Dunkl processes, random matrices and Hurwitz numbers

N. Demni, Aix-Marseille university French Japanese Conference on Probability & Interactions

March, 6-8, 2024

- **①** Cépa and Lépingle work : β -Dyson particles.
- 2 Extension to radial Dunkl processes.
- 3 Reflected Brownian motion in Weyl chambers.
- Intertwining operator and simple Hurwitz numbers.

Cépa and Lépingle work : β -Dyson particles

Solution when it exists of

$$d\lambda_i(t) = dB_i(t) + eta \sum_{j
eq i} rac{dt}{\lambda_i(t) - \lambda_j(t)}, \quad 1 \leq i \leq N.$$

- It does for β ∈ {1/2, 1, 2} : eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
- ③ No collision between particles for these values of β .

Solution when it exists of

$$d\lambda_i(t)=dB_i(t)+eta\sum_{j
eq i}rac{dt}{\lambda_i(t)-\lambda_j(t)}, \quad 1\leq i\leq N.$$

- It does for β ∈ {1/2, 1, 2} : eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
- ③ No collision between particles for these values of β .

Solution when it exists of

$$d\lambda_i(t)=dB_i(t)+eta\sum_{j
eq i}rac{dt}{\lambda_i(t)-\lambda_j(t)}, \quad 1\leq i\leq N.$$

- It does for β ∈ {1/2, 1, 2} : eigenvalues of matrix-valued Brownian motions (symmetric real, Hermitian complex, self-dual quaternionic).
- **③** No collision between particles for these values of β .

For any initial data $(\lambda_i(0))_{i=1}^n$, the β -Dyson differential system has a unique strong global (in time) solution.

Theorem

If $\beta \ge 1/2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite.

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework.

For any initial data $(\lambda_i(0))_{i=1}^n$, the β -Dyson differential system has a unique strong global (in time) solution.

Theorem

If $\beta \ge 1/2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite.

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework.

For any initial data $(\lambda_i(0))_{i=1}^n$, the β -Dyson differential system has a unique strong global (in time) solution.

Theorem

If $\beta \ge 1/2$ then the first collision time is a.s. infinite. Otherwise, it is a.s. finite.

Remark

Similar results for a particle system on the circle and its hyperbolic version : general framework.

- D : convex closed domain in \mathbb{R}^N .
- $\Phi: \mathbb{R}^{\textit{N}} \rightarrow \mathbb{R}$: lsc convex such that
 - C^1 in Int(D).
 - 2 blows-up on $Int(D)^c$.
- $n(x), x \in D \setminus Int(D)$, : outward normal vector at x.

For any initial data $X(0) \in D$, the 'multivalued' SDE

$$dX(t) = dB(t) - \nabla \Phi(X(t))dt - n(X(t)) \qquad \qquad \underline{dL(t)}$$

Continuous boundary process

has a unique strong global solution valued in D. Moreover,

$$\mathbb{E}\left[\int_0^t \mathbb{1}_{\{X_s \in \partial D\}} ds\right] = 0,$$

and

$$\mathbb{E}\left[\int_0^t |\nabla \Phi(X_s)| ds\right] \quad < \infty.$$

▲ロト▲母ト▲目と▲目と 目 ろくの

Application to β -Dyson particles

$$\Phi(x) = -\beta \sum_{1 \leq i < j \leq N} \ln(x_i - x_j), \quad \underbrace{x_1 > \cdots > x_N}_{\operatorname{Int}(D)},$$

and $\Phi = +\infty$ otherwise.

• The boundary process vanishes.

Other choices :

Particles on the circle :

$$\Phi(x) = -\beta \sum_{1 \le i < j \le N} \ln \sin(x_i - x_j), \quad x_N + 2\pi > x_1 > \cdots > x_N.$$

Output A state of the state

$$\Phi(x) = -\beta \sum_{1 \le i < j \le N} \ln \sinh(x_i - x_j), \quad x_1 > \cdots > x_N.$$

(日) 《母) 《日) 《日) 《日)

$$\Phi(x) = -\beta \sum_{1 \leq i < j \leq N} \ln(x_i - x_j), \quad \underbrace{x_1 > \cdots > x_N}_{\operatorname{Int}(D)},$$

and $\Phi = +\infty$ otherwise.

