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Gaussian power series

{ak}: a deterministic (non-random) sequence of complex numbers

{ζk(ω)}: i.i.d. ∼ NC(0, 1), standard complex normal.

The random power series

X (z) = X (z , ω) =
∞∑
k=0

akζk(ω)z
k

defines a Gaussian analytic function (GAF) in the same circle of
convergence for the deterministic power series X (z) =

∑∞
k=0 akz

k .

Covariance kernel: SX (z ,w) = E [X (z)X (w)] =
∑∞

k=0 |ak |2(zw̄)k

determines GAF.

Important example (hyperbolic GAF): ak ≡ 1 (∀k = 0, 1, . . . )

Xhyp(z) :=
∞∑
k=0

ζkz
k on D =⇒ S(z ,w) =

1

1− zw
(Szegő kernel)

Fact. For each z ∈ D = {|z | < 1}, Xhyp(z) ∼ NC(0, (1− |z |2)−1).



Stationary AR(p) model

Autoregressive model AR(p)

Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + ζt (t ∈ Z)

where {ζt}t∈Z are i.i.d. noise.

AR(1): For |z | < 1 and c = 0,

Yt = zYt−1 + ζt (t ∈ Z) (*)
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Figure: AR(1) with z = 0.7: Bernoulli noise (left) and R-Gaussian noise (right)

Xhyp(z) is the stationary solution to (*) with C-Gaussian noise.



Gaussian power series from AR(1)-model

AR(1): For |z | < 1,

Yt = zYt−1 + ζt (t ∈ Z)

By introducing the shift operator (Sx)t = xt−1 (t ∈ Z), we have

Yt = (zSY )t + ζt =⇒ Yt = {(1− zS)−1ζ}t =⇒ Yt =
∞∑
k=0

zk(Skζ)t

By expanding the RHS of the equation, we have

Yt = Yt(z) =
∞∑
k=0

zkζt−k
d
= Xhyp(z) (∀t ∈ Z)

{Yt(z)}t∈Z forms a stationary GAF-valued process.



i.i.d. case (f (s) ≡ 1) and the case f (s) = 1[−π/2,π/2](s)
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Figure: Zeros of finite approximations of degree 400. Left: i.i.d. case Xhyp(z) and
Right: XΞ(z) for the spectral measure f (s) = 1[−π/2,π/2](s). Zeros inside the disc
is in blue and those outside the disc is in red.



Density of zeros of GAF

Theorem (Edelman-Kostlan)

Let X (z) be a GAF on D with covariance function SX (z ,w). Then, the
1-correlation function of the zero process ZX :=

∑
z∈D:X (z)=0 δz of X (z)

(= the density of zeros) at z with SX (z , z) > 0 is given by

ρ1X (z) =
1

4π
∆ log SX (z , z) =

1

π
∂z∂z log SX (z , z).

Ex.(hyperbolic GAF): Xhyp(z) :=
∑∞

k=0 ζkz
k on D ζk i.i.d. ∼ NC(0, 1).

Then,

SXhyp
(z ,w) =

∞∑
k=0

(zw)k =
1

1− zw
(Szegő kernel)

and then

ρ1X (z) =
1

π
∂z∂z log

1

1− |z |2
=

1

π(1− |z |2)2
(hyperbolic volume)



Calabi’s rigidity for GAF

By analyticity of X , the information of the diagonal SX (z , z) determines
the off-diagonal SX (z ,w). From this fact, we have the following:

Theorem (Sodin)

Let X and Y be GAF on D. If the 1-correlation functions ρ1X (z) and
ρ1Y (z) of the zero processes ZX and ZY coincide, then there exists a
non-vanishing, non-random analytic function h such that

Y
d
= hX .

In particular, ZX
d
= ZY .

Example: This theorem implies that GAF on D whose density of zeros is

the hyperbolic volume 1
π(1−|z|2)2 is essentially unique in law, which is

nothing but Xhyp(z).



