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Motivation Review of the conventional MCs Generalization DA SCA ε-SCA Concluding remark

Want to find a ground state of the energy landscape H (= Hamiltonian) for an
Ising model on a finite graph G = (V, E):

H(σ) = −
∑
{x,y}∈E

Jx,yσxσy −
∑
x∈V

hxσx, GS = arg min
σ∈{±1}V

H(σ),

where [Jx,y]V×V is symmetric (with 0 on the diagonals), {hx}x∈V ∈ RV .

Why does GS matter? ⇒ Many combinatorial optimization problems can
be mapped to Ising models:

1 Max-cut: Divide the vertex set V of a weighted graph into S and V \ S , while
maximizing the sum of the weights of the cut edges.

wx,y ≥ 0: the weight on the edge {x, y} ∈ E (wx,x = 0, wx,y = wy,x).

C =
∑
{x,y}∈E

wx,y

(
1{x∈S }1{y∈V\S } + 1{x∈V\S }1{y∈S }

)
: the total weight to be maximized.

σx = 1{x∈S } − 1{x∈V\S } =
1 [x ∈ S ]
−1 [x ∈ V \ S ]

⇒ C =
1
2

∑
{x,y}∈E

wx,y(1 − σxσy).

H(σ) =
∑
{x,y}∈E

wx,yσxσy is to be minimized.

2 Traveling salesman: Find a route that minimizes the total cost among those
which allow a salesman to return to the first city by going through all cities once.

3 Knapsack: Determine which item should be selected to maximize the total value
of the items packed in an knapsack of fixed volume.
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Difficult to find GS, because
the configuration space {±1}V may be humongous (depending on |V |),
the energy landscape H may be complicated (depending on [Jx,y] and {hx}).

Use Markov Chain Monte Carlo (MCMC) methods to sample the Gibbs
distribution πβ(σ) ∝ e−βH(σ) at inverse temperature β ≥ 0, with

===⇒
β↓0

uniform on the entire {±1}V ,

====⇒
β↑∞

uniform on GS.

Compare the conventional MCMC methods (Glauber, Metropolis) with
Digital Annealer (DA) by Fujitsu Laboratories,

Stochastic Cellular Automata (SCA),

its variant (called ε-SCA).
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Conventional single-spin flip MCs:

(σx)y =

−σy [y = x],
σy [y , x],

∇+x H(σ) =
(
H(σx) − H(σ)

)+
.

1 Glauber dynamics: Pg
β(σ, τ) =


1
|V |

e−βH(σx)

e−βH(σ) + e−βH(σx) [τ = σx],

1 −
∑
x∈V

Pg
β(σ,σ

x) [τ = σ].

2 Metropolis algorithm: Pm
β (σ, τ) =


1
|V | e

−β∇+x H(σ) [τ = σx],

1 −
∑
x∈V

Pm
β (σ,σx) [τ = σ].

Flip?

1/|V |
V

V
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Both are aperiodic and irreducible and satisfy the detailed balance condition:
∀σ, τ ∈ {±1}V , πβ(σ) P•β(σ, τ) = πβ(τ) P•β(τ,σ).

∵O E.g., for Metropolis, τ = σx ⇒ e−βH(σ)e−β∇
+
x H(σ) = e−β

(
H(σ)∨H(σx)

)
.

∴ πβ = πβ ∗ P•β,
∀µ ∗ (P•β)

∗n ===⇒
n↑∞
πβ.

Theorem 1 (e.g., Catoni (1999))

Let {Xn}∞n=0 be the {±1}V -valued MC generated by P•β = Pg
β or Pm

β . Then,
∀ε > 0, ∃N ∈ N, ∃β ≥ 0

[
n ≥ N ⇒ min

σ
P•β
(
Xn ∈ GS

∣∣∣ X0 = σ
)
≥ 1 − ε

]
.

Other properties:
Mixing time for β ≪ 1 (e.g., Levin & Peres & Wilmer (2008)):

T •mix ≡ min
{
n : max

σ

∥∥∥δσ ∗ (P•β)
∗n − πβ

∥∥∥
TV
≤ 1

2

} ≤ ∃C|V | log |V |,
≥ ∃c|V |.