• The boundary process vanishes.

Other choices :

Particles on the circle :

$$\Phi(x) = -\beta \sum_{1 \leq i < j \leq N} \ln \sin(x_i - x_j), \quad x_N + 2\pi > x_1 > \cdots > x_N.$$

Output State And A State A

$$\Phi(x) = -\beta \sum_{1 \le i < j \le N} \ln \sinh(x_i - x_j), \quad x_1 > \cdots > x_N.$$

コト (日) (日) (日) (日) (日) (日)

Extension to radial Dunkl processes

< ∃ >

- $(\mathbb{R}^N, \langle, \rangle).$
- Reflection orthogonal to $\alpha \neq \mathbf{0}$:

$$\sigma_{lpha}(x) = x - 2 rac{\langle lpha, x
angle}{\langle lpha, lpha
angle} lpha.$$

- A root system R is a collection of vectors in ℝ^d \ {0} such that σ_α(R) = R for any α ∈ R.
- It is reduced if

 $\mathbb{R}\alpha \cap R = \{\pm \alpha\}, \quad \forall \alpha \in R.$

- $(\mathbb{R}^N, \langle, \rangle).$
- Reflection orthogonal to $\alpha \neq \mathbf{0}$:

$$\sigma_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

- A root system R is a collection of vectors in ℝ^d \ {0} such that σ_α(R) = R for any α ∈ R.
- It is reduced if

 $\mathbb{R}\alpha \cap R = \{\pm \alpha\}, \quad \forall \alpha \in R.$

1 Pick
$$v \notin R, v \neq 0$$
:

$$R_{+} := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > \mathbf{0} \}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

2

$$R = R_+ \cup R_-.$$

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

1 Pick
$$v \notin R, v \neq 0$$
:

$$R_{+} := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > \mathbf{0} \}.$$

$$P = R_+ \cup R_-.$$

Example (Type A)

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のの(

1 Pick
$$v \notin R, v \neq 0$$
:

$$R_{+} := \{ \alpha \in R, \langle \alpha, \mathbf{v} \rangle > \mathbf{0} \}.$$

$$P = R_+ \cup R_-.$$

Example (Type A)

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへ()

Unique subset $S \subset R_+$ s.t. every root system is a **positive LC** of vectors in S.

Definition

S is the simple system associated to R_+ . $\alpha \in S$ is a simple root and |S| is the rank of *R*.

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

$$S = \{ e_i - e_{i+1}, 1 \le i \le N - 1 \} \implies r = N - 1.$$

Unique subset $S \subset R_+$ s.t. every root system is a **positive LC** of vectors in S.

Definition

S is the simple system associated to R_+ . $\alpha \in S$ is a simple root and |S| is the rank of *R*.

$$R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}.$$

$$R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}.$$

$$S = \{ e_i - e_{i+1}, 1 \le i \le N - 1 \} \implies r = N - 1.$$

Unique subset $S \subset R_+$ s.t. every root system is a **positive LC** of vectors in S.

Definition

S is the simple system associated to R_+ . $\alpha \in S$ is a simple root and |S| is the rank of *R*.

$$\begin{aligned} &R = \{ \pm (e_i - e_j), 1 \le i < j \le N \}. \\ &R_+ = \{ (e_i - e_j), 1 \le i < j \le N \}. \\ &S = \{ e_i - e_{i+1}, 1 \le i \le N - 1 \} \quad \Rightarrow r = N - 1. \end{aligned}$$

$$(R, R_+, S)$$
:

Definition

The Weyl chamber is the cone :

$$C := \{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in R_+ \}$$

= $\{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in S \}.$

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

- |W| is finite.
- \overline{C} is a fundamental domain for the W-action on \mathbb{R}^N :

$$\mathbb{R}^d = \bigcup_{w \in W} w \overline{C}$$

 (R,R_+,S) :