Formula for correlation functions

Conditional kernel:

kα(z ,w) := k(z ,w)− k(z , α)k(α,w)

k(α, α)

and inductively define

kα1,...,αn(z ,w) := (kα1,...,αn−1)αn(z ,w)

Proposition

The correlation functions of the zero process ZX of the GAF X (z) on a
domain D with covariance kernel SX (z ,w) are given by the formula

ρnX (z1, . . . , zn) =
per1≤i ,j≤n

[
(∂z∂wS

z1,...,zn
X )(zi , zj)

]
det1≤i ,j≤n

[
SX (zi , zj)

] , z1, . . . , zn ∈ D

with respect to a reference measure λ, whenever det1≤i ,j≤n[SX (zi , zj)] > 0.



Peres-Virág’s theorem

Theorem (Peres-Virág (2005))

The zeros of the hyperbolic GAF

Xhyp(z) =
∞∑
k=0

ζkz
k on D

is the determinantal point process associated with Bergman kernel

K (z ,w) =
1

π(1− zw)2
.

Determinantal point process (DPP)

A point process is said to be a determinantal point process if there exists a kernel
K (z ,w) such that the n-th correlation function is given by

ρn(z1, . . . , zn) = det(K (zi , zj))
n
i,j=1,

In particular, the density of points is ρ1(z) = K (z , z).



Several extensions

Krishnapur(2009): {Gk}∞k=0 are i.i.d. p × p Ginibre matrices =⇒ DPP:

Xmatrix (z) = det
( ∞∑

k=0

Gkz
k
)

Forrester(2010), Matsumoto-S.(2013): {ζRk }∞k=0 are i.i.d. real Gaussian
random variables =⇒ Pfaffian:

Xreal (z) =
∞∑
k=0

ζRk z
k

Katori-S.(2022): the i.i.d. Gaussian Laurant series on the annulus Aq:

XAq (z) =
∑
k∈Z

ζk
zk√

1 + qk+1

Noda-S.(2022): {ξk}∞k=0 are finitely dependent, stationary Gaussian process
coefficients. Expected number of points inside the ball:

Xdep(z) =
∞∑
k=0

ξkz
k



Our setting

Ξ = {ξk}k∈Z is a stationary, centered, complex Gaussian process with
the covariance function γ : Z → C, i.e.,

γ(ℓ− k) = E[ξkξℓ]

with γ(0) = 1. In particular, ξk ∼ NC(0, 1) for each k ∈ Z.
We consider the Gaussian power series with the covariance above:

X (z) = XΞ(z) :=
∞∑
k=0

ξkz
k

If {ξk}k∈Z are i.i.d., i.e., γ(k) = δk,0, the GAF is Xhyp(z).

Fact: All such GAFs are on D
The convergence radius of XΞ is almost surely 1. Then, XΞ(z) is defined
on D and its zeros are located inside D if exists.



Covariance function and spectral function

Covariance kernel: There is a special covariance structure:

SX (z ,w) = SXhyp
(z ,w)G2(z ,w) =

1

1− zw︸ ︷︷ ︸
Szegő kernel

× G2(z ,w)︸ ︷︷ ︸
spectral density

where

G2(z ,w) = 1 + G (z) + G (w), G (z) =
∞∑
k=1

γ(k)zk .

Spectral measure d∆(θ): Since γ(k) is positive definite,

γ(k) =

∫ π

−π
e ikθd∆(θ)

If d∆(θ) = ∆′(θ)dθ2π , then ∆′(θ) is called the spectral density.



Example 1: 1-dependent case

γ(k) =


1 k = 0

a k = ±1

0 otherwise

for |a| ≤ 1/2

G (z) = az , G2(z ,w) = 1 + a(z + w)
It is easy to see that∫ π

−π
e ikθ(1 + ae iθ + ae−iθ)

dθ

2π
= γ(k)

This means that

∆′(θ) = G2(e
iθ, e iθ) = 1 + 2a cos θ.

