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@ Gaussian analytic functions (GAFs) and basic properties
© Our setting and some examples
© Asymptotic behaviour of the expected number of zeros

@ Asymptotic behaviour of 1-intensity of the zeros



Gaussian power series

e {ak}: a deterministic (non-random) sequence of complex numbers
o {Ck(w)}: i.i.d. ~ Ng(0,1), standard complex normal.
@ The random power series

X(2) = X(z,w) =) arli(w)z*
k=0

defines a Gaussian analytic function (GAF) in the same circle of
convergence for the deterministic power series X(z) = > o, axz”.

o Covariance kernel: Sx(z,w) = E[X(z)X(w)] = 322 0|ak| 2(zw)k
determines GAF.

Important example (hyperbolic GAF): a, =

[e.9] 1 )
Xhyp(2) = ;quzk onD = S(z,w) = — (Szegb kernel)

Fact. For each z € D = {|z| < 1}, Xayp(z) ~ Nc(0, (1 — |z[?)71).



Stationary AR(p) model

Autoregressive model AR(p)

Yi=c+p1Yic1+ @Yo+ -+ opYep+ Gt (teZ)

where {(¢}+ez are i.i.d. noise.

@ AR(1): For |z] <1land c =0,
Yt = ZYt_l + Cf (t € Z) (*)

Figure: AR(1) with z = 0.7: Bernoulli noise (left) and R-Gaussian noise (right)

® Xpuyp(2) is the stationary solution to (*) with C-Gaussian noise.



Gaussian power series from AR(1)-model

e AR(1): For |z] <1,
Yi=2zYio1+ G (t€Z)
@ By introducing the shift operator (Sx): = x¢—1 (t € Z), we have
Ye=(25Y)e+ = Ve ={(1-25) "'}y = Ye = ) _ ZK(5*Q):
k=0

@ By expanding the RHS of the equation, we have

Ye=Ye(2) =Y 2k £ Xnypl2) (Yt € Z)
k=0

o {Y:(2)}tez forms a stationary GAF-valued process.



i.i.d. case (f(s) = 1) and the case f(s) = 1|_r/2/2(5)
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Figure: Zeros of finite approximations of degree 400. Left: i.i.d. case Xpy,(z) and
Right: X=(z) for the spectral measure f(s) = 1[_r/2/2(s). Zeros inside the disc
is in blue and those outside the disc is in red.



Density of zeros of GAF

Theorem (Edelman-Kostlan)

Let X(z) be a GAF on D with covariance function Sx(z, w). Then, the
1-correlation function of the zero process Zx := ). p.x(,)—o 0z of X(2)
(= the density of zeros) at z with Sx(z,z) > 0 is given by

1 1
1 = — = — .
px(2) = ;—Dlog Sx(z,2) = —9;0zlog Sx(z, 2)

Ex.(hyperbolic GAF): Xj,,(2) := Y32, Ckz" on D (i ii.d. ~ Ng(0,1).
Then,

o0
1 .
SXpy, (2, W) Z — (Szegb kernel)
k=0
and then
Y(z) = 18 Oz lo LI 1 (hyperbolic volume)



Calabi’s rigidity for GAF

By analyticity of X, the information of the diagonal Sx(z,z) determines
the off-diagonal Sx(z, w). From this fact, we have the following:

Theorem (Sodin)

Let X and Y be GAF on D. If the 1-correlation functions p%(z) and
p(z) of the zero processes Zx and Zy coincide, then there exists a
non-vanishing, non-random analytic function h such that

d

Y = hX.

In particular, Zx 4 Zy.

Example: This theorem implies that GAF on D whose density of zeros is
the hyperbolic volume W is essentially unique in law, which is
nothing but Xp,5(2).



Formula for correlation functions

@ Conditional kernel:
k(z, a)k(o, w)

kY(z,w) = k(z,w) — K(o.0)

and inductively define

kal,.,.,an(z’ W) = (kozl,...,OL,,,l)otr,(z7 W)

Proposition
The correlation functions of the zero process Zx of the GAF X(z) on a
domain D with covariance kernel Sx(z, w) are given by the formula

_ Pengij<n [(0:0wS% 7" )(2i, )]

Z1,...,2p €D
deti<ij<n [Sx(zi,zj)}

)

px(21,- -, 2n)

with respect to a reference measure \, whenever det;<; j<n[Sx(zi, z;)] > 0.




Peres-Virdg's theorem

Theorem (Peres-Virag (2005))

The zeros of the hyperbolic GAF
(oo}
thp(Z) = ngzk onD
k=0

is the determinantal point process associated with Bergman kernel
1
5o

Kz w) = i —Zap

Determinantal point process (DPP)

A point process is said to be a determinantal point process if there exists a kernel
K(z, w) such that the n-th correlation function is given by

p"(z1,...,2,) = det(K(z, Zj))}',jzl,

In particular, the density of points is p(z) = K(z, z).




Several extensions

@ Krishnapur(2009): {Gk}22, are i.i.d. p x p Ginibre matrices = DPP:

Xmatrix(2) = det (i szk>
k=0

@ Forrester(2010), Matsumoto-S.(2013): {¢F}3°, are i.i.d. real Gaussian
random variables = Pfaffian:

Xreal Z) ZC

@ Katori-5.(2022): the i.i.d. Gaussian Laurant series on the annulus Ag:

%CW

@ Noda-5.(2022): {&k}72, are finitely dependent, stationary Gaussian process
coefficients. Expected number of points inside the ball:

Xdep Z ﬁkZ



Our setting

= {&k}kez is a stationary, centered, complex Gaussian process with
the covariance function v:Z — C, i.e.,

[ V(€ — k) = E[¢k€/]

with 7(0) = 1. In particular, & ~ Nc(0, 1) for each k € Z.
@ We consider the Gaussian power series with the covariance above:

X(z) = X=(2) := ngzk
k=0

o If {&k}kez areiiid,, ie., y(k) = ko, the GAF is Xp(2).

Fact: All such GAFs are on D

The convergence radius of Xz is almost surely 1. Then, X=(z) is defined
on D and its zeros are located inside D if exists.




Covariance function and spectral function

@ Covariance kernel: There is a special covariance structure:

Sx(z,w) = thyp(z, w)Ga(z,w) =

— ZwW

x  Gp(z,w)
—_——

spectral densit
Szegd kernel P y

where

Go(z,w) =1+ G(z) + G(w), G(z2)= Zmzk.
k=1

e Spectral measure dA(6): Since (k) is positive definite,

7

(k) = [ eMange)

—T

o If dA(0) = A’(G)g—z, then A’(0) is called the spectral density.



Example 1: 1-dependent case

1 k=0
v(k)=<¢a k=+1 for |a] <1/2
0 otherwise

o G(z)=az, Gyz,w)=1+a(z+w)
@ |t is easy to see that

T - . do
ik@ i i
1 - = k
/ "™ (14 ae"” 4+ ae™ ") ~(k)

@ This means that
A'(0) = Gy(e™, %) =14 2acosb.

Spectral density
When G(z) is analytic in a neighborhood of D, we have

AI(Q) _ G2(ei9, eie)




Example 2: Gaussian Markov case

For 0 < p <1 and {(p}nez i.i.d. ~ Ng(0,1),

§ni=\1—p? Zkanfk (i V31— p2thP(p))
k=0

[ y(k)=p* (0<p<1)
. pz 5 ) = 1—p?zz
R A A (e ()

o G(z) is analytic in |z| < p~ 1,

1—p? 1—p?

A/ 9 = " - =
() (1 — pel?)(1 — pe=i®) 1 —2pcosf + p?

>0




Example 3: Degenerated case

For n and (x (k € Z) i.i.d. ~ N¢(0,1),
&=+ V1—pl (keZ).