Simulated annealing (e.g., Catoni (1999)): ∃βn = O(log n) such that

µ ∗ P•β1 ∗ P•β2 ∗ · · · ∗ P•βn ====⇒n↑∞

1GS

|GS| .
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A {±1}V -valued MC generated by a transition matrix Pβ is said to have rare
transition with rate function V if (with the convention log 0 = −∞)
∀σ, τ ∈ {±1}V , lim

β↑∞
−1
β

log Pβ(σ, τ) = V(σ, τ). ∴ Pβ(σ, τ) =
β↑∞

e−βV(σ,τ)+o(β).

E.g., for both Glauber and Metropolis, V(σ, τ) =


∇+x H(σ) [τ = σx],
0 [τ = σ],
∞ [o/w].

Define the virtual energy U as
U(σ) = min

g∈G(σ)

∑
(η,ξ)∈g

V(η, ξ) − min
τ∈{±1}V

min
g∈G(τ)

∑
(η,ξ)∈g

V(η, ξ),

where G(σ) is the set of oriented spanning trees on {±1}V rooted at σ such
that every τ ∈ {±1}V \ {σ} has outgoing degree 1.

Theorem 2 (e.g., Catoni (1999))

Let {Xn}∞n=0 be the {±1}V -valued MC generated by an aperiodic Pβ having rare
transitions with irreducible rate function V (i.e., the matrix

[
e−V(σ,τ)] is irreducible).

Then the unique stationary distribution obeys µβ(σ) =
β↑∞

e−βU(σ)+o(β). In particular,

∀ε > 0, ∃N ∈ N, ∃β ≥ 0
[
n ≥ N ⇒ min

σ
Pβ
(
Xn ∈ arg min U

∣∣∣ X0 = σ
)
≥ 1 − ε

]
.

∃ f (σ) + V(σ, τ) = f (τ) + V(τ,σ) ⇒ U(σ) = f (σ) −min
τ

f (τ).
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∵O [Proof of Theorem 1] Recall that both Glauber and Metropolis are aperiodic
and irreducible and satisfy

H(σ) + V(σ,σx) = H(σ) + ∇+x H(σ) = H(σ) ∨ H(σx)

= H(σx) + V(σx,σ).

Therefore U(σ) = H(σ) −minτ H(τ), hence arg min U = GS.

Theorem 2 is obtained from the following general result of MCs:

Proposition 3 (e.g., Catoni (1999))

The unique stationary distribution µ of an aperiodic and irreducible transition
matrix P on {±1}V equals

µ(σ) =
∑

g∈G(σ)

∏
(η,ξ)∈g

P(η, ξ)
/ ∑
τ∈{±1}V

∑
g∈G(τ)

∏
(η,ξ)∈g

P(η, ξ)
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Key points so far:

1 Find the rate function V and the virtual energy U:

V(σ, τ) = lim
β↑∞

−1
β

log Pβ(σ, τ),

U(σ) = min
g∈G(σ)

∑
(η,ξ)∈g

V(η, ξ) − min
τ∈{±1}V

min
g∈G(τ)

∑
(η,ξ)∈g

V(η, ξ),

or

= lim
β↑∞

−1
β

log µβ(σ) if
[
e−V(σ,τ)] is aperiodic and irreducible.

∃ f (σ) + V(σ, τ) = f (τ) + V(τ,σ) ⇒ U(σ) = f (σ) −min
τ

f (τ).

2
∀ε > 0, ∃N ∈ N, ∃β ≥ 0

[
n ≥ N ⇒ min

σ
Pβ
(
Xn ∈ arg min U

∣∣∣ X0 = σ
)
≥ 1− ε

]
.

3 arg min U = GS for both Glauber and Metropolis.
4 arg min UDA = GS.
5 arg min USCA

q = GS if q > 1
2× the largest eigenvalue of [−Jx,y]V×V .

6 arg min Uε ⊃ GS.
7 DA and ε-SCA are the best in performance among today’s MCs.
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Digital annealer (invented in 2017 by Fujitsu Laboratories):

PDA
β (σ, τ) =


∑

x ∈S⊂V

1
|S |
∏
y∈S

e−β∇
+
y H(σ)

∏
z∈V−S

(
1 − e−β∇

+
z H(σ)
)

[τ = σx],∏
z∈V

(
1 − e−β∇

+
z H(σ)
)

[τ = σ].

V

V

Flip independently

S1/|S|

Rate function: VDA(σ, τ) =


∇+x H(σ) [τ = σx],
0 [τ = σ],
∞ [o/w].

