CUTOFF FOR THE TRANSIENCE TIME OF THE SSEP
WITH TRAPS AND THE FEP

BASED ON J.w. WITH B. MASSOULIE (CEREMADE)

Clément Erignoux, INRIA Lyon

March 6, 2024



INTRO: SSEP ON THE RING

Consider the discrete ring T, = {1, ..., K}
> Each of its sites k € T is either

Occupied by a particle = o, =1
Empty = o0, =0

> Configurations o € {0, 1}%.
> Particles jump at rate 1 to any empty neighboring sites (exclusion rule)




I - Transience cutoff for the SSEP with Traps



SSEP WITH TRAPS ON THE RING: CONFIGURATION

Consider the discrete ring T, = {1, ..., K}

> Each of its sites k € T is either

Occupied by a particle = & =1
Empty = &, =0
Atrap of depth |a|, fora <0 = ¢, =a.

[> Configurations £ = (§;)cr, € {1,0,—1,-2,... }*%.




SSEP WITH TRAPS ON THE RING: DYNAMICS

Particles and empty sites behave exactly as in the (nearest-neighbor) SSEP,
meaning that particles

[> jump at rate 1 to (nearest-neighbor) empty sites
[> cannot jump to occupied sites (exclusion rule)

[> jump at rate 1 to (nearest-neighbor) traps
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SSEP WITH TRAPS ON THE RING: DYNAMICS

[> When a particle jumps to a trap, it is destroyed, and the trap’s depth is
reduced by 1
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SSEP WITH TRAPS ON THE RING: DYNAMICS

> If the trap was of depth one, it simply becomes an “normal” empty site,
and the particle is destroyed.
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SSEP WITH TRAPS ON THE RING: DYNAMICS

The generator for the SWT is given by

ChfO) =D D Y. <ol FEF2) = F(O)},

keT g z=+1

kk+z7§-k71
fllzsz _£k+z+1

defines the configuration where the particle at site £ has jumped to & + 2.

where



SSEP WITH TRAPS ON THE RING: DYNAMICS

The generator for the SWT is given by
Lef©) =D D g g, <o) LIEF) = O},

keT g z=+1

’lj,k+z _ fk 1
fllzsz = £k+z + 1

defines the configuration where the particle at site £ has jumped to & + 2.

where

> Dynamics very close to a water+ice phase separation model by Funaki
[ATHP 91], who studied its hydrodynamic limit (Stefan problem)
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SOME BASIC PROPERTIES OF THE SW'I

> The depth of any trap can only decrease, as well as the total number of
particles in the system.

> The SWT dynamics is attractive : one can couple the evolution of two
SWT £(+), &(+) starting from £ < &, in such a way that at any time ¢ > 0, we
still have

£(t) < &(t)

> When the last particle gets trapped, the SWT becomes frozen.
> When the last trap gets filled, the SWT becomes a standard SSEP.

> Until one of those two things occur, the system is in a transient state. We
denote by

T ={& W €Ty | & =1,60 <0}

the set of transient configurations.
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ESTIMATION OF THE TRANSIENCE TIME I

QueEsTION: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

Given atime ¢ > 0, ¢ € [0, 1], define the maximal transience probability at
time ¢, and the associated e-transience time

pr(t) = Slglp Pe(&(t) € T k),

O, (e) = pil(e) = inf{t >0 prlt) < 5}

Theorem (E’, Massoulié 24+)

The transience probability vanishes uniformly over large times of order
K?log K, meaning that

lim sup pg(tK?log K) = 0. (Easy)

t—o0 K>0




ESTIMATION OF THE TRANSIENCE TIME I

First Theorem

pr(tK?*log K) |

>




ATTRACTIVENESS AND CRITICAL TRANSIENCE

Define S(&) = > — &, the number of excess particles, S(¢) = 0 for critical
conf., becomes identically 0 at the end of the transience time

[> Attractiveness —> worst transience probability for a critical configuration
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| Longer transience time: S(£) =0 |
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HEURISTICS: FULL EXPLORATION TIME FOR K PARTLCLES

Assume for illustration that the particles move independantly. Each particle
fully explores T, before time ¢ w.p.

1— e*Ct/K2 S qK(t) S 1— efct/Kz.

[>  Still transient at ¢+indep particles = Upper bound
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HEURISTICS: FULL EXPLORATION TIME FOR K PARTLCLES

Assume for illustration that the particles move independantly. Each particle
fully explores T, before time ¢ w.p.

1— e*Ct/K2 S qK(t) S 1— efct/Kz.

[>  Still transient at ¢+indep particles = Upper bound

pr(t) <1—(1—e /KK o ect/K?

> For the lower bound, it is enough to consider the configuration with K
particles at the origin, and a trap of depth K on the other side:

Pr(t) > 1— (1 — e CUEHE,
> Crude bound: the exclusion interaction can be taken into account by

estimating the full exploration time of the so-called interchange process,
which boils down to a simple union bound.



ESTIMATION OF THE TRANSIENCE TIME II

QueEsTtioN: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

pr(t) = Slgp Pe(&(t) € T k),

0, (e) = p(e) == inf{t >0 pylt) < g}

Theorem (E’, Massoulié 24+)

The transience time exhibits cutoff, meaning that it goes sharply from 1 to 0
at time

KQ
e = ?logK,

ie.

Ox(e) =t3 + 0. (K*loglog K). (Hard)




ESTIMATION OF THE TRANSIENCE TIME II

Second Theorem

prc(tK?log K)
1

>

Cutoff window, ok (1)




CONSEQUENCE ON MIXING TIME (SUPERCRITICAL CASE)

For S(§) = s, the stationary state for the SWT is the uniform state 7 , over

s = {f € {0,1}%: ka = 5}

e-mixing time for the SWT

Tieo(e) =i {t > 0+ dpy(Pe(E(t) = ), 7xe ) <2, VE}
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CONSEQUENCE ON MIXING TIME (SUPERCRITICAL CASE)

For S(§) = s, the stationary state for the SWT is the uniform state 7 , over

s = {f € {0,1}%: ka = 5}

e-mixing time for the SWT

Tieo(e) =i {t > 0+ dpy(Pe(E(t) = ), 7xe ) <2, VE}

s SWT transience time | SSEP mix. time* | SWT mix. time
01) | =~ K log(K/sA1) O(K?) ~ K log K
O(K) O(K?) ~ K Jog s ~ I log K

* [Lacoin 2017]



II - Transience cutoff for the
Facilitated Exclusion Process



THE FACILITATED EXCLUSION PROCESS (FEP)

Exclusion process on Ty, site z is either empty (7, = 0) or occupied (1, = 1)

[> jump at rate 1 to (nearest-neighbor) empty sites IF the other neighbor is
occupied (the particle is active) — isolated particles cannot jump
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THE FACILITATED EXCLUSION PROCESS (FEP)

Exclusion process on Ty, site z is either empty (1, = 0) or occupied (1, = 1)

[> jump at rate 1 to (nearest-neighbor) empty sites IF the other neighbor is
occupied (the particle is active) — isolated particles cannot jump

v VY

I/I\GIG/I\I@I

> If all particles are isolated: absorbing —frozen— state (¢ & )

> Empty sites isolated: ergodic state (¢ &), —two empty sites cannot
become neighbors—

> Until frozen or ergodic: transient state (€ 7 ), with both active particles
and pairs of neighboring empty sites.



TRANSIENCE CUTOFF FOR THE FEP

QuEsTioN: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

pn(t) = Sl;p P,(n(t) € Tn),
Oy (e) = pit(e) == inf{t > 0,P, (n(t) € Ty) < 5}

Theorem (E’, Massoulié 24+)

The FEP’s transience time exhibits cutoff, meaning that it goes sharply from
1to 0 at time

* N2
tN/Q = 477‘_210gN,

ie.

On(e) = tiy /g + O (N?loglog N).




CONFIGURATION MAPPING SWT < FEP

SSEP with traps




DYNAMICAL MAPPING SWT < FEP
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DYNAMICAL MAPPING SWT < FEP

VR

1© 00 @ | O @ @@ | _ pp

SSEP with traps

+ For a critical (K = N /2) FEP configuration »*, the transience time 0,. is
that of the mapped critical SWT £*:

sup 0,. = sup . =~ t;\//Q

7)* critical &* critical



CRITICALITY BOUNDS: FREEZING TIME

[> Fornwith K < N/2 particles, ¢ := ¢, the mapped SWT

for £&* > £ a critical SWT.
n §=& &
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CRITICALITY BOUNDS: FREEZING TIME

[> Fornwith K < N/2 particles, ¢ := ¢, the mapped SWT

for £&* > £ a critical SWT.
n §=& &

© OO | 11 1,0 .

1 N 1 1

> Subcritical configurations freeze “faster” than critical ones.



CRITICALITY BOUNDS: "ERGODIC” TIME

> For K > N/2,last inequality no longer true. We use another mapping,
with the zero-range process won Tp_ -
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> For K > N/2,last inequality no longer true. We use another mapping,
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This rate 1 zero-range process is also constrained and attractive. A particle
can jump away from a site if it is not alone on the site.

0, =0, <O =0p ~ th i <ty

+ Supercritical configurations becomer ergodic “faster” than critical ones.



FEP MIXING TIME CUTOFF (ONGOING WORK)

> Transience time is identical (trajectory per trajectory) between SWT and
FEP

> Not the case a priori for mixing time

> The SWT configuration can be in its stationary state (SSEP), but the
mapped FEP is not

> Need to understand the joint distribution of a tagged particle/current at
the origin AND the configuration (tricky)



IIT -Main ideas of the proof
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TRANSIENCE CUTOFF FOR THE SWT: UNIQUE TRAP

We take a critical configuration ¢ with a single trap, we can assume all other
sites are occupied

COOQ, . O Q.

K

The transience time is exactly the time for a non-periodic SSEP with empty
reservoirs to empty the system=Boundary-driven SSEP mixing time

AN A
Empty |Q|G|Q|G| Empty

Reservoir Reservoir
1 K-1



TRANSIENCE CUTOFF FOR THE SWT: GENERAL CASE

General case : all about understanding where a remaining trap is to break
periodicity.

1) Break Ty into @ := log K pieces 4, ... A,
2) Then,

&(t) is transient = 3i, A, still contains a trap at time ¢.
We are left estimating

pr(t) < QsupP; (g(t) has a trap in Al).
3

3) Ifthereis still a trap in A in £(¢), no particle can have fully crossed it in
either direction. We couple the SWT with SSEP with empty reservoirs on
a larger bulk



TAKE-HOME MESSAGE AND ONGOING PROJECTS

> SWT interesting on its own, easily generalized

> Huge improvement (sharp estimate) on the previous transience bounds
(product distribution, based on zero-range mapping)

> Cutoff in a new setting than mixing time
> Mixing time for the FEP ? tricky
> Worst critical SWT configuration ? Conjecture : single trap

> Transience and mixing time for boundary-driven FEP ?



Thanks for your attention !

(And check out Brune’s poster ;-))
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