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Motivation
[ 1o}

m Want to find a ground state of the energy landscape H (= Hamiltonian) for an
Ising model on a finite graph G = (V, E):

H(o)=- Z Joyo oy — Z h.oy, GS = argmin H(o),

{x.yleE xeV oef=1)V

where [J,,lvxv is symmetric (with O on the diagonals), {A.}.cv € R".
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Motivation
[ 1o}

m Want to find a ground state of the energy landscape H (= Hamiltonian) for an
Ising model on a finite graph G = (V, E):

H(o)=- Z Joyo oy — Z h.oy, GS = argmin H(o),

{xyleE xeV oef1}V
where [J,,lyxy is symmetric (with 0 on the diagonals), {/}.v € RY.

m Why does GS matter? = Many combinatorial optimization problems can
be mapped to Ising models:

Max-cut: Divide the vertex set V of a weighted graph into S and V' \ S, while
maximizing the sum of the weights of the cut edges.

B w,, > 0: the weight on the edge {x,y} € E (W, =0, wyy = wy,).

mC= Z W.t._v(]l(xes)]l(vev\s) + ﬂ(XeV\s,]l(_ves,): the total weight to be maximized.
(xyleE

[xeS]

1

1
B 0y = 1jes) — Lixenys) = {_1
{x.yleE
B H(@)= ) w00, s to be minimized.
{x.yleE

Traveling salesman: