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The model

An interacting particle system on {0, 1}Zd
= {#, }Zd

, d ≥ 2.

Dynamics: birth and death of particles

• Fix a parameter q ∈ [0, 1]

• at rate 1 each site tries to refresh its state. If the refresh
occurs the new state is # with prob. q ( with prob. 1− q)

• the refresh occurs iff the site has at least 2 empty nearest
neighbours = iff the kinetic constraint is satisfied
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FA-2f: properties

• Reversible w.r.t. Bernoulli(1-q) product measure, µq

• Non attractive dynamics
→ injecting more vacancies could help filling more sites
→ coupling and censoring arguments fail

• There exist blocked configurations and blocked clusters
→ several invariant measures, ergodicity issues
→ relaxation is not uniform on the initial condition
→ coercive inequalities useless for convergence to equilibrium

• Isolated empty regions cannot expand

→ sharp slowdown for q ↓ 0

→ heterogeneous relaxation
→ subtle relaxation mechanism

Math. motivation #1: several IPS tools fail → new tools needed!
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Motivations from physics

• FA2f was introduced in the ’80’s to model/understand the
liquid/glass transition, a major open problem in physics

• Varying the constraint one gets a whole class of IPS, the
Kinetically Constrained Models (KCM)

• Key question: how do KCM ”time-scales” diverge for q ↓ 0 ?

• Numerical simulations: sharp/anomalous divergence
→ no clear-cut answers / contradicting conjectures

• Math. motivation #2: put physicists works on firmer
ground / settle controversies
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Does η ∼ µq contain a blocked cluster?

A deterministic discrete time monotone dynamics on {0, 1}Zd

• kill (in parallel) particles that have at least 2 empty n.n.;
• iterate until reaching a stable configuration, η∞

• cluster of particles in η∞ ↔ blocked cluster for FA2f

→ this is 2-neighbour Bootstrap Percolation (BP)

→ Fix q > 0 and η ∼ µq, then η∞ is a.s. empty [Van Enter ’88]

How does the first time the origin is empty scale as q ↓ 0?

τ BP = exp
(
λd q

−1/(d−1)(1 + o(1))
)

[Aizenman - Lebowitz ’88]

• λ2 = π2/18 [Holroyd ’08]
• λd = . . . ∀d > 2 [Balogh Bollobas Duminil-Copin Morris ’12]
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Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. ’20]

As q ↓ 0, w.h.p. for the stationary FA-2f model on Zd it holds

τ = exp

(
d× λd

q1/(d−1)
(1 + o(1))

)
, d ≥ 2

the same result holds for Eµq(τ). Thus, w.h.p. τ = (τ BP)d+o(1).

Remark

• not a corollary of BP result: very different mechanism!
• we settle contrasting conjectures in physics literature
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How do we get these sharp results?

Step 1 make a good guess for the optimal relaxation mechanism

Step 2 develop a toolbox (Poincaré inequalities + renormalisation)
to translate heuristics into rigorous bounds =⇒ τ ≤ . . .

Step 3 identify a bottleneck, i.e. an unlikely configuration set that
has to be visited before emptying the origin =⇒ τ ≥ . . .
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Heuristics (q ↓ 0): optimal relaxation mechanism

• Relaxation is driven by the motion of rare large patches of
empty sites, the droplets

• droplet density ρD := exp
(
− d×λd

q1/d−1 (1 + o(1))
)

droplet length LD := 1/qα, α > 2

• Droplets can move in any direction
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Heuristics (q ↓ 0): optimal relaxation mechanism

• Relaxation is driven by the motion of rare large patches of
empty sites, the droplets

• droplet density ρD := exp
(
− d×λd

q1/d−1 (1 + o(1))
)

droplet length LD := 1/qα, α > 2

• Droplets can move in any direction

. . . a single adjacent ◦ allows expansion!

• Droplet motion requires few additional empty sites →
this good environment is very likely since LD >> | log q|/q
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Heuristics: optimal relaxation mechanism

1 identify optimal droplets: (typically) mobile & not too rare

• empty columns of size poly(q) are too rare!
• multi-scale construction: our droplets have an empty core of

size q−1/2 + properly arranged empty sites around the core

2 study droplet motion: droplets deform themselves to
1 move nearby (time scale O(1))
2 create a new droplet (time scale ∼ ρ−1

D )
3 coalesce (time scale O(1))

→ Coalescing Branching Simple Exclusion Process → τ ∼ ρ−1
D

τ BP ∼ size of minimal region to be unblocked before the origin
= distance from the origin to the nearest droplet

