Fredrickson-Andersen 2 spin facilitated model

Cristina Toninelli

CNRS and Ceremade, Univ. Paris Dauphine - PSL

joint with Ivailo Hartarsky (TU Wien) and Fabio Martinelli (Univ. Roma Tre)

(日)

C.Toninelli

An interacting particle system on $\{0,1\}^{\mathbb{Z}^d} = \{\bigcirc, \bullet\}^{\mathbb{Z}^d}$, $d \ge 2$. Dynamics: birth and death of particles

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An interacting particle system on $\{0,1\}^{\mathbb{Z}^d} = \{\bigcirc, \bullet\}^{\mathbb{Z}^d}$, $d \ge 2$. Dynamics: birth and death of particles

• Fix a parameter $q \in [0, 1]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An interacting particle system on $\{0,1\}^{\mathbb{Z}^d} = \{\bigcirc, \bullet\}^{\mathbb{Z}^d}$, $d \ge 2$. Dynamics: birth and death of particles

- Fix a parameter $q \in [0, 1]$
- at rate 1 each site *tries* to refresh its state. If the refresh occurs the new state is with prob. q (● with prob. 1 q)

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q @

An interacting particle system on $\{0,1\}^{\mathbb{Z}^d} = \{\bigcirc, \bullet\}^{\mathbb{Z}^d}$, $d \ge 2$. Dynamics: birth and death of particles

- Fix a parameter $q \in [0, 1]$
- at rate 1 each site *tries* to refresh its state. If the refresh occurs the new state is with prob. q (● with prob. 1 q)
- the refresh occurs iff the site has at least 2 empty nearest neighbours = iff the kinetic constraint is satisfied

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q @

• Reversible w.r.t. Bernoulli(1-q) product measure, μ_q

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics
 - \rightarrow injecting more vacancies could help filling more sites
 - $\rightarrow~{\rm coupling}~{\rm and}~{\rm censoring}~{\rm arguments}~{\rm fail}$

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics
 - \rightarrow injecting more vacancies could help filling more sites
 - $\rightarrow~{\rm coupling}$ and censoring arguments fail
- There exist blocked configurations and blocked clusters

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics
 - \rightarrow injecting more vacancies could help filling more sites
 - \rightarrow coupling and censoring arguments fail
- There exist blocked configurations and blocked clusters
 - \rightarrow several invariant measures, ergodicity issues
 - \rightarrow relaxation is not uniform on the initial condition
 - \rightarrow coercive inequalities useless for convergence to equilibrium

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics
 - \rightarrow injecting more vacancies could help filling more sites
 - \rightarrow coupling and censoring arguments fail
- There exist blocked configurations and blocked clusters
 - \rightarrow several invariant measures, ergodicity issues
 - \rightarrow relaxation is not uniform on the initial condition
 - $\rightarrow\,$ coercive inequalities useless for convergence to equilibrium
- Isolated empty regions cannot expand

- \rightarrow sharp slowdown for $q\downarrow 0$
- \rightarrow heterogeneous relaxation
- ightarrow subtle relaxation mechanism

- Reversible w.r.t. Bernoulli(1-q) product measure, μ_q
- Non attractive dynamics
 - \rightarrow injecting more vacancies could help filling more sites
 - \rightarrow coupling and censoring arguments fail
- There exist blocked configurations and blocked clusters
 - \rightarrow several invariant measures, ergodicity issues
 - \rightarrow relaxation is not uniform on the initial condition
 - $\rightarrow\,$ coercive inequalities useless for convergence to equilibrium
- Isolated empty regions cannot expand

- \rightarrow sharp slowdown for $q\downarrow 0$
- \rightarrow heterogeneous relaxation
- \rightarrow subtle relaxation mechanism

Math. motivation #1: several IPS tools fail \rightarrow new tools needed!

C.TONINELLI

- FA2f was introduced in the '80's to model/understand the liquid/glass transition, a major open problem in physics
- Varying the constraint one gets a whole class of IPS, the Kinetically Constrained Models (KCM)

A D F A B F A B F A B F B B

- FA2f was introduced in the '80's to model/understand the liquid/glass transition, a major open problem in physics
- Varying the constraint one gets a whole class of IPS, the Kinetically Constrained Models (KCM)
- Key question: how do KCM "time-scales" diverge for $q \downarrow 0$?