∴ arg min UDA = GS.

∵O PDA
β (σ,σx) = e−β∇

+
x H(σ)

∑
S ′⊂V−x

1
|S ′| + 1

∏
y∈S ′

e−β∇
+
y H(σ)

∏
z∈V−x−S ′

(
1 − e−β∇

+
z H(σ)
)

︸                                                          ︷︷                                                          ︸
≡Rβ,x(σ) ∈ [1/|V |,1]

.
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Theorem 4 (with Fukushima-Kimura, Kawamoto and Noda (2023))

1
∀ε > 0, ∃N ∈ N, ∃β ≥ 0

[
n ≥ N ⇒ min

σ
PDA
β

(
Xn ∈ GS

∣∣∣ X0 = σ
)
≥ 1 − ε

]
.

2 (πβ ∗ PDA
β − πβ)(σ) =

∑
x∈V

e−β∇
+
x H(σ)
(
Rβ,x(σx) − Rβ,x(σ)

)
.

3 J ≡ 0 ⇒ πβ ∗ PDA
β = πβ.

4 If J ≥ 0, h ≡ 0, then J ≡ 0 ⇔ πβ ∗ PDA
β = πβ.

∵O [Proof of Theorem 4 4 ]
By 3 , it suffices to show J . 0 ⇒ πβ ∗ PDA

β , πβ.

Let Xz =

1 [w.p. e−β∇
+
z H(σ)],

0 [w.p. 1 − e−β∇
+
z H(σ)],

Yz =

1 [w.p. e−β∇
+
z H(σx)],

0 [w.p. 1 − e−β∇
+
z H(σx)].

Then,

Rβ,x(σ) = E
[

1∑
z∈V−x Xz + 1

∣∣∣∣∣∣ Xx = 1
]
, Rβ,x(σx) = E

[
1∑

z∈V−x Yz + 1

∣∣∣∣∣∣Yx = 1
]
.

If σ ∈ GS, z , x, then ∇+z H(σx) = ∇+z H(σ) − 4Jx,z, hence Rβ,x(σx) ≤ Rβ,x(σ).
Since J . 0, ∃x ∈ V such that Rβ,x(σx) < Rβ,x(σ).
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E.g., max-cut on the complete graph with |V | = 128:

H(σ) = − 1
2

∑
x,y∈V

Jx,yσxσy, with i.i.d. Jx,y =


1 [w.p. p+],
−1 [w.p. p−],
0 [w.p. 1 − p+ − p−].

N = 20000 steps in each of 128 trials.
Exponential cooling schedule: βn = β0

(
βN/β0

)n/N with β0 = 0.001, βN = 20.
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The actual statement for the exponential cooling schedule:

Theorem 5 (with Fukushima-Kimura, Kawamoto and Noda (2023))
∃A (= the 1st critical depth), ∃B (= the difficulty), ∀a > A, ∀b ∈ (0, B), ∀q ∈ N,

βn =
log(N/q)

a

( a
bϵ

) 1
q

[
n−1
N/q

]
[n = 1, 2, . . . ,N]

⇒ lim sup
N→∞

log PDA
β1
∗ · · · ∗ PDA

βN

(
UDA(XN) ≥ ϵ

∣∣∣ X0 = σ
)

log N
≤ −1

B

(bϵ
a

)1/q
≡ −γ.

Intuitively, for large N,

PDA
β1
∗ · · · ∗ PDA

βN

(
UDA(XN) ≥ ϵ

∣∣∣ X0 = σ
)
≲ N−γ.
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Stochastic Cellular Automata (SCA): PSCA
β,q (σ, τ) =

e−βH̃q(σ,τ)∑
η e−βH̃q(σ,η)

, where

H̃q(σ, τ) = −1
2

∑
x,y

Jx,yσxτy −
1
2

∑
x

hx(σx + τx) −
q
2

∑
x

σxτx.

Since H̃q(σ,σ) = H(σ) − q
2
|V |,

PSCA
β,q (σ, τ) −−−→

q↑∞
πβ(σ) δσ,τ.

Since H̃q(σ, τ) = −1
2

∑
x

(∑
y

Jx,yσy + hx︸            ︷︷            ︸
h̃x(σ)

+ qσx

)
τx −

1
2

∑
x

hxσx,

PSCA
β,q (σ, τ) =

∏
x∈V

e
β
2 (h̃x(σ)+qσx)τx

2 cosh
(
β

2 (h̃x(σ) + qσx)
) .