→ τ BP ∼ ρ
−1/d
D ∼ τ1/d
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Flavour of the proof

• Hitting times ↔ Dirichlet eigenvalues

Eµ(τ) ≤
1

q
T rel

FA-2f :=
1

q
sup
f

Var(f)
DFA-2f(f)

• Renormalisation on droplet scale → CBSEP dynamics for
the droplets and FA2f dynamics inside the droplets

T rel
FA-2f ≤ T rel

CBSEP × T rel
FA-2f(LD |droplet)

• Prove Poincaré inequalities for FA2f in a droplet and CBSEP

T rel
CBSEP ≤ ρ−1

D , T rel
FA-2f(LD |droplet) ≤ e

| log q|3√
q ≪ T rel

CBSEP
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Flavour of the proof

• Hitting times ↔ Dirichlet eigenvalues

Eµ(τ) ≤
1

q
T rel

FA-2f :=
1

q
sup
f

Var(f)
DFA-2f(f)

• the supremum is over non constant functions;
• DFA-2f(f) is the ”energy” =

∑
η µ(η)

∑
x cx(η)(f(η

x)− f(η))2

• ηx = configuration flipped at x; cx(η) = rate for η → ηx

• Renormalisation on droplet scale → CBSEP dynamics for
the droplets and FA2f dynamics inside the droplets

T rel
FA-2f ≤ T rel

CBSEP × T rel
FA-2f(LD |droplet)
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Why bothering with the exact constants?

• sharp constant is extremely hard to grasp numerically:
• subtle corrections to the dominant behavior, ex. d = 2:

τ BP = exp
(

π2

18q (1− c
√
q)
)

(Hartarsky, Morris)
→ slow convergence

• even harder for FA-jf with j > 2 where

τ BP ∼ exp⊗j−1 q−1/(d−j+1)

• a deeper understanding of the cooperative relaxation

• the mathematical tools we build are very flexible
→ we adapt them to get universality results for KCM in d = 2
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Open problems

• Conjecture #1: Start from µq′ , with q′ ̸= q and q, q′ > 0 and
call µt the evoluted measure at time t, µt = µq′Pt. It holds

lim
t→∞

µt = µq.

• Conjecture #2: Consider FA-2f on Z+
d with empty b.c. and

start from a completely filled configuration. The set of sites
that have been already updated at time t rescaled by t
converges as t → ∞ to a non random limit shape.

More generally: we lack robust tools to tackle the out of
equilibrium regime of KCM !

C.Toninelli Fredrickson-Andersen 2 spin facilitated model



Open problems

• Conjecture #1: Start from µq′ , with q′ ̸= q and q, q′ > 0 and
call µt the evoluted measure at time t, µt = µq′Pt. It holds

lim
t→∞

µt = µq.

• Conjecture #2: Consider FA-2f on Z+
d with empty b.c. and

start from a completely filled configuration. The set of sites
that have been already updated at time t rescaled by t
converges as t → ∞ to a non random limit shape.

More generally: we lack robust tools to tackle the out of
equilibrium regime of KCM !

C.Toninelli Fredrickson-Andersen 2 spin facilitated model



Open problems

• Conjecture #1: Start from µq′ , with q′ ̸= q and q, q′ > 0 and
call µt the evoluted measure at time t, µt = µq′Pt. It holds

lim
t→∞

µt = µq.

• Conjecture #2: Consider FA-2f on Z+
d with empty b.c. and

start from a completely filled configuration. The set of sites
that have been already updated at time t rescaled by t
converges as t → ∞ to a non random limit shape.

More generally: we lack robust tools to tackle the out of
equilibrium regime of KCM !

C.Toninelli Fredrickson-Andersen 2 spin facilitated model



Thanks for your attention!
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Droplets

A multi-scale definition
• ℓn := en

√
q/
√
q, N = 8| log q|/√q → ℓN = LD = poly(q)

• a rectangle R is of class n if
• R is a single site for n = 0;
• R = ℓm × h with h ∈ (ℓm−1, ℓm] for n = 2m;
• R = w × ℓm with w ∈ (ℓm, ℓm+1] for n = 2m+ 1

• Super-good (SG) rectangles:
• a rectangle of class 0 is SG if it is empty;
• a rectangle of class n is SG if it contains a SG rectangle R’ of

class n− 1 (the core) AND it satisfies traversability conditions
elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as ℓN × ℓN SG rectangles
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How do droplets look like?

Ex. of a SG rectangle of class 6. Here arrows indicate
traversability and the black square is completely empty.