Definition

The Weyl chamber is the cone :

$$C := \{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in R_+ \}$$

= $\{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in S \}.$

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

- |W| is finite.
- \overline{C} is a fundamental domain for the W-action on \mathbb{R}^N :

$$\mathbb{R}^d = \bigcup_{w \in W} w \overline{C}$$

 (R,R_+,S) :

Definition

The Weyl chamber is the cone :

$$C := \{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in R_+ \}$$

= $\{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in S \}.$

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

- |W| is finite.
- \overline{C} is a fundamental domain for the W-action on \mathbb{R}^N :

$$\mathbb{R}^d = \bigcup_{w \in W} w \overline{C}$$

 (R, R_+, S) :

Definition

The Weyl chamber is the cone :

$$C := \{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in R_+ \}$$

= $\{ x \in \mathbb{R}^d, \langle \alpha, x \rangle > 0, \alpha \in S \}.$

Definition

The reflection group is generated by $\{\sigma_{\alpha}, \alpha \in R\}$.

- |W| is finite.
- \overline{C} is a fundamental domain for the W-action on \mathbb{R}^N :

$$\mathbb{R}^d = \bigcup_{w \in W} w \overline{C}$$

$\mathsf{Type}\;\mathsf{A}:$

1

$C_A = \{x_1 > \cdots > x_N\}.$

2 $W = S_N$.

Type *B* :

•
$$R = \{\pm (e_i - e_j), 1 \le i < j \le d, \pm e_i, 1 \le i \le N\}.$$

$$C_B = \{x_1 > \cdots > x_N > 0\}.$$

 $W = S_N \rtimes (\mathbb{Z}_2)^N.$

Type A :

$C_{\mathcal{A}} = \{x_1 > \cdots > x_{\mathcal{N}}\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆□

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

 $k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$

 \Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

•
$$|R_A/W_A| = 1 \rightsquigarrow \beta$$
,

•
$$|R_B/W_B| = 2 \rightsquigarrow (\beta, \delta).$$

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

 $k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$

\Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

•
$$|R_A/W_A| = 1 \rightsquigarrow \beta$$
,

•
$$|R_B/W_B| = 2 \rightsquigarrow (\beta, \delta).$$

A multiplicity function is a map $k : R \to \mathbb{C}$ s.t.

 $k(\alpha) = k(w\alpha), \quad w \in W, \alpha \in R.$

 \Rightarrow Takes as many values as the orbit space |R/W|.

Examples (Types A et B)

•
$$|R_A/W_A| = 1 \rightsquigarrow \beta$$
,

•
$$|R_B/W_B| = 2 \rightsquigarrow (\beta, \delta).$$

$(R, R_+, S, W, \overline{C}, k \ge 0)$, R reduced.

Definition

X is the \overline{C} -valued diffusion with generator :

$$\mathscr{L}_{X}(f)(x) = \frac{1}{2}\Delta(f)(x) + \sum_{\alpha \in R_{+}} \frac{k(\alpha)}{\langle x, \alpha \rangle} \partial_{\alpha}(f)(x), \quad x \in C,$$
$$\partial_{\alpha}(f)(x) = 0, \quad x \in \alpha^{\perp}.$$

(ロ・・日・・日・・日・ つくの

$$(R, R_+, S, W, \overline{C}, k \ge 0)$$
, R reduced.