Spectral density

When G (z) is analytic in a neighborhood of D, we have

∆′(θ) = G2(e
iθ, e iθ)



Example 2: Gaussian Markov case

For 0 ≤ ρ < 1 and {ζn}n∈Z i.i.d. ∼ NC(0, 1),

ξn :=
√

1− ρ2
∞∑
k=0

ρkζn−k

(
d
=

√
1− ρ2Xhyp(ρ)

)

γ(k) = ρ|k| (0 < ρ < 1)

G (z) =
ρz

1− ρz
, G2(z , z) =

1− ρ2zz

(1− ρz)(1− ρz)
.

G (z) is analytic in |z | < ρ−1,

∆′(θ) =
1− ρ2

(1− ρe iθ)(1− ρe−iθ)
=

1− ρ2

1− 2ρ cos θ + ρ2
> 0



Example 3: Degenerated case

For η and ζk (k ∈ Z) i.i.d. ∼ NC(0, 1),

ξk =
√
ρη +

√
1− ρζk (k ∈ Z).

γ(k) =

{
1 k = 0

ρ otherwise
(0 ≤ ρ ≤ 1)

In this case,

XΞ(z) =

√
ρ

1− z
η +

√
1− ρXhyp(z).

G (z) =
ρz

1− z
, G2(z , z) =

1− (1− ρ)(z + z) + (1− 2ρ)zz

(1− z)(1− z)
.

G (z) is analytic in D = {|z | < 1}, but cannot be extended to a
neighborhood of D. Indeed,

d∆(θ) = ρδ0(dθ) + (1− ρ)
dθ

2π



Expected number of zeros of XΞ

NX (D) = #{z ∈ D : X (z) = 0}: the number of zeros inside D.
From the Edelman-Kostlan formula and the Stokes formula,

E[NX (D)] =
1

4π

∫
D

∆ log SX (z , z)dm(z) =
1

2πi

∮
∂D

∂z log SX (z , z)dz

In the present setting, since SX (z , z) = SXhyp
(z , z)G2(z , z)

E[NX (D)] =
1

2πi

∮
∂D

z

1− |z |2
dz︸ ︷︷ ︸

main term

+
1

2πi

∮
∂D

G ′(z)

G2(z , z)
dz︸ ︷︷ ︸

error term

We focus on the case where D = Dr = {z ∈ D : |z | < r}. We write
NX (r) for NX (Dr ).

E[NX (r)] =
r2

1− r2︸ ︷︷ ︸
E[NXhyp

(r)]

+ J (r)︸ ︷︷ ︸
error term



Examples: the error term is O(1)

Example 0. (i.i.d. case, hypberbolic GAF) When γ(k) = δk,0,

E[NXhyp
(r)] =

r2

1− r2
.

Example 1. (1-dependent) When |a| < 1/2,

E[NX (r)] =
r2

1− r2
−1

2

( 1√
1− 4a2

− 1
)
+ O(1− r2) as r → 1

Example 2. (Gaussian Markov) When γ(k) = ρ|k| (ρ ∈ (0, 1)),

E[NX (r)] =
r2

1− r2
− ρ2

1− ρ2
+ O(1− r2) as r → 1

Remark. For all the above cases, the spectral measures are absolutely
continuous and their spectral density are strictly positive.



Examples: the error term is O((1− r 2)−1/2) or more

Example 1. (1-dependent) When |a| = 1/2,

E[NX (r)] =
r2

1− r2
−1

2

1√
1− r2

+ O(1) as r → 1

When |a| = 1/2, the spectral measure has zeros on the unit circle, a.e.

∆′(θ) = 1 + 2a cos θ = 1± cos θ ≥ 0.

Example 3. (Degenerated with 0 < ρ ≤ 1)

ξk =
√
ρη +

√
1− ρζk (k ∈ Z).