A D F A B F A B F A B F B B

- FA2f was introduced in the '80's to model/understand the liquid/glass transition, a major open problem in physics
- Varying the constraint one gets a whole class of IPS, the Kinetically Constrained Models (KCM)
- Key question: how do KCM "time-scales" diverge for $q \downarrow 0$?

Numerical simulations: sharp/anomalous divergence
 → no clear-cut answers / contradicting conjectures

- FA2f was introduced in the '80's to model/understand the liquid/glass transition, a major open problem in physics
- Varying the constraint one gets a whole class of IPS, the Kinetically Constrained Models (KCM)
- Key question: how do KCM "time-scales" diverge for $q \downarrow 0$?
- Numerical simulations: sharp/anomalous divergence
 → no clear-cut answers / contradicting conjectures
- Math. motivation #2: put physicists works on firmer ground / settle controversies

A deterministic discrete time monotone dynamics on $\{0,1\}^{\mathbb{Z}^d}$

- kill (in parallel) particles that have at least 2 empty n.n.;
- iterate until reaching a stable configuration, η^{∞}

C.TONINELLI

A deterministic discrete time monotone dynamics on $\{0,1\}^{\mathbb{Z}^d}$

- kill (in parallel) particles that have at least 2 empty n.n.;
- iterate until reaching a stable configuration, η^{∞}
- cluster of particles in $\eta^\infty \leftrightarrow$ blocked cluster for FA2f

A deterministic discrete time monotone dynamics on $\{0,1\}^{\mathbb{Z}^d}$

- kill (in parallel) particles that have at least 2 empty n.n.;
- iterate until reaching a stable configuration, η^{∞}
- cluster of particles in $\eta^{\infty} \leftrightarrow$ blocked cluster for FA2f
- \rightarrow this is 2-neighbour Bootstrap Percolation (BP)

A deterministic discrete time monotone dynamics on $\{0,1\}^{\mathbb{Z}^d}$

- kill (in parallel) particles that have at least 2 empty n.n.;
- iterate until reaching a stable configuration, η^{∞}
- cluster of particles in $\eta^{\infty} \leftrightarrow$ blocked cluster for FA2f
- \rightarrow this is 2-neighbour Bootstrap Percolation (BP)
 - $\rightarrow \,$ Fix q>0 and $\eta\sim \mu_q,$ then η^∞ is a.s. empty [Van Enter '88]

A deterministic discrete time monotone dynamics on $\{0,1\}^{\mathbb{Z}^d}$

- kill (in parallel) particles that have at least 2 empty n.n.;
- iterate until reaching a stable configuration, η^{∞}
- cluster of particles in $\eta^\infty \leftrightarrow$ blocked cluster for FA2f
- \rightarrow this is 2-neighbour Bootstrap Percolation (BP)
 - $\rightarrow \,$ Fix q>0 and $\eta\sim \mu_q,$ then η^∞ is a.s. empty [Van Enter '88]

How does the first time the origin is empty scale as $q \downarrow 0$?

$$\tau^{\text{\tiny BP}} = \exp\left(\lambda_d \, q^{-1/(d-1)}(1+o(1))\right)$$
 [Aizenman - Lebowitz '88]

• $\lambda_2 = \pi^2/18$ [Holroyd '08]

• $\lambda_d = \dots \, \forall d > 2$ [Balogh Bollobas Duminil-Copin Morris '12]

Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. '20]

As $q \downarrow 0$, w.h.p. for the stationary FA-2f model on \mathbb{Z}^d it holds

$$\tau = \exp\left(\frac{d\times\lambda_d}{q^{1/(d-1)}}(1+o(1))\right), \ \ d\geq 2$$

the same result holds for $\mathbb{E}_{\mu_q}(\tau)$. Thus, w.h.p. $\tau = (\tau^{\text{\tiny BP}})^{d+o(1)}$.