V

V

Flip independently

Akira Sakai Hokkaido University

Mathematical foundation of various MCMC methods @ French Japanese Conference on Probability & Interactions



Motivation Review of the conventional MCs Generalization DA SCA ε-SCA Concluding remark

PSCA
β,q is aperiodic and irreducible and πSCA

β,q (σ) ∝ ∑η e−βH̃q(σ,η) satisfies

∀σ, η ∈ {±1}V , πSCA
β,q (σ)PSCA

β,q (σ, η) = πSCA
β,q (η)PSCA

β,q (η,σ).

∴ πSCA
β,q = π

SCA
β,q ∗ PSCA

β,q
∀µ ∗ (PSCA

β,q )∗n ===⇒
n↑∞
πSCA
β,q .

Rate function: VSCA
q (σ, τ) = H̃q(σ, τ) −minη H̃q(σ, η) ≡ H̃q(σ, τ) − mq(σ).

∵O −1
β

log
1∑

τ e−βH̃q(σ,τ)
= −mq(σ) + 1

β
log
∑
τ

e−βV
SCA
q (σ,τ) −−−→

β↑∞
−mq(σ).

Since mq(σ) + VSCA
q (σ, τ) = mq(τ) + VSCA

q (τ,σ),

USCA
q (σ) = mq(σ) −min

η
mq(η).

Theorem 6 (with Fukushima-Kimura et al. (2023); Okuyama et al. (2019))

1 T SCA
mix = O(log |V |) for β ≪ 1 (depending on {Jx,y}, {hx}, q) (cf., T g

mix ≥ ∃c|V | ).

2 arg min USCA
q = GS if q > 1

2× the largest eigenvalue of [−Jx,y]V×V . As a result,

∀ε > 0, ∃β ≥ 0, ∃N ∈ N
[
n ≥ N ⇒ min

σ
PSCA
β,q

(
Xn ∈ GS

∣∣∣ X0 = σ
)
≥ 1 − ε

]
.
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PSCA
β,q is aperiodic and irreducible and πSCA

β,q (σ) ∝ ∑η e−βH̃q(σ,η) satisfies

∀σ, η ∈ {±1}V , πSCA
β,q (σ)PSCA

β,q (σ, η) = πSCA
β,q (η)PSCA

β,q (η,σ).

∴ πSCA
β,q = π

SCA
β,q ∗ PSCA

β,q
∀µ ∗ (PSCA

β,q )∗n ===⇒
n↑∞
πSCA
β,q .

Rate function: VSCA
q (σ, τ) = H̃q(σ, τ) −minη H̃q(σ, η) ≡ H̃q(σ, τ) − mq(σ).

∵O −1
β

log
1∑

τ e−βH̃q(σ,τ)
= −mq(σ) + 1

β
log
∑
τ

e−βV
SCA
q (σ,τ) −−−→

β↑∞
−mq(σ).

Since mq(σ) + VSCA
q (σ, τ) = mq(τ) + VSCA

q (τ,σ),

USCA
q (σ) = mq(σ) −min

η
mq(η).

Theorem 6 (with Fukushima-Kimura et al. (2023); Okuyama et al. (2019))

1 T SCA
mix = O(log |V |) for β ≪ 1 (depending on {Jx,y}, {hx}, q) (cf., T g

mix ≥ ∃c|V | ).

2 arg min USCA
q = GS if q > 1

2× the largest eigenvalue of [−Jx,y]V×V . As a result,

∀ε > 0, ∃β ≥ 0, ∃N ∈ N
[
n ≥ N ⇒ min

σ
PSCA
β,q

(
Xn ∈ GS

∣∣∣ X0 = σ
)
≥ 1 − ε

]
.

Akira Sakai Hokkaido University

Mathematical foundation of various MCMC methods @ French Japanese Conference on Probability & Interactions



Motivation Review of the conventional MCs Generalization DA SCA ε-SCA Concluding remark

E.g., max-cut on the complete graph with |V | = 128:

H(σ) = − 1
2

∑
x,y∈V

Jx,yσxσy, with i.i.d. Jx,y =


1 [w.p. p+],
−1 [w.p. p−],
0 [w.p. 1 − p+ − p−].