The spectral measure is not absolutely continuous:

d∆(θ) = ρδ0(dθ) + (1− ρ)
dθ

2π

E[NX (r)] =


r2

1− r2
− 1

2

√
ρ

1− ρ

1√
1− r2

+ O(1) for 0 < ρ < 1

0 =
r2

1− r2
− r2

1− r2
for ρ = 1, X (z) =

ζ

1− z



Result A: Comparison of the expected number of zeros

Proposition (Noda-S.)

D ⊂ D: ∂D: a domain with smooth boundary

NX (D) = #{z ∈ D : X (z) = 0}: the number of zeros inside D

E[NX (D)] ≤ E[NXhyp
(D)].

The equality “=” holds for some (also any) domain D if and only if

X (z)
d
= Xhyp(z).

When D = Dr ,

E[NX (r)] =
r2

1− r2︸ ︷︷ ︸
E[NXhyp

(r)]

+ J (r)︸ ︷︷ ︸
error term

,

where

J (r) =
1

π

∫
Dr

∂z∂z logG2(z , z)dm(z) = − 1

π

∫
Dr

|G ′(z)|2

G2(z , z)2
dm(z) ≤ 0.



Error term coming from modified spectral function

The error term can be expressed as

J (r) =
1

2πi

∮
∂Dr

G ′(z)

G2(z , z)
dz =

r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .

Note that, since z = r2/z on Dr ,

Θr (z) :=
(
G2(z , z)

∣∣
z= r

z

)∣∣∣
z→rz

=
∑
k∈Z

γ(k)r |k|zk , G (z) =
∞∑
k=1

γ(k)zk .

Remark. Θ1(e
iθ) on ∂D is equal to the spectral density ∆′(θ) when the

spectral measure is absolutely continuous. Roughly speaking, as r → 1,
the poles of the integrand in I(r) approach to the zeros of ∆′(θ) if exist.



Example 2: Gaussian Markov case. O(1)-error

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz

where

G ′(rz) =
ρ

(1− ρrz)2
, Θr (z) =

(1− ρ2r2)z

(1− ρrz)(z − ρr)
.

Note that ∆′(θ) is strictly positive on ∂D.

The zero of Θr (z) is z = 0 indepen-
dent of r .

J (r) =
r

2πi

∮
∂D

ρ(z − ρr)

1− ρrz

1

(1− ρ2r2)z
dz

=
−ρ2r2

1− ρ2r2

= − ρ2

1− ρ2
+ O(1− r2)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure: Zero of Θr (z) = Pole



Example 1: 1-dependent case. O(1) or O((1− r 2)−1/2)
error.

For |a| ≤ 1/2,

G (z) = az , G2(z , z) = 1 + a(z + z), ∆′(θ) = 1 + 2a cos θ.

Then,

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz

where

G ′(rz) = ar , Θr (z) =
arz2 + z + ar

z
= ar

(z − νr )(z − ν−1
r )

z

with

νr =
−1 +

√
1− 4a2r2

2ar
∈ [−1, 1]

J (r) =
r

2πi

∮
∂D

z

(z − νr )(z − ν−1
r )

dz =
rνr

νr − ν−1
r



Example 1: 1-dependent case. O(1) or O((1− r 2)−1/2)
error.

1 When |a| < 1/2, ∆′(θ) > 0.
As r → 1,

νr →
−1 +

√
1− 4a2

2a
∈ (−1, 1).

J (r) = −1

2

( 1√
1− 4a2

−1
)
+O(1).

2 |a| = 1/2. When a = 1/2,
∆′(π) = 0.
As r → 1, νr , ν

−1
r → e iπ = −1.

νr−ν−1
r =

√
1− 4a2r2

ar
=

2
√
1− r2

r

J (r) = −1

2

1

(1− r2)1/2
+O(

√
1− r2).

J (r) =
rνr

νr − ν−1
r
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Figure: Zeros of Θr (z) = Poles



Example 4. 2-dependent case

We consider the coefficients {ξk}k∈Z with the following 2-dependent
covariance matrix of the form:

γa,b(k) =


1 (k = 0)

a (k = ±1)

b (k = ±2)

0 (otherwise).