1 k=0
v(k)={ . (0<p<1)
p otherwise

In this case,
0
Xe(2) = 20 VT X(2)
pz 1-(1—-p)z+2)+(1—2p)zz
G = — G =
ccle)=17 @=2) (1-2)(1-2)
e G(z) is analytic in D = {|z| < 1}, but cannot be extended to a
neighborhood of D. Indeed,

dA(0) = pio(dd) + (1~ p) o




Expected number of zeros of X=

e Nx(D)=#{z € D: X(z) = 0}: the number of zeros inside D.
@ From the Edelman-Kostlan formula and the Stokes formula,

E[Nx(D) /AIogSX(Z z)dm(z) = ?{ 0, log Sx(z,z)dz

@ In the present setting, since Sx(z,z) = Sx, ,(z,2)G2(z, 2)

BN (D) = 5o f Lf cla)

27i Jop 1 — |z|? T ap Ga(z,2)

NI

Vv vV
main term error term

o We focus on the case where D =D, = {z € D : |z| < r}. We write
Nx(r) for Nx(D,).

r2

BN = -z + J0)

error term

——
E[Nx,, (1]



Examples: the error term is O(1)

e Example 0. (i.i.d. case, hypberbolic GAF) When (k) = 40,

r2

E[Nx,,, ()] = 1_,2
e Example 1. (1-dependent) When |a| < 1/2,
1 1 )
E[Nx(r)] = 1—r2*§(m*1)+0(1_r ) asr—1

o Example 2. (Gaussian Markov) When ~(k) = plkl (p € (0,1)),

2 2

r p
E[Nx(r)] = 21 2 +0(1—-r? asr—1

Remark. For all the above cases, the spectral measures are absolutely
continuous and their spectral density are strictly positive.



Examples: the error term is O((1 — r?)~%/2) or more

e Example 1. (1-dependent) When |a| =1/2,
P11 N

1—r2 2 V1 —r2

When |a|] = 1/2, the spectral measure has zeros on the unit circle, a.e.

A'(0) =1+2acos =1+ cosh > 0.

E[Nx(r)] = O(1) asr—1

e Example 3. (Degenerated with 0 < p <1)

&k=vm+V1—pC (keZ).

The spectral measure is not absolutely continuous:

do
dA(0) = pdo(d) + (1 - p)5—
r? 1 p 1
- = 1) for0<p<1
1-r2 - ol
E[Nx(1)] = # LAV /
=1 2 1 2 forpzl,X(z)zl_z




Result A: Comparison of the expected number of zeros

Proposition (Noda-S.)
e D C D: 9D: a domain with smooth boundary
o Nx(D)=#{z € D: X(z) = 0}: the number of zeros inside D

E[Nx(D)] < E[Nx,,,(D)]-

The equality “=" holds for some (also any) domain D if and only if
d
X(2) = Xnyp(2).

When D = D,, ,
r
E[Nx(r)] = 12 J(r) .
~—— error term
E[Nx,,, ()]
where
1 1 1G'(2)?
_ —_= <0.
70) =+ [ 0.0c108 Gale 2)am(z) = — [ ZE dm(z) < 0



Error term coming from modified spectral function

The error term can be expressed as

- i G/(Z) L r G’(rz) L
J(r) = 27i 7({911), Gz(z,z)d C2mi ]é)ﬂ)) ©(2) %

Note that, since z = r?/z on D,

0.(2) = (Galz.2)| . )

z

= Z’y(k)rwzk, G(z) = ZTk)zk.
k=1

keZ

z—rz

Remark. ©1(e?) on 9D is equal to the spectral density A’(#) when the
spectral measure is absolutely continuous. Roughly speaking, as r — 1,
the poles of the integrand in Z(r) approach to the zeros of A’(0) if exist.



Example 2: Gaussian Markov case. O(1)-error

o G'(rz)
J(n) = 2ri ap ©r(2) o
where , , (1 2)z2
=T OO T e

o Note that A’(#) is strictly positive on 9D.

The zero of ©,(z) is z = 0 indepen-
dent of r. 0s

T(r) = r p(z — pr) 1 d

T 2ni Jop 1—prz (1—p2r?)z
2
11— p2r2
2
= S+ 0(1-r)
1—p Figure: Zero of ©,(z) = Pole




Example 1: 1-dependent case. O(1) or O((1 — r2)*1/2)

error.
For |a| <1/2,
G(z) =az, Gx(z,z)=1+a(z+2Z), A'(A)=1+2acosh.

Then, /
J(r) = r G'(rz)

== d
2mi oD er(z) ‘

where

2 _ _ -1
G'(rz) = ar, ©,(z) = arz" +z+ar _ ar(z ve)(z — v 1)

4 z
with
—1++1—14a2r2
Vr= € [_17 1]
2ar
T(r) =5 z dr =

C2miJop (z-v)z v ) v



Example 1: 1-dependent case. O(1) or O((1 —

error.
@ When |a] < 1/2, A'(0) > 0. ez
Asr — 1, j(r)_Vr—V,«_l
—1++V1—42°

J(r) = —1(#—1%0(1).

2\/1 — 432 05
@ |a] =1/2. When a=1/2,
A/(ﬂ') = 0 =k 05 1jo
Asr—1,v,v; = e™=—1
1 V1 —42%r2 2v1—r2
l/r—l/r = =
ar r

J(r) = 11+0(m|).

T 2(1—r2)1/2

igure: Zeros of ©,(z) = Poles




Example 4. 2-dependent case

We consider the coefficients {&x }xez with the following 2-dependent
covariance matrix of the form:

1 (k=0)
_Ja (k=+1)
’Va,b(k) - b (k _ :|:2)

0 (otherwise).

{7a,b(k)}kez is positive definite iff (a, b) € P, where P is drawn below.

1.0




Result B: 2-dependent case

Theorem (Noda-S.)

The asymptotic behavior of the expected number of zeros E[Nx, ,(r)] is
given by the following: as r — 1,

Q (a,b) € 73(/)
E[Nx, ()] = 157 — /5225 by + O(1)
@ (a.b) € Py
E[Nx, ()] = t52 — 34/ =52 = 1)1/2 +0(1)
Q (a,b) = (i2/3, 1/6) Py
Q (a,b) € Pav)
3C(a,b) > 0 st. E[Nx, ,(r)] = C(a,b)+ 0 (1 r?)

Remark. Xp,0(2) = Xhyp(2) is in the case Pavy-



Zeros of ©,(z) as r — 1

The error term can be expressed as

o G'(rz)
j(r) = %ém @r(Z) dz.

case (1) case (IIl)

Figure: case(i) and (i) A’(6) has two zeros of multiplicity 2. case(iii) A’(6) has a
zero of multiplicity 4.



n-dependent case

@ We consider the n-dependent, stationary complex Gaussian process.

2 2n\ *
Yn(k) = < " ) (:) for |k| =0,1,2,...,n; 0 otherwise.

Figure: {v30(k)}kez Figure: {v60(k)}kez
case case

Figure: i.i.d. case

A() = <2n”> 1(2 cos§)2n 6 < [0,2n),

where 0 = 7 is the zeros of multiplicity 2n.



Zeros of ©,(z) as r — 1

The error term can be expressed as
r G'(rz)

~ 2ni Jop ©4(2) i

J(r)

degenerated case n=4

-2.0 -1.5

Figure: The degenerated case for n = 4. Red points are the zeros of ©,(z)



Result C: n-dependent case

Theorem (Noda-S.)

Let = = {&k}kez be the Gaussian process with covariance function
2 om —1
Yn(k) = (nﬁk)(:) k| =0,1,2,....,n
0 otherwise,

and X(z) be GAF with coefficients =. Then,

r2

E[Nx(r)] = 1= — Da(1 - )5 40 ((1 _ ﬂy%) o6 =L

0= 5= { () "
2nsm% n—1

where




Result D: Finitely dependent case

In general, if A’(0) has a zero with multiplicity 2k on (—m, 7], the term
(1- rz)f% appears as r — 1 in the asymptotics of E[Nx(r)]. Hence we
have the following:

Corollary (Noda-S.)

o = = {&k}kez: finitely dependent, stationary, complex Gaussian
process with mean 0 and variance 1.

@ The spectral density A’(0) of = has zeros 6; of multipicity 2k; for
j=12,...,p.
@ Set N = maxi<j<p kj.
Then, 9C= > 0 s.t.

r2 2N—-1

E[Nx(r)] = - Cz(1— )% 40 ((1 . r2)*w) asr— 1.

v




Discussions

@ The spectral measure plays a crucial role for zeros of GAF.

@ So far we have seen finitely dependent cases, where the spectral
function is a trigonometric polynomial.

@ We should study the number of zeros on the sectorial domain
{z €D :a<argz < b} or its directional density.

Figure: {v30(k)}kez case Figure: {v60(k)}kez case
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