Back to FA2f: our results

Theorem [Hartarsky, Martinelli, C.T. '20]

As $q \downarrow 0$, w.h.p. for the stationary FA-2f model on \mathbb{Z}^d it holds

$$\tau = \exp\left(\frac{d \times \lambda_d}{q^{1/(d-1)}}(1+o(1))\right), \quad d \ge 2$$

the same result holds for $\mathbb{E}_{\mu_q}(\tau)$. Thus, w.h.p. $\tau = (\tau^{\text{\tiny BP}})^{d+o(1)}$.

Remark

- not a corollary of BP result: very different mechanism!
- we settle contrasting conjectures in physics literature

How do we get these sharp results?

Step 1 make a good guess for the optimal relaxation mechanism

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How do we get these sharp results?

Step 1 make a good guess for the optimal relaxation mechanismStep 2 develop a toolbox (Poincaré inequalities + renormalisation)
to translate heuristics into rigorous bounds $\implies \tau \leq \ldots$

How do we get these sharp results?

- Step 1 make a good guess for the optimal relaxation mechanism
- Step 2 develop a toolbox (Poincaré inequalities + renormalisation) to translate heuristics into rigorous bounds $\implies \tau \leq \dots$
- Step 3 identify a bottleneck, i.e. an unlikely configuration set that has to be visited before emptying the origin $\implies \tau \ge \dots$

• Relaxation is driven by the motion of rare large patches of empty sites, the droplets

- droplet density $\rho_D := \exp\left(-\frac{d \times \lambda_d}{q^{1/d-1}}(1+o(1))\right)$ droplet length $L_D := 1/q^{\alpha}, \alpha > 2$
- Droplets can move in any direction

- Relaxation is driven by the motion of rare large patches of empty sites, the droplets
- droplet density ρ_D := exp (- d×λ_d/q^{1/d-1}(1 + o(1)))
 droplet length L_D := 1/q^α, α > 2
- Droplets can move in any direction ... isn't this contradictory with *"finite empty regions cannot expand"*?!

- Relaxation is driven by the motion of rare large patches of empty sites, the droplets
- droplet density $\rho_D := \exp\left(-\frac{d \times \lambda_d}{q^{1/d-1}}(1+o(1))\right)$ droplet length $L_D := 1/q^{\alpha}, \alpha > 2$
- Droplets can move in any direction

... a single adjacent o allows expansion!

- Relaxation is driven by the motion of rare large patches of empty sites, the droplets
- droplet density $\rho_D := \exp\left(-\frac{d \times \lambda_d}{q^{1/d-1}}(1+o(1))\right)$ droplet length $L_D := 1/q^{\alpha}, \alpha > 2$
- Droplets can move in any direction

... a single adjacent o allows expansion!

- Relaxation is driven by the motion of rare large patches of empty sites, the droplets
- droplet density ρ_D := exp (- d×λ_d/q^{1/d-1}(1 + o(1)))
 droplet length L_D := 1/q^α, α > 2
- Droplets can move in any direction

 Droplet motion requires few additional empty sites → this good environment is very likely since L_D >> |log q|/q

• identify optimal droplets: (typically) mobile & not too rare

• identify optimal droplets: (typically) mobile & not too rare

• empty columns of size poly(q) are too rare!

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core

- **2** study droplet motion: droplets deform themselves to
 - move nearby (time scale O(1))

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core

- **2** study droplet motion: droplets deform themselves to
 - move nearby (time scale O(1))
 - **2** create a new droplet (time scale $\sim \rho_D^{-1}$)

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core

- **2** study droplet motion: droplets deform themselves to
 - move nearby (time scale O(1))
 - **2** create a new droplet (time scale $\sim \rho_D^{-1}$)
 - social coalesce (time scale O(1))

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core
- **2** study droplet motion: droplets deform themselves to
 - move nearby (time scale O(1))
 - **2** create a new droplet (time scale $\sim \rho_D^{-1}$)
 - o coalesce (time scale O(1))

ightarrow Coalescing Branching Simple Exclusion Process $ightarrow au \sim
ho_D^{-1}$

• identify optimal droplets: (typically) mobile & not too rare

- empty columns of size poly(q) are too rare!
- multi-scale construction: our droplets have an empty core of size q^{-1/2} + properly arranged empty sites around the core
- **2** study droplet motion: droplets deform themselves to
 - move nearby (time scale O(1))
 - **2** create a new droplet (time scale $\sim \rho_D^{-1}$)
 - social coalesce (time scale O(1))

ightarrow Coalescing Branching Simple Exclusion Process $ightarrow au \sim
ho_D^{-1}$