X is the \overline{C} -valued diffusion with generator :

$$\mathscr{L}_X(f)(x) = rac{1}{2}\Delta(f)(x) + \sum_{lpha \in R_+} rac{k(lpha)}{\langle x, lpha
angle} \partial_lpha(f)(x), \quad x \in C,$$

 $\partial_lpha(f)(x) = 0, \quad x \in lpha^\perp.$

Type B : Wishart and Laguerre processes

•
$$1 \leq i \leq N,$$
 and any $k_0, \beta \geq 0$,

$$d\lambda_i(t) = dB_i(t) + rac{k_0}{\lambda_i(t)} dt + rac{eta}{2} \sum_{j
eq i} \left[rac{1}{\lambda_i(t) - \lambda_j(t)} + rac{1}{\lambda_i(t) + \lambda_j(t)}
ight]$$

in
$$C_B = \{\lambda_1 > \lambda_2 \cdots > \lambda_N > 0\}.$$

• Wishart and Laguerre processes (singular values of real/complex rectangular Brownian matrices) :

$$\beta \in \{1,2\}, \quad k_0 = \beta(n-N+1)/2, \quad n \ge N.$$

(日) (母) (ヨ) (ヨ) (日) (四)

,

Type B : Wishart and Laguerre processes

•
$$1 \leq i \leq N$$
, and any $k_0, \beta \geq 0$,

$$d\lambda_i(t) = dB_i(t) + rac{k_0}{\lambda_i(t)} dt + rac{eta}{2} \sum_{j
eq i} \left[rac{1}{\lambda_i(t) - \lambda_j(t)} + rac{1}{\lambda_i(t) + \lambda_j(t)}
ight]$$

in
$$C_B = \{\lambda_1 > \lambda_2 \cdots > \lambda_N > 0\}.$$

• Wishart and Laguerre processes (singular values of real/complex rectangular Brownian matrices) :

$$\beta \in \{1,2\}, \quad k_0 = \beta(n-N+1)/2, \quad n \ge N.$$

(ロト 《母 ト 《臣 ト 《臣 ト 三臣 … ののの

,

Extension of Cépa-Lépingle results

 $B = (B_i)_{i=1}^d$: Brownian motion.

Theorem (Demni)

• Assume $k(\alpha) > 0 \forall \alpha \in R$. Then for any $X_0 \in \overline{C}$,

$$dX_t = dB_t + \sum_{\alpha \in R_+} \frac{k(\alpha)}{\langle \alpha, X_t \rangle} \alpha$$

admits a unique strong (global in time) solution.

② If $X_0=x\in {\sf C}$ and $0\leq k(lpha)<1/2$ for some lpha then

 $\mathbb{P}_{x}(\langle \alpha, X_t \rangle = 0) = 1.$

Extension of Cépa-Lépingle results

$$B = (B_i)_{i=1}^d$$
: Brownian motion.

Theorem (Demni)

• Assume $k(\alpha) > 0 \forall \alpha \in R$. Then for any $X_0 \in \overline{C}$,

$$dX_t = dB_t + \sum_{\alpha \in R_+} \frac{k(\alpha)}{\langle \alpha, X_t \rangle} \alpha$$

admits a unique strong (global in time) solution.

2 If $X_0 = x \in C$ and $0 \le k(\alpha) < 1/2$ for some α then

 $\mathbb{P}_{x}(\langle \alpha, X_{t} \rangle = 0) = 1.$

Improve existence and uniqueness results for eigenvalues of matrix-valued processes.

- ② Extend to the affine setting :
 - Weyl group (finite) ~ Affine Weyl group (infinite).
 - Weyl chamber ~ Weyl alcove.
 - Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
 - Non compact case : Heckman-Opdam processes
- Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes).

- Improve existence and uniqueness results for eigenvalues of matrix-valued processes.
- Extend to the affine setting :
 - Weyl group (finite) ~ Affine Weyl group (infinite).
 - Weyl chamber ~ Weyl alcove.
 - Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
 - Non compact case : Heckman-Opdam processes
- Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes).

- Improve existence and uniqueness results for eigenvalues of matrix-valued processes.
- 2 Extend to the affine setting :
 - Weyl group (finite) ~ Affine Weyl group (infinite).
 - Weyl chamber ~ Weyl alcove.
 - Eigenvalues of Brownian motions in compact groups and matrix-valued Jacobi processes.
 - Non compact case : Heckman-Opdam processes
- Provides a proof of a conjecture due to Gallardo and Yor (Jumps of Dunkl processes).