ℓ3ℓ1 ℓ2
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How do droplets look like?

Ex. of a SG rectangle of class 6. Here arrows indicate
traversability and the black square is completely empty.

ℓ3ℓ1 ℓ2

Droplets = ℓN × ℓN squares that are SG with
N = 8| log q|/√q, so that ℓN = q−17/2+o(1)

NB any other big enough power would work the same, no
special meaning of 17/2. . .
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FA-jf model

• for jn-BP for all d ≥ j ≥ 2, w.h.p. it holds

τ BP
0 ∼ expj−1

(
λ̃d,j

q1/(d−j+1)

)

expk = exponential iterated k times (Balogh, Bollobas,
Duminil-Copin, Morris ’12)

Same scaling for τ0 (Hartarsky, Martinelli, C.T. in progress)

• j = 1: τ BP
0 = 1/q1/d, τ0 = 1/qν(d),

ν(1) = 3, ν(d) = 2 d ≥ 2 (log corrections in d = 2)
(Cancrini, Roberto, Martinelli, C.T. ’08 + Shapira ’20)

• d < j: τ0 = τ BP
0 = ∞ w.h.p. for q → 0
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What happens if we change constraint?

Universality results for d = 2

1 Supercritical unrooted: τ(q) = q−Θ(1)

2 Supercritical rooted:
τ(q) = q−Θ(1)| log q|

3 Finitely critical: τ(q) = exp
(
Θ(1)(log q)Θ(1)

qν

)
4 Infinitely critical:

τ(q) = exp
(
q−2ν(log q)c

)
5 Subcritical:

∃ qc > 0, s.t. for q < qc it holds τ(q) = ∞

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]
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What happens if we change constraint?

Universality results for d = 2

1 Supercritical unrooted: τ(q) = q−Θ(1) ∼ τ BP

2 Supercritical rooted:
τ(q) = q−Θ(1)| log q| ≫ τ BP = q−Θ(1)

3 Finitely critical: τ(q) = exp
(
Θ(1)(log q)Θ(1)

qν

)
∼ τ BP

4 Infinitely critical:
τ(q) = exp

(
q−2ν(log q)c

)
≫ τ BP = exp (q−ν(log q)c)

5 Subcritical:
∃ qc > 0, s.t. for q < qc it holds τ(q) = ∞ = τ BP

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]
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What happens if we change constraint?

Universality results for d = 2

1 Supercritical unrooted: τ(q) = q−Θ(1) ∼ τ BP (FA-1f)

2 Supercritical rooted:
τ(q) = q−Θ(1)| log q| ≫ τ BP = q−Θ(1) (East)

3 Finitely critical: τ(q) = exp
(
Θ(1)(log q)Θ(1)

qν

)
∼ τ BP (FA-2f)

4 Infinitely critical:
τ(q) = exp

(
q−2ν(log q)c

)
≫ τ BP = exp (q−ν(log q)c)

(Duarte)

5 Subcritical:
∃ qc > 0, s.t. for q < qc it holds τ(q) = ∞ = τ BP (North-East)

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]
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What happens if we change constraint?

• for q ↓ 0 relaxation is always driven by rare droplets but
depending on the constraints droplet motion can be very
different from CBSEP

• time scales can diverge much faster than for the
corresponding BP model Example: the Duarte model.

d = 2, constraint = at least 2 empty in N,W,S neighb.

τ = eΘ(q
−2(log q)4)≫ τ BP = eΘ(q

−1(log q)2)

logarithmic energy barrier: droplet are at distance ℓ ∼ τ BP

from the origin and must create ∼ log ℓ droplets to reach it
[Marêché, Martinelli, C.T. ’20]
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The g-CBSEP chain

• G = (V,E) : finite connected graph
• (S, π) : finite probability space
• S = S0 ⊔ S1 and ρ = π(S1)

• given σ ∈ SV , x ∈ V is occupied iff σx ∈ S1

• g-CBSEP is defined on Ω+ := {σ with at least one particle }

• Dynamics: at rate one each edge e = (x, y) with at least one
particle is refreshed w.r.t.
πx ⊗ πy(· | ∃ at least one particle in e )

→ Reversible w.r.t. ⊗πx(· |Ω+)

→ the projected variables {ωx = 1σx∈S1}x∈V evolve as
SSEP + branching + coalescing

Theorem [Hartarsky, Martinelli, C.T. ’20]

As ρ ↓ 0, T g-CBSEP
rel ≤ O(ρ−1 log(1/ρ))
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