 $\tau^{\rm BP}\sim$ size of minimal region to be unblocked before the origin = distance from the origin to the nearest droplet

$$ightarrow au^{
m BP} \sim
ho_D^{-1/d} \sim au^{1/d}$$

• Hitting times \leftrightarrow Dirichlet eigenvalues

• Hitting times \leftrightarrow Dirichlet eigenvalues

$$\mathbb{E}_{\mu}(\tau) \leq \frac{1}{q} T_{\text{FA-2f}}^{\text{rel}} := \frac{1}{q} \sup_{f} \frac{\text{Var}(f)}{\mathcal{D}_{\text{FA-2f}}(f)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

• Hitting times \leftrightarrow Dirichlet eigenvalues

$$\mathbb{E}_{\mu}(\tau) \leq \frac{1}{q} T_{\mathrm{FA-2f}}^{\mathrm{rel}} := \frac{1}{q} \sup_{f} \frac{\mathrm{Var}(f)}{\mathcal{D}_{\mathrm{FA-2f}}(f)}$$

- the supremum is over non constant functions;
- $\mathcal{D}_{\text{FA-2f}}(f)$ is the "energy" = $\sum_{\eta} \mu(\eta) \sum_{x} c_x(\eta) (f(\eta^x) f(\eta))^2$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つくで

• $\eta^x = \text{configuration flipped at } x; \ c_x(\eta) = \text{rate for } \eta \to \eta^x$

• Hitting times \leftrightarrow Dirichlet eigenvalues

$$\mathbb{E}_{\mu}(\tau) \leq \frac{1}{q} T_{\mathrm{FA-2f}}^{\mathrm{rel}} := \frac{1}{q} \sup_{f} \frac{\mathrm{Var}(f)}{\mathcal{D}_{\mathrm{FA-2f}}(f)}$$

 Renormalisation on droplet scale → CBSEP dynamics for the droplets and FA2f dynamics inside the droplets

$$T_{\text{FA-2f}}^{\text{rel}} \leq T_{\text{CBSEP}}^{\text{rel}} \times T_{\text{FA-2f}}^{\text{rel}}(L_D \,|\, \text{droplet})$$

• Prove Poincaré inequalities for FA2f in a droplet and CBSEP

$$T_{\text{CBSEP}}^{\text{rel}} \leq \rho_D^{-1}, \quad T_{\text{FA-2f}}^{\text{rel}}(L_D \,|\, \text{droplet}) \leq e^{\frac{|\log q|^3}{\sqrt{q}}} \ll T_{\text{CBSEP}}^{\text{rel}}$$

(日)

Why bothering with the exact constants?

- sharp constant is extremely hard to grasp numerically:
 - subtle corrections to the dominant behavior, ex. d = 2: $\tau^{\text{BP}} = \exp\left(\frac{\pi^2}{18q}(1 - c\sqrt{q})\right)$ (Hartarsky, Morris) \rightarrow slow convergence
 - even harder for FA-jf with j > 2 where

$$\tau^{\rm BP} \sim \exp^{\otimes j - 1} q^{-1/(d - j + 1)}$$

Why bothering with the exact constants?

- sharp constant is extremely hard to grasp numerically:
 - subtle corrections to the dominant behavior, ex. d = 2: $\tau^{\text{BP}} = \exp\left(\frac{\pi^2}{18q}(1 - c\sqrt{q})\right)$ (Hartarsky, Morris) \rightarrow slow convergence
 - even harder for FA-jf with j > 2 where

$$\tau^{\rm BP} \sim \exp^{\otimes j - 1} q^{-1/(d - j + 1)}$$

(ロ)、(型)、(E)、(E)、(E)、(O)(O)

• a deeper understanding of the cooperative relaxation

Why bothering with the exact constants?

- sharp constant is extremely hard to grasp numerically:
 - subtle corrections to the dominant behavior, ex. d = 2: $\tau^{\text{BP}} = \exp\left(\frac{\pi^2}{18q}(1 - c\sqrt{q})\right)$ (Hartarsky, Morris) \rightarrow slow convergence
 - even harder for FA-jf with j > 2 where

$$\tau^{\rm BP} \sim \exp^{\otimes j - 1} q^{-1/(d - j + 1)}$$

- a deeper understanding of the cooperative relaxation
- the mathematical tools we build are very flexible
 → we adapt them to get universality results for KCM in *d* = 2

Open problems

• Conjecture #1: Start from $\mu_{q'}$, with $q' \neq q$ and q, q' > 0 and call μ^t the evoluted measure at time $t, \mu^t = \mu_{q'} P_t$. It holds

$$\lim_{t \to \infty} \mu^t = \mu_q.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open problems

• Conjecture #1: Start from $\mu_{q'}$, with $q' \neq q$ and q, q' > 0 and call μ^t the evoluted measure at time t, $\mu^t = \mu_{q'}P_t$. It holds

$$\lim_{t \to \infty} \mu^t = \mu_q.$$

• Conjecture #2: Consider FA-2f on \mathbb{Z}_d^+ with empty b.c. and start from a completely filled configuration. The set of sites that have been already updated at time *t* rescaled by *t* converges as $t \to \infty$ to a non random limit shape.

Open problems

• Conjecture #1: Start from $\mu_{q'}$, with $q' \neq q$ and q, q' > 0 and call μ^t the evoluted measure at time t, $\mu^t = \mu_{q'}P_t$. It holds

$$\lim_{t \to \infty} \mu^t = \mu_q.$$

• Conjecture #2: Consider FA-2f on \mathbb{Z}_d^+ with empty b.c. and start from a completely filled configuration. The set of sites that have been already updated at time *t* rescaled by *t* converges as $t \to \infty$ to a non random limit shape.

More generally: we lack robust tools to tackle the out of equilibrium regime of KCM !

Thanks for your attention!

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

C.Toninelli

A multi-scale definition

• $\ell_n := e^{n\sqrt{q}}/\sqrt{q}$, $N = 8|\log q|/\sqrt{q} \rightarrow \ell_N = L_D = \operatorname{poly}(q)$

A multi-scale definition

• $\ell_n := e^{n\sqrt{q}}/\sqrt{q}$, $N = 8|\log q|/\sqrt{q} \rightarrow \ell_N = L_D = \operatorname{poly}(q)$

• a rectangle R is of class n if

- R is a single site for n = 0;
- $R = \ell_m \times h$ with $h \in (\ell_{m-1}, \ell_m]$ for n = 2m;

•
$$R = w \times \ell_m$$
 with $w \in (\ell_m, \ell_{m+1}]$ for $n = 2m + 1$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

A multi-scale definition

• $\ell_n := e^{n\sqrt{q}}/\sqrt{q}$, $N = 8|\log q|/\sqrt{q} \rightarrow \ell_N = L_D = \operatorname{poly}(q)$

- a rectangle R is of class n if
 - R is a single site for n = 0;
 - $R = \ell_m \times h$ with $h \in (\ell_{m-1}, \ell_m]$ for n = 2m;

•
$$R = w \times \ell_m$$
 with $w \in (\ell_m, \ell_{m+1}]$ for $n = 2m + 1$

- Super-good (SG) rectangles:
 - a rectangle of class 0 is SG if it is empty;
 - a rectangle of class n is SG if it contains a SG rectangle R' of class n − 1 (the core) AND it satisfies traversability conditions elsewhere, i.e. no double column/raw fully occupied.

A multi-scale definition

• $\ell_n := e^{n\sqrt{q}}/\sqrt{q}$, $N = 8|\log q|/\sqrt{q} \rightarrow \ell_N = L_D = \operatorname{poly}(q)$

- a rectangle R is of class n if
 - R is a single site for n = 0;
 - $R = \ell_m \times h$ with $h \in (\ell_{m-1}, \ell_m]$ for n = 2m;

•
$$R = w \times \ell_m$$
 with $w \in (\ell_m, \ell_{m+1}]$ for $n = 2m + 1$

- Super-good (SG) rectangles:
 - a rectangle of class 0 is SG if it is empty;
 - a rectangle of class n is SG if it contains a SG rectangle R' of class n-1 (the *core*) AND it satisfies *traversability conditions* elsewhere, i.e. no double column/raw fully occupied.

Droplets are defined as $\ell_N \times \ell_N$ SG rectangles

Ex. of a SG rectangle of class 6. Here arrows indicate traversability and the black square is completely empty.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ex. of a SG rectangle of class 6. Here arrows indicate traversability and the black square is completely empty.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ex. of a SG rectangle of class 6. Here arrows indicate traversability and the black square is completely empty.

イロト イポト イヨト イヨト

Ex. of a SG rectangle of class 6. Here arrows indicate traversability and the black square is completely empty.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ex. of a SG rectangle of class 6. Here arrows indicate traversability and the black square is completely empty.

Droplets = $\ell_N \times \ell_N$ squares that are SG with $N = 8 |\log q| / \sqrt{q}$, so that $\ell_N = q^{-17/2 + o(1)}$

 $N\!B\,$ any other big enough power would work the same, no special meaning of $17/2\ldots$

FA-jf model

• for *j*n-BP for all $d \ge j \ge 2$, w.h.p. it holds

$$au_0^{\mathrm{BP}} \sim \exp^{j-1}\left(rac{ ilde{\lambda}_{d,j}}{q^{1/(d-j+1)}}
ight)$$

 \exp^k = exponential iterated k times (Balogh, Bollobas, Duminil-Copin, Morris '12)

Same scaling for τ_0 (Hartarsky, Martinelli, C.T. in progress)

• j = 1: $\tau_0^{\text{BP}} = 1/q^{1/d}$, $\tau_0 = 1/q^{\nu(d)}$, $\nu(1) = 3$, $\nu(d) = 2$ $d \ge 2$ (log corrections in d = 2) (Cancrini, Roberto, Martinelli, C.T. '08 + Shapira '20)

•
$$d < j$$
: $\tau_0 = \tau_0^{\text{\tiny BP}} = \infty$ w.h.p. for $q \to 0$

Universality results for d = 2

- Supercritical unrooted: $\tau(q) = q^{-\Theta(1)}$
- Supercritical rooted: $\tau(q) = q^{-\Theta(1)|\log q|}$
- Finitely critical: $\tau(q) = \exp\left(\frac{\Theta(1)(\log q)^{\Theta(1)}}{q^{\nu}}\right)$
- Infinitely critical: $\tau(q) = \exp\left(q^{-2\nu}(\log q)^c\right)$
- Subcritical:

 $\exists q_c > 0$, s.t. for $q < q_c$ it holds $\tau(q) = \infty$

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Universality results for d = 2

- Supercritical unrooted: $\tau(q) = q^{-\Theta(1)} \sim \tau^{\text{BP}}$
- **2** Supercritical rooted: $\tau(q) = q^{-\Theta(1)|\log q|} \gg \tau^{\text{BP}} = q^{-\Theta(1)}$
- **6** Finitely critical: $\tau(q) = \exp\left(\frac{\Theta(1)(\log q)^{\Theta(1)}}{q^{\nu}}\right) \sim \tau^{\text{BP}}$
- Infinitely critical: $\tau(q) = \exp\left(q^{-2\nu}(\log q)^c\right) \gg \tau^{\text{BP}} = \exp\left(q^{-\nu}(\log q)^c\right)$
- Subcritical:

 $\exists \, q_c > 0 \text{, s.t. for } q < q_c \text{ it holds } \tau(q) = \infty = \tau^{\scriptscriptstyle \mathrm{BP}}$

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Universality results for d = 2

- Supercritical unrooted: $\tau(q) = q^{-\Theta(1)} \sim \tau^{\text{BP}}$ (FA-1f)
- **Supercritical rooted:** $\tau(q) = q^{-\Theta(1)|\log q|} \gg \tau^{\text{BP}} = q^{-\Theta(1)}$ (East)
- Similar Finitely critical: $\tau(q) = \exp\left(\frac{\Theta(1)(\log q)^{\Theta(1)}}{q^{\nu}}\right) \sim \tau^{\text{BP}}$ (FA-2f)
- Infinitely critical: $\tau(q) = \exp\left(q^{-2\nu}(\log q)^c\right) \gg \tau^{\text{BP}} = \exp\left(q^{-\nu}(\log q)^c\right)$ (Duarte)
- **o** Subcritical:

