.
Concrete construction using folding operators.



Motivation

What happens when k(α) = 0 for some (any) α ∈ R ?
Brownian motions in convex polyhedra : widely studied by
Williams et al..
A lack of a concrete construction : defined as a solution of a
martingale problem.
Extension of Tanaka’s formula (N = 1) :

d |W |t = dBt +
1
2
L0
t (|W |) = dBt + L0

t (W ),

to higher dimensions N ≥ 2.
Concrete construction using folding operators.



Motivation

What happens when k(α) = 0 for some (any) α ∈ R ?
Brownian motions in convex polyhedra : widely studied by
Williams et al..
A lack of a concrete construction : defined as a solution of a
martingale problem.
Extension of Tanaka’s formula (N = 1) :

d |W |t = dBt +
1
2
L0
t (|W |) = dBt + L0

t (W ),

to higher dimensions N ≥ 2.
Concrete construction using folding operators.



Motivation

What happens when k(α) = 0 for some (any) α ∈ R ?
Brownian motions in convex polyhedra : widely studied by
Williams et al..
A lack of a concrete construction : defined as a solution of a
martingale problem.
Extension of Tanaka’s formula (N = 1) :

d |W |t = dBt +
1
2
L0
t (|W |) = dBt + L0

t (W ),

to higher dimensions N ≥ 2.
Concrete construction using folding operators.



Folding operators

For any α ∈ R+, we set :

fα(x) = x + 2
(〈α, x〉)−

〈α, α〉
α.

fα(x) = x , 〈α, x〉 ≥ 0,
= σα(x), 〈α, x〉 ≤ 0.

fα projects onto the positive half-space {〈α, x〉 ≥ 0}.
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Group-geometric facts

1 The Weyl group is finite ⇔ It admits a longest element w0
(with respect to σα, α ∈ R+, length = |R+|).

2 w0 admits different equivalent (braid relations) reduced
expressions.

3 To any reduced expression w0 = σα1 . . . σα|R+| , we associate

fw0 = fα1 . . . fα|R+| .

Proposition (Demni-Lépingle)

fw0 is independent of the reduced expression and takes values in C .

4
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Tanaka-type formula

B : RN -valued Brownian motion.

Theorem (Demni-Lépingle)

1 There exists a RN Brownian motion G such that

fw0(Bt) = fw0(B0) + Gt +
1
2

∑
α∈S

L0
t (〈α, fw0(B)〉)α.

2 If α ∈ S is the unique simple root in its orbit Wα then

1
2
L0
t (〈α, fw0(B)〉) =

∑
γ∈R+∩Wα

L0
t (〈γ,B〉) .
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Example : B2

S = {α, β} ⊂ R2.
Two orbits.

C

α

β
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Dunkl Intertwining operator
and simple Hurwitz numbers



Dunkl operators

ξ ∈ RN \ {0} :

Dξ(k)f (x) = ∂ξf (x) +
∑
α∈R+

k(α)〈α, ξ〉 f (σαx)− f (x)

〈α, x〉
.

k = 0
⇓

Dξ(0)f (x) = ∂ξf (x).

Theorem (Dunkl)

For any reduced root system, the algebra generated by
{Dξ(k ,R), ξ ∈ RN \ {0}} is commutative.
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Dunkl Intertwining operator

Seek a (linear) isomorphism Vk such that
1 Vk1 = 1 (normalization).
2 VkPn ⊂Pn.
3 Dξ(k)Vk = Vk∂ξ.

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

Mreg := {∩ξDξ(k) = C},

Then Vk exists and is unique.
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Probabilistic interpretation

Intertwining of generators :

∆kVk = Vk∆ .

Rank-one case :
1 k = 1 : Pitman Theorem (from Brownian motion to 3-Bessel

process).
2 k ≥ 0 : explicit integral representation.

Higher ranks and k = 1 : Extended Pitman Theorem through
Duistermaat-Heckman measure (Biane-Bougerol-O’connell).
Dihedral and A-type root systems.
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Final answer

Theorem (Deléaval-D-Youssfi)

If k ∈ Mreg then for any p ∈Pn, n ≥ 1,,

Vk(p)(x) =
∑

w1,...,wn∈W
Cn(wn)Cn−1(w−1

n wn−1) . . .C1(w−1
2 w1)

∂wnx . . . ∂w1x(p)(x),

where for any w ∈W ,

Cn(w) :=
∞∑

m=0

cm(w)

(n + γ)m+1 , γ :=
∑
α∈R+

k(α),

and
cm(w) =

∑
σα1 ...σαm=w

k(α1) . . . k(αm).



k ≡ 1 : Simple Hurwitz numbers

k ≡ 1 :

cm(w) = |number of factorisations of w into m reflections|.

W = SN : simple Hurwitz numbers.
W -invariant Dunkl theory is connected to Harish-Chandra
integrals over compact groups.

Thanks ! ! ! ! !