N = 20000 steps in each of 128 trials.
Exponential cooling schedule: βn = β0

(
βN/β0

)n/N with β0 = 0.001, βN = 20.
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Let Dσ,τ = {x : σx , τx} and rewrite PSCA
β,q (σ, τ) by isolating the effect of q as

PSCA
β,q (σ, τ) =

∏
x∈V

e
β
2 qσxτx cosh

( β
2 h̃x(σ)

)
cosh
( β

2 (h̃x(σ) + qσx)
) e

β
2 h̃x(σ)τx

2 cosh
( β

2 h̃x(σ)
)

=
∏

x∈Dσ,τ

εx(σ)px(σ)
∏

y∈V\Dσ,τ

(
1 − εy(σ)py(σ)

)
, εx(σ) = Oσ(e−βq).

ε-SCA: Pεβ(σ, τ) =
∏

x∈Dσ,τ

εpx(σ)
∏

y∈V\Dσ,τ

(
1 − εpx(σ)

)
=

∑
S :Dσ,τ⊂S⊂V

ε|S |(1 − ε)|V\S |
∏

x∈Dσ,τ

px(σ)
∏

y∈S \Dσ,τ

(
1 − px(σ)

)
.

ε ε ε
V

V

Flip independently (with q = 0)
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Since Pεβ is aperiodic and irreducible, there must be a unique stationary
distribution πεβ, which is not Gibbs in general.

Rate function: Vε(σ, τ) =
∑

x∈Dσ,τ

(
h̃x(σ)σx

)+
.

∵O −1
β

log Pεβ(σ, τ) =
∑

x∈Dσ,τ

−1
β

log px(σ) + o(1)

=
∑

x∈Dσ,τ

(
1
2 h̃x(σ)σx +

1
β

log
(
2 cosh

( β
2 h̃x(σ)

)))
+ o(1).

Since Vε is irreducible, there is a virtual energy Uε(σ) = lim
β↑∞

−1
β

log πεβ(σ).

In fact, ∃bε ∈ (0, 1) (independent of β) such that

bεe−βU
ε(σ) ≤ πεβ(σ) ≤ b−1

ε e−βU
ε(σ).

Theorem 7 (with Fukushima-Kimura et al. (202?))

1 πεβ ===⇒ε↓0 πβ uniformly in β; limβ↑∞ πεβ exists for every ε ∈ (0, 1).

2 arg min Uε ⊃ GS (i.e., GS \ arg min Uε = ∅).

∵O [Proof of Theorem 7 2 ] σ ∈ GS \ arg min Uε ⇒ 0 = limε↓0 limβ↑∞ πεβ(σ)
= limβ↑∞ limε↓0 πεβ(σ) = limβ↑∞ πβ(σ) = 1

|GS| , which is a contradiction.
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E.g., max-cut on the complete graph with |V | = 128:

H(σ) = − 1
2

∑
x,y∈V

Jx,yσxσy, with i.i.d. Jx,y =


1 [w.p. p+],
−1 [w.p. p−],
0 [w.p. 1 − p+ − p−].

N = 20000 steps in each of 128 trials.
Exponential cooling schedule: βn = β0

(
βN/β0

)n/N with β0 = 0.001, βN = 20.
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Today’s key points:

1 Find the rate function V and the virtual energy U:

V(σ, τ) = lim
β↑∞

−1
β

log Pβ(σ, τ),

U(σ) = min
g∈G(σ)

∑
(η,ξ)∈g

V(η, ξ) − min
τ∈{±1}V

min
g∈G(τ)

∑
(η,ξ)∈g

V(η, ξ),

or

= lim
β↑∞

−1
β

log µβ(σ) if
[
e−V(σ,τ)] is aperiodic and irreducible.

∃ f (σ) + V(σ, τ) = f (τ) + V(τ,σ) ⇒ U(σ) = f (σ) −min
τ

f (τ).

2
∀ε > 0, ∃N ∈ N, ∃β ≥ 0

[
n ≥ N ⇒ min

σ
Pβ
(
Xn ∈ arg min U

∣∣∣ X0 = σ
)
≥ 1− ε

]
.

3 arg min U = GS for both Glauber and Metropolis.
4 arg min UDA = GS.
5 arg min USCA

q = GS if q > 1
2× the largest eigenvalue of [−Jx,y]V×V .

6 arg min Uε ⊃ GS.
7 DA and ε-SCA are the best in performance among today’s MCs.
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