 $\exists q_c > 0$, s.t. for $q < q_c$ it holds $\tau(q) = \infty = \tau^{\mathrm{BP}}$ (North-East)

[I.Hartarsky, L.Marêché, F.Martinelli, R. Morris, C.T.]

 for *q* ↓ 0 relaxation is always driven by rare droplets but depending on the constraints droplet motion can be very different from CBSEP

(日)

- for *q* ↓ 0 relaxation is always driven by rare droplets but depending on the constraints droplet motion can be very different from CBSEP
- time scales can diverge much faster than for the corresponding BP model Example: the Duarte model.

d = 2, constraint = at least 2 empty in N,W,S neighb.

$$\tau = e^{\Theta\left(q^{-2}(\log q)^4\right)} \gg \tau^{\mathrm{BP}} = e^{\Theta\left(q^{-1}(\log q)^2\right)}$$

<□> <@> < E> < E> E のQC

- for *q* ↓ 0 relaxation is always driven by rare droplets but depending on the constraints droplet motion can be very different from CBSEP
- time scales can diverge much faster than for the corresponding BP model Example: the Duarte model.

d = 2, constraint = at least 2 empty in N,W,S neighb.

$$\tau = e^{\Theta\left(q^{-2}(\log q)^4\right)} \gg \tau^{\mathrm{BP}} = e^{\Theta\left(q^{-1}(\log q)^2\right)}$$

logarithmic energy barrier: droplet are at distance $\ell \sim \tau^{\text{BP}}$ from the origin and must create $\sim \log \ell$ droplets to reach it [Marêché, Martinelli, C.T. '20]

- G = (V, E) : finite connected graph
- (\mathcal{S}, π) : finite probability space
- $S = S_0 \sqcup S_1$ and $\rho = \pi(S_1)$
- given $\sigma \in S^V$, $x \in V$ is occupied iff $\sigma_x \in S_1$
- g-CBSEP is defined on Ω₊ := {σ with at least one particle }

- G = (V, E) : finite connected graph
- (\mathcal{S}, π) : finite probability space
- $S = S_0 \sqcup S_1$ and $\rho = \pi(S_1)$
- given $\sigma \in S^V$, $x \in V$ is occupied iff $\sigma_x \in S_1$
- g-CBSEP is defined on Ω₊ := {σ with at least one particle }
- Dynamics: at rate one each edge e = (x, y) with at least one particle is refreshed w.r.t.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つくで

 $\pi_x \otimes \pi_y(\cdot \,|\, \exists$ at least one particle in e)

- G = (V, E) : finite connected graph
- (\mathcal{S}, π) : finite probability space
- $S = S_0 \sqcup S_1$ and $\rho = \pi(S_1)$
- given $\sigma \in S^V$, $x \in V$ is occupied iff $\sigma_x \in S_1$
- *g*-CBSEP is defined on $\Omega_+ := \{\sigma \text{ with at least one particle }\}$
- Dynamics: at rate one each edge e = (x, y) with at least one particle is refreshed w.r.t.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つくで

 $\pi_x \otimes \pi_y(\cdot \,|\, \exists$ at least one particle in e)

- \rightarrow Reversible w.r.t. $\otimes \pi_x(\cdot \mid \Omega_+)$
- → the projected variables $\{\omega_x = 1_{\sigma_x \in S_1}\}_{x \in V}$ evolve as SSEP + branching + coalescing

- G = (V, E) : finite connected graph
- (\mathcal{S}, π) : finite probability space
- $S = S_0 \sqcup S_1$ and $\rho = \pi(S_1)$
- given $\sigma \in S^V$, $x \in V$ is occupied iff $\sigma_x \in S_1$
- g-CBSEP is defined on Ω₊ := {σ with at least one particle }
- Dynamics: at rate one each edge e = (x, y) with at least one particle is refreshed w.r.t.

 $\pi_x \otimes \pi_y(\cdot \,|\, \exists$ at least one particle in e)

- \rightarrow Reversible w.r.t. $\otimes \pi_x(\cdot \mid \Omega_+)$
- → the projected variables $\{\omega_x = 1_{\sigma_x \in S_1}\}_{x \in V}$ evolve as SSEP + branching + coalescing

