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INTRO: SSEP ON THE RING

Consider the discrete ring 𝕋𝐾 = {1, … , 𝐾}

▷ Each of its sites 𝑘 ∈ 𝕋𝐾 is either

{ Occupied by a particle ⟹ 𝜎𝑘 = 1
Empty ⟹ 𝜎𝑘 = 0

▷ Configurations 𝜎 ∈ {0, 1}𝐾 .
▷ Particles jump at rate 1 to any empty neighboring sites (exclusion rule)

1 1 1 1



I - Transience cutoff for the SSEP with Traps



SSEP WITH TRAPS ON THE RING: CONFIGURATION

Consider the discrete ring 𝕋𝐾 = {1, … , 𝐾}

▷ Each of its sites 𝑘 ∈ 𝕋𝐾 is either

⎧{
⎨{⎩

Occupied by a particle ⟹ 𝜉𝑘 = 1
Empty ⟹ 𝜉𝑘 = 0
A trap of depth |𝑎|, for 𝑎 < 0 ⟹ 𝜉𝑥 = 𝑎.

▷ Configurations 𝜉 = (𝜉𝑘)𝑘∈𝕋𝐾
∈ {1, 0, −1, −2, … }𝐾 .

ξk = 1 ξk = −2 ξk = 0



SSEP WITH TRAPS ON THE RING: DYNAMICS

Particles and empty sites behave exactly as in the (nearest-neighbor) SSEP,
meaning that particles

▷ jump at rate 1 to (nearest-neighbor) empty sites
▷ cannot jump to occupied sites (exclusion rule)

▷ jump at rate 1 to (nearest-neighbor) traps

1 1 1
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SSEP WITH TRAPS ON THE RING: DYNAMICS

The generator for the SWT is given by

ℒ𝐾𝑓(𝜉) = ∑
𝑘∈𝕋𝐾

∑
𝑧=±1

1{𝜉𝑘=1,𝜉𝑘+𝑧≤0}{𝑓(𝜉𝑘,𝑘+𝑧) − 𝑓(𝜉)},

where

{𝜉𝑘,𝑘+𝑧
𝑘 = 𝜉𝑘 − 1

𝜉𝑘,𝑘+𝑧
𝑘+𝑧 = 𝜉𝑘+𝑧 + 1

defines the configuration where the particle at site 𝑘 has jumped to 𝑘 + 𝑧.

▷ Dynamics very close to a water+ice phase separation model by Funaki
[AIHP 91], who studied its hydrodynamic limit (Stefan problem)
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SOME BASIC PROPERTIES OF THE SWT

▷ The depth of any trap can only decrease, as well as the total number of
particles in the system.

▷ The SWT dynamics is attractive : one can couple the evolution of two
SWT 𝜉(⋅), ̃𝜉(⋅) starting from 𝜉 ≤ ̃𝜉, in such a way that at any time 𝑡 > 0, we
still have

𝜉(𝑡) ≤ ̃𝜉(𝑡)

▷ When the last particle gets trapped, the SWT becomes frozen.

▷ When the last trap gets filled, the SWT becomes a standard SSEP.

▷ Until one of those two things occur, the system is in a transient state. We
denote by

𝒯𝐾 = {𝜉, ∃𝑘, 𝑘′ ∈ 𝕋𝐾 ∣ 𝜉𝑘 = 1, 𝜉𝑘′ < 0}

the set of transient configurations.



SOME BASIC PROPERTIES OF THE SWT

▷ The depth of any trap can only decrease, as well as the total number of
particles in the system.

▷ The SWT dynamics is attractive : one can couple the evolution of two
SWT 𝜉(⋅), ̃𝜉(⋅) starting from 𝜉 ≤ ̃𝜉, in such a way that at any time 𝑡 > 0, we
still have

𝜉(𝑡) ≤ ̃𝜉(𝑡)

▷ When the last particle gets trapped, the SWT becomes frozen.

▷ When the last trap gets filled, the SWT becomes a standard SSEP.

▷ Until one of those two things occur, the system is in a transient state. We
denote by

𝒯𝐾 = {𝜉, ∃𝑘, 𝑘′ ∈ 𝕋𝐾 ∣ 𝜉𝑘 = 1, 𝜉𝑘′ < 0}

the set of transient configurations.



SOME BASIC PROPERTIES OF THE SWT

▷ The depth of any trap can only decrease, as well as the total number of
particles in the system.

▷ The SWT dynamics is attractive : one can couple the evolution of two
SWT 𝜉(⋅), ̃𝜉(⋅) starting from 𝜉 ≤ ̃𝜉, in such a way that at any time 𝑡 > 0, we
still have

𝜉(𝑡) ≤ ̃𝜉(𝑡)

▷ When the last particle gets trapped, the SWT becomes frozen.

▷ When the last trap gets filled, the SWT becomes a standard SSEP.

▷ Until one of those two things occur, the system is in a transient state. We
denote by

𝒯𝐾 = {𝜉, ∃𝑘, 𝑘′ ∈ 𝕋𝐾 ∣ 𝜉𝑘 = 1, 𝜉𝑘′ < 0}

the set of transient configurations.



SOME BASIC PROPERTIES OF THE SWT

▷ The depth of any trap can only decrease, as well as the total number of
particles in the system.

▷ The SWT dynamics is attractive : one can couple the evolution of two
SWT 𝜉(⋅), ̃𝜉(⋅) starting from 𝜉 ≤ ̃𝜉, in such a way that at any time 𝑡 > 0, we
still have

𝜉(𝑡) ≤ ̃𝜉(𝑡)

▷ When the last particle gets trapped, the SWT becomes frozen.

▷ When the last trap gets filled, the SWT becomes a standard SSEP.

▷ Until one of those two things occur, the system is in a transient state. We
denote by

𝒯𝐾 = {𝜉, ∃𝑘, 𝑘′ ∈ 𝕋𝐾 ∣ 𝜉𝑘 = 1, 𝜉𝑘′ < 0}

the set of transient configurations.



SOME BASIC PROPERTIES OF THE SWT

▷ The depth of any trap can only decrease, as well as the total number of
particles in the system.

▷ The SWT dynamics is attractive : one can couple the evolution of two
SWT 𝜉(⋅), ̃𝜉(⋅) starting from 𝜉 ≤ ̃𝜉, in such a way that at any time 𝑡 > 0, we
still have

𝜉(𝑡) ≤ ̃𝜉(𝑡)

▷ When the last particle gets trapped, the SWT becomes frozen.

▷ When the last trap gets filled, the SWT becomes a standard SSEP.

▷ Until one of those two things occur, the system is in a transient state. We
denote by

𝒯𝐾 = {𝜉, ∃𝑘, 𝑘′ ∈ 𝕋𝐾 ∣ 𝜉𝑘 = 1, 𝜉𝑘′ < 0}

the set of transient configurations.



ESTIMATION OF THE TRANSIENCE TIME I

QUESTION: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

Given a time 𝑡 > 0, 𝜀 ∈ [0, 1], define themaximal transience probability at
time 𝑡, and the associated 𝜀-transience time

𝑝𝐾(𝑡) = sup
𝜉

ℙ𝜉(𝜉(𝑡) ∈ 𝒯𝐾),

𝜃𝐾(𝜀) = 𝑝−1
𝐾 (𝜀) ∶= inf{𝑡 ≥ 0 ∶ 𝑝𝐾(𝑡) ≤ 𝜀}

Theorem (E’, Massoulié 24+)
The transience probability vanishes uniformly over large times of order
𝐾2 log𝐾, meaning that

lim
𝑡→∞

sup
𝐾≥0

𝑝𝐾(𝑡𝐾2 log𝐾) = 0. (𝐸𝑎𝑠𝑦)
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ESTIMATION OF THE TRANSIENCE TIME I

1

t

?

pK(tK2 logK)

First Theorem



ATTRACTIVENESS AND CRITICAL TRANSIENCE

Define 𝑆(𝜉) = ∑𝑘∈𝕋𝐾
𝜉𝑘 the number of excess particles, 𝑆(𝜉) = 0 for critical

conf., becomes identically 0 at the end of the transience time

▷ Attractiveness ⟹ worst transience probability for a critical configuration

Longer transience time:Shorter transience time

1 K 1 K

S(ξ) = 0

S(ξ) > 0

S(ξ) < 0

1 K 1 K



HEURISTICS: FULL EXPLORATION TIME FOR𝐾 PARTLCLES

Assume for illustration that the particles move independantly. Each particle
fully explores 𝕋𝐾 before time 𝑡 w.p.

1 − 𝑒−𝑐𝑡/𝐾2 ≤ 𝑞𝐾(𝑡) ≤ 1 − 𝑒−𝐶𝑡/𝐾2 .

▷ Still transient at 𝑡+indep particles ⟹ Upper bound

𝑝𝐾(𝑡) ≤ 1 − (1 − 𝑒−𝑐𝑡/𝐾2)𝐾 ≃ 𝐾𝑒𝑐𝑡/𝐾2 .

▷ For the lower bound, it is enough to consider the configuration with 𝐾
particles at the origin, and a trap of depth 𝐾 on the other side:

𝑝𝐾(𝑡) ≥ 1 − (1 − 𝑒−𝐶𝑡/𝐾2)𝐾.

▷ Crude bound: the exclusion interaction can be taken into account by
estimating the full exploration time of the so-called interchange process,
which boils down to a simple union bound.
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ESTIMATION OF THE TRANSIENCE TIME II

QUESTION: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

𝑝𝐾(𝑡) = sup
𝜉

ℙ𝜉(𝜉(𝑡) ∈ 𝒯𝐾),

𝜃𝐾(𝜀) = 𝑝−1
𝐾 (𝜀) ∶= inf{𝑡 ≥ 0 ∶ 𝑝𝐾(𝑡) ≤ 𝜀}

Theorem (E’, Massoulié 24+)
The transience time exhibits cutoff, meaning that it goes sharply from 1 to 0
at time

𝑡⋆
𝐾 ∶= 𝐾2

𝜋2 log𝐾,

i.e.

𝜃𝐾(𝜀) = 𝑡⋆
𝐾 + 𝒪𝜀(𝐾2 log log𝐾). (𝐻𝑎𝑟𝑑)



ESTIMATION OF THE TRANSIENCE TIME II

1

t

pK(tK2 logK)

Second Theorem

1/π2

Cutoff window, oK(1)



CONSEQUENCE ON MIXING TIME (SUPERCRITICAL CASE)

For 𝑆(𝜉) = 𝑠, the stationary state for the SWT is the uniform state 𝜋𝐾,𝑠 over

Σ𝐾,𝑠 ∶= {𝜉 ∈ {0, 1}𝐾 ∶ ∑ 𝜉𝑘 = 𝑠}

𝜀-mixing time for the SWT

𝜏𝐾,𝑠(𝜀) ∶= inf{𝑡 > 0 ∶ 𝑑𝑇 𝑉 (ℙ𝜉(𝜉(𝑡) = ⋅), 𝜋𝐾,𝑠) < 𝜀, ∀𝜉}

𝑠 SWT transience time SSEP mix. time⋆ SWT mix. time

𝒪(1) ≃ 𝐾2
𝜋2 log(𝐾) 𝒪(𝐾2)

𝒪(𝐾) 𝒪(𝐾2) ≃ 𝛼𝐾2
8𝜋2 log 𝑠

⋆ [Lacoin 2017]
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II - Transience cutoff for the testtti
testFacilitated Exclusion Process



THE FACILITATED EXCLUSION PROCESS (FEP)

Exclusion process on 𝕋𝑁 , site 𝑥 is either empty (𝜂𝑥 = 0) or occupied (𝜂𝑥 = 1)

▷ jump at rate 1 to (nearest-neighbor) empty sites IF the other neighbor is
occupied (the particle is active) ⟼ isolated particles cannot jump

▷ If all particles are isolated: absorbing –frozen– state (∈ ℱ𝒩)
▷ Empty sites isolated: ergodic state (∈ ℰ𝒩), –two empty sites cannot

become neighbors–
▷ Until frozen or ergodic: transient state (∈ 𝒯𝑁), with both active particles

and pairs of neighboring empty sites.
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and pairs of neighboring empty sites.



THE FACILITATED EXCLUSION PROCESS (FEP)

Exclusion process on 𝕋𝑁 , site 𝑥 is either empty (𝜂𝑥 = 0) or occupied (𝜂𝑥 = 1)
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▷ Empty sites isolated: ergodic state (∈ ℰ𝒩), –two empty sites cannot
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and pairs of neighboring empty sites.



TRANSIENCE CUTOFF FOR THE FEP

QUESTION: How long does the SWT stay transient in the worst case scenario
(worst initial configuration) ?

𝑝𝑁(𝑡) = sup
𝜂

ℙ𝜂(𝜂(𝑡) ∈ 𝒯𝑁),

𝜃𝑁(𝜀) = 𝑝−1
𝑁 (𝜀) ∶= inf{𝑡 ≥ 0, ℙ𝜂(𝜂(𝑡) ∈ 𝒯𝑁) ≤ 𝜀}

Theorem (E’, Massoulié 24+)
The FEP’s transience time exhibits cutoff, meaning that it goes sharply from
1 to 0 at time

𝑡⋆
𝑁/2 ∶= 𝑁2

4𝜋2 log𝑁,

i.e.
𝜃𝑁(𝜀) = 𝑡⋆

𝑁/2 + 𝒪𝜀(𝑁2 log log𝑁).



CONFIGURATION MAPPING SWT ↔ FEP

1 2 3

4

5
6

7 8

21 73 64 85
FEP

SSEP with traps



DYNAMICAL MAPPING SWT ↔ FEP

SSEP with traps

FEP

↦ For a critical (𝐾 = 𝑁/2) FEP configuration 𝜂⋆, the transience time 𝜃𝜂⋆ is
that of the mapped critical SWT 𝜉⋆:

sup
𝜂⋆critical

𝜃𝜂⋆ = sup
𝜉⋆critical

𝜃𝜉⋆ ≃ 𝑡⋆
𝑁/2
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CRITICALITY BOUNDS: FREEZING TIME

▷ For 𝜂 with 𝐾 ≤ 𝑁/2 particles, 𝜉 ∶= 𝜉𝜂 the mapped SWT

𝜃𝜂 = 𝜃𝜉 ≤ 𝜃𝜉⋆ ≃ 𝑡⋆
𝐾 ≤ 𝑡⋆

𝑁/2

for 𝜉⋆ ≥ 𝜉 a critical SWT.

1 N 1

K

η ξ = ξη ξ⋆

1

K

↦ Subcritical configurations freeze “faster” than critical ones.
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CRITICALITY BOUNDS: ”ERGODIC” TIME

▷ For 𝐾 ≥ 𝑁/2, last inequality no longer true. We use another mapping,
with the zero-range process 𝜔 on 𝕋𝑁−𝐾 .

1 2 3 4

x1 x2 x3 x4

This rate 1 zero-range process is also constrained and attractive. A particle
can jump away from a site if it is not alone on the site.

𝜃𝜂 = 𝜃𝜔 ≤ 𝜃𝜔⋆ = 𝜃𝜉⋆ ≃ 𝑡⋆
𝑁−𝐾 ≤ 𝑡⋆

𝑁/2

↦ Supercritical configurations becomer ergodic “faster” than critical ones.
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FEP MIXING TIME CUTOFF (ONGOING WORK)

▷ Transience time is identical (trajectory per trajectory) between SWT and
FEP

▷ Not the case a priori for mixing time

▷ The SWT configuration can be in its stationary state (SSEP), but the
mapped FEP is not

▷ Need to understand the joint distribution of a tagged particle/current at
the origin AND the configuration (tricky)



III -Main ideas of the proof



TRANSIENCE CUTOFF FOR THE SWT: UNIQUE TRAP

We take a critical configuration 𝜉 with a single trap, we can assume all other
sites are occupied

1

K

1 1

K

1

ξ ξ′

θξ > θξ′

The transience time is exactly the time for a non-periodic SSEP with empty
reservoirs to empty the system=Boundary-driven SSEP mixing time
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TRANSIENCE CUTOFF FOR THE SWT: UNIQUE TRAP

We take a critical configuration 𝜉 with a single trap, we can assume all other
sites are occupied

1

K

1 1

K

1

ξ ξ′

θξ > θξ′

The transience time is exactly the time for a non-periodic SSEP with empty
reservoirs to empty the system=Boundary-driven SSEP mixing time

1 K − 1

Empty

Reservoir

Empty

Reservoir



TRANSIENCE CUTOFF FOR THE SWT: GENERAL CASE

General case : all about understanding where a remaining trap is to break
periodicity.
1) Break 𝕋𝐾 into 𝑄 ∶= log𝐾 pieces 𝐴1, … 𝐴𝑄
2) Then,

𝜉(𝑡) is transient ⇒ ∃𝑖, 𝐴𝑖 still contains a trap at time 𝑡.

We are left estimating

𝑝𝐾(𝑡) ≤ 𝑄 sup
𝜉

ℙ𝜉(𝜉(𝑡) has a trap in 𝐴1).

3) If there is still a trap in 𝐴 in 𝜉(𝑡), no particle can have fully crossed it in
either direction. We couple the SWT with SSEP with empty reservoirs on
a larger bulk



TAKE-HOME MESSAGE AND ONGOING PROJECTS

▷ SWT interesting on its own, easily generalized

▷ Huge improvement (sharp estimate) on the previous transience bounds
(product distribution, based on zero-range mapping)

▷ Cutoff in a new setting than mixing time

▷ Mixing time for the FEP ? tricky

▷ Worst critical SWT configuration ? Conjecture : single trap

▷ Transience and mixing time for boundary-driven FEP ?



Thanks for your attention !

(And check out Brune’s poster ;-))
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