{γa,b(k)}k∈Z is positive definite iff (a, b) ∈ P , where P is drawn below.

(I)

(III)(III)

(II)(II)

(IV)
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Result B: 2-dependent case

Theorem (Noda-S.)

The asymptotic behavior of the expected number of zeros E[NXa,b
(r)] is

given by the following: as r → 1,

1 (a, b) ∈ P(I )

E[NXa,b
(r)] = r2

1−r2
−

√
2b

6b−1
1

(1−r2)1/2
+ O(1)

2 (a, b) ∈ P(II )

E[NXa,b
(r)] = r2

1−r2
− 1

2

√
1−2b
1−6b

1
(1−r2)1/2

+ O(1)

3 (a, b) = (±2/3, 1/6) = P(III )

E[NXa,b
(r)] = r2

1−r2
− 1

25/4
1

(1−r2)3/4
+ O

(
1

(1−r2)1/4

)
4 (a, b) ∈ P(IV )

∃C (a, b) ≥ 0 s.t. E[NXa,b
(r)] = r2

1−r2
− C (a, b) + O

(
1− r2

)
Remark. X0,0(z) = Xhyp(z) is in the case P(IV ).



Zeros of Θr(z) as r → 1

The error term can be expressed as

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

case (I)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

case (III)

Figure: case(i) and (ii) ∆′(θ) has two zeros of multiplicity 2. case(iii) ∆′(θ) has a
zero of multiplicity 4.



n-dependent case

We consider the n-dependent, stationary complex Gaussian process.

γn(k) =

(
2n

n + k

)(
2n

n

)−1

for |k | = 0, 1, 2, ..., n; 0 otherwise.
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Figure: i.i.d. case
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Figure: {γ30(k)}k∈Z
case
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Figure: {γ60(k)}k∈Z
case

∆′(θ) =

(
2n

n

)−1(
2 cos

θ

2

)2n

θ ∈ [0, 2π),

where θ = π is the zeros of multiplicity 2n.



Zeros of Θr(z) as r → 1

The error term can be expressed as

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .
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degenerated case n=4

Figure: The degenerated case for n = 4. Red points are the zeros of Θr (z)



Result C: n-dependent case

Theorem (Noda-S.)

Let Ξ = {ξk}k∈Z be the Gaussian process with covariance function

γn(k) =

{( 2n
n+k

)(2n
n

)−1 |k | = 0, 1, 2, ..., n

0 otherwise,

and X (z) be GAF with coefficients Ξ. Then,

E[NX (r)] =
r2

1− r2
− Dn(1− r2)−

2n−1
2n + O

(
(1− r2)−

2n−3
2n

)
as r → 1,

where

Dn =
1

2n sin π
2n

{(
2(n − 1)

n − 1

)} 1
2n

.



Result D: Finitely dependent case

In general, if ∆′(θ) has a zero with multiplicity 2k on (−π, π], the term

(1− r2)−
2k−1
2k appears as r → 1 in the asymptotics of E[NX (r)]. Hence we

have the following:

Corollary (Noda-S.)

Ξ = {ξk}k∈Z: finitely dependent, stationary, complex Gaussian
process with mean 0 and variance 1.

The spectral density ∆′(θ) of Ξ has zeros θj of multipicity 2kj for
j = 1, 2, ..., p.

Set N = max1≤j≤p kj .

Then, ∃CΞ > 0 s.t.

E[NX (r)] =
r2

1− r2
−CΞ(1− r2)−

2N−1
2N + o

(
(1− r2)−

2N−1
2N

)
as r → 1.



Discussions

The spectral measure plays a crucial role for zeros of GAF.
So far we have seen finitely dependent cases, where the spectral
function is a trigonometric polynomial.
We should study the number of zeros on the sectorial domain
{z ∈ D : a < arg z < b} or its directional density.
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Figure: {γ30(k)}k∈Z case
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Figure: {γ60(k)}k∈Z case
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