The opposite direction : Reflected Brownian motion in Weyl chambers

• What happens when $k(\alpha) = 0$ for some (any) $\alpha \in R$?

- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula (N = 1) :

$$d|W|_t = dB_t + \frac{1}{2}L_t^0(|W|) = dB_t + L_t^0(W),$$

to higher dimensions $N\geq 2$.

- What happens when $k(\alpha) = 0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula (N = 1) :

$$d|W|_{t} = dB_{t} + \frac{1}{2}L_{t}^{0}(|W|) = dB_{t} + L_{t}^{0}(W),$$

to higher dimensions $N\geq 2$.

- What happens when $k(\alpha) = 0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula (N = 1) :

$$d|W|_t = dB_t + \frac{1}{2}L_t^0(|W|) = dB_t + L_t^0(W),$$

to higher dimensions $N \ge 2$.

- What happens when $k(\alpha) = 0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula (N = 1) :

$$d|W|_t = dB_t + \frac{1}{2}L_t^0(|W|) = dB_t + L_t^0(W),$$

to higher dimensions $N \ge 2$.

- What happens when $k(\alpha) = 0$ for some (any) $\alpha \in R$?
- Brownian motions in convex polyhedra : widely studied by Williams et al..
- A lack of a concrete construction : defined as a solution of a martingale problem.
- Extension of Tanaka's formula (N = 1) :

$$d|W|_t = dB_t + \frac{1}{2}L_t^0(|W|) = dB_t + L_t^0(W),$$

to higher dimensions $N \ge 2$.

Folding operators

For any $\alpha \in R_+$, we set :

$$f_{\alpha}(x) = x + 2 \frac{(\langle \alpha, x \rangle)^{-}}{\langle \alpha, \alpha \rangle} \alpha.$$

$$egin{array}{rll} f_lpha(x)&=&x, &\langlelpha,x
angle\geq 0,\ &=&\sigma_lpha(x), &\langlelpha,x
angle\leq 0. \end{array}$$

 f_{α} projects onto the positive half-space $\{\langle \alpha, x \rangle \geq 0\}$.

Folding operators

For any $\alpha \in R_+$, we set :

$$f_{\alpha}(x) = x + 2 \frac{(\langle lpha, x
angle)^{-}}{\langle lpha, lpha
angle} lpha.$$

$$egin{array}{rll} f_lpha(x)&=&x, &\langlelpha,x
angle\geq 0,\ &=&\sigma_lpha(x), &\langlelpha,x
angle\leq 0. \end{array}$$

 f_{α} projects onto the positive half-space $\{\langle \alpha, x \rangle \geq 0\}$.

(□▶ ▲□▶ ▲目▶ ▲目▶ | 目| のへの

Folding operators

For any $\alpha \in R_+$, we set :

$$f_{\alpha}(x) = x + 2 \frac{(\langle lpha, x
angle)^{-}}{\langle lpha, lpha
angle} lpha.$$

$$egin{array}{rll} f_lpha(x)&=&x, &\langlelpha,x
angle\geq 0,\ &=&\sigma_lpha(x), &\langlelpha,x
angle\leq 0. \end{array}$$

 f_{α} projects onto the positive half-space $\{\langle \alpha, x \rangle \geq 0\}$.

- The Weyl group is finite \Leftrightarrow It admits a longest element w_0 (with respect to $\sigma_{\alpha}, \alpha \in R_+$, length = $|R_+|$).
- 2 w₀ admits different equivalent (braid relations) reduced expressions.
- (3) To any reduced expression $w_0 = \sigma_{\alpha_1} \dots \sigma_{\alpha_{|R_\perp|}}$, we associate

$$f_{w_0}=f_{\alpha_1}\ldots f_{\alpha_{|R_+|}}.$$

Proposition (Demni-Lépingle

 f_{w_0} is independent of the reduced expression and takes values in \overline{C} .

- The Weyl group is finite \Leftrightarrow It admits a longest element w_0 (with respect to $\sigma_{\alpha}, \alpha \in R_+$, length = $|R_+|$).
- W₀ admits different equivalent (braid relations) reduced expressions.
- (3) To any reduced expression $w_0 = \sigma_{\alpha_1} \dots \sigma_{\alpha_{|R_\perp|}}$, we associate

$$f_{w_0}=f_{\alpha_1}\ldots f_{\alpha_{|R_+|}}.$$

Proposition (Demni-Lépingle)

 f_{w_0} is independent of the reduced expression and takes values in \overline{C} .

- The Weyl group is finite \Leftrightarrow It admits a longest element w_0 (with respect to $\sigma_{\alpha}, \alpha \in R_+$, length = $|R_+|$).
- expressions.
 expressions
- **3** To any reduced expression $w_0 = \sigma_{\alpha_1} \dots \sigma_{\alpha_{|R_\perp|}}$, we associate

$$f_{w_0}=f_{\alpha_1}\ldots f_{\alpha_{|R_+|}}.$$

Proposition (Demni-Lépingle)

 f_{w_0} is independent of the reduced expression and takes values in C.

- The Weyl group is finite \Leftrightarrow It admits a longest element w_0 (with respect to $\sigma_{\alpha}, \alpha \in R_+$, length = $|R_+|$).
- expressions.
 expressions
- **3** To any reduced expression $w_0 = \sigma_{\alpha_1} \dots \sigma_{\alpha_{|R_\perp|}}$, we associate

$$f_{w_0}=f_{\alpha_1}\ldots f_{\alpha_{|R_+|}}.$$

Proposition (Demni-Lépingle)

2

 f_{w_0} is independent of the reduced expression and takes values in \overline{C} .

Tanaka-type formula

$B : \mathbb{R}^{N}$ -valued Brownian motion.

$f_{w_0}(B_t) = f_{w_0}(B_0) + G_t + \frac{1}{2} \sum L_t^0(\langle \alpha, f_{w_0}(B) \rangle) \alpha.$ $\frac{1}{2}L_t^0\left(\langle \alpha, f_{w_0}(B)\rangle\right) = \sum L_t^0\left(\langle \gamma, B\rangle\right).$

Tanaka-type formula

 $B : \mathbb{R}^{N}$ -valued Brownian motion.

Theorem (Demni-Lépingle)

9 There exists a \mathbb{R}^N Brownian motion G such that

$$f_{w_0}(B_t) = f_{w_0}(B_0) + G_t + \frac{1}{2} \sum_{\alpha \in S} L_t^0\left(\langle \alpha, f_{w_0}(B) \rangle\right) \alpha.$$

2 If $\alpha \in S$ is the unique simple root in its orbit $W\alpha$ then

$$\frac{1}{2}L_t^0(\langle \alpha, f_{w_0}(B)\rangle) = \sum_{\gamma \in R_+ \cap W\alpha} L_t^0(\langle \gamma, B\rangle).$$

Example : B_2

$$S = \{\alpha, \beta\} \subset \mathbb{R}^2.$$

Two orbits.

Example : B_2

$$S = \{\alpha, \beta\} \subset \mathbb{R}^2.$$

Two orbits.

Dunkl Intertwining operator and simple Hurwitz numbers

Dunkl operators

$$\xi \in \mathbb{R}_{N} \setminus \{0\} :$$

$$D_{\xi}(k)f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in R_{+}} k(\alpha) \langle \alpha, \xi \rangle \frac{f(\sigma_{\alpha}x) - f(x)}{\langle \alpha, x \rangle}.$$

$$\boxed{k = 0}_{\bigcup}$$

$$D_{\xi}(0)f(x) = \partial_{\xi}f(x).$$

Theorem (Dunkl)

For any **reduced** root system, the algebra generated by $\{D_{\xi}(k, R), \xi \in \mathbb{R}_N \setminus \{0\}\}$ is commutative.

(日)(四)(四)(四)(四)(四)(四)

Dunkl operators

$$\begin{split} \xi \in \mathbb{R}_{N} \setminus \{0\} : \\ D_{\xi}(k)f(x) &= \partial_{\xi}f(x) + \sum_{\alpha \in R_{+}} k(\alpha) \langle \alpha, \xi \rangle \frac{f(\sigma_{\alpha}x) - f(x)}{\langle \alpha, x \rangle}. \\ \\ \boxed{k = 0} \\ \Downarrow \\ D_{\xi}(0)f(x) &= \partial_{\xi}f(x). \end{split}$$

Theorem (Dunkl)

For any **reduced** root system, the algebra generated by $\{D_{\xi}(k, R), \xi \in \mathbb{R}_N \setminus \{0\}\}$ is commutative.

Seek a (linear) isomorphism V_k such that

- $V_k 1 = 1$ (normalization).
- $D_{\xi}(k)V_k = V_k\partial_{\xi}.$

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

$$M_{reg} := \{ \cap_{\xi} D_{\xi}(k) = \mathbb{C} \},$$

Then V_k exists and is unique.

Seek a (linear) isomorphism V_k such that

- $V_k 1 = 1$ (normalization).
- $V_k \mathscr{P}_n \subset \mathscr{P}_n.$
- $D_{\xi}(k)V_k = V_k\partial_{\xi}.$

Theorem (Dunkl-Opdam-DeJeu)

If k takes values in

$$M_{reg} := \{ \cap_{\xi} D_{\xi}(k) = \mathbb{C} \},$$

Then V_k exists and is unique.

$$\Delta_k V_k = V_k \Delta.$$

- Rank-one case :
 - k = 1 : Pitman Theorem (from Brownian motion to 3-Bessel process).
 - 2 $k \ge 0$: explicit integral representation.
- **Higher ranks** and *k* = 1 : Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

$$\Delta_k V_k = V_k \Delta.$$

- Rank-one case :
 - I : Pitman Theorem (from Brownian motion to 3-Bessel process).
 - 2 $k \ge 0$: explicit integral representation.
- **Higher ranks** and *k* = 1 : Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

$$\Delta_k V_k = V_k \Delta.$$

- Rank-one case :
 - k = 1 : Pitman Theorem (from Brownian motion to 3-Bessel process).
 - 2 $k \ge 0$: explicit integral representation.
- **Higher ranks** and *k* = 1 : Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

$$\Delta_k V_k = V_k \Delta.$$

- Rank-one case :
 - k = 1 : Pitman Theorem (from Brownian motion to 3-Bessel process).
 - 2 $k \ge 0$: explicit integral representation.
- **Higher ranks** and *k* = 1 : Extended Pitman Theorem through Duistermaat-Heckman measure (Biane-Bougerol-O'connell).
- Dihedral and A-type root systems.

Theorem (Deléaval-D-Youssfi)

If $k \in M_{\mathit{reg}}$ then for any $p \in \mathscr{P}_n, n \geq 1,$,

$$V_{k}(p)(x) = \sum_{w_{1},...,w_{n} \in W} C_{n}(w_{n})C_{n-1}(w_{n}^{-1}w_{n-1})...C_{1}(w_{2}^{-1}w_{1})$$
$$\partial_{w_{n}x}...\partial_{w_{1}x}(p)(x),$$

where for any $w \in W$,

$$C_n(w) := \sum_{m=0}^{\infty} \frac{c_m(w)}{(n+\gamma)^{m+1}}, \quad \gamma := \sum_{\alpha \in R_+} k(\alpha),$$

and

$$c_m(w) = \sum_{\sigma_{\alpha_1}...\sigma_{\alpha_m}=w} k(\alpha_1)...k(\alpha_m).$$

• $k \equiv 1$:

 $c_m(w) = |$ number of factorisations of w into m reflections|.

- $W = S_N$: simple Hurwitz numbers.
- *W*-invariant Dunkl theory is connected to Harish-Chandra integrals over compact groups.

Thanks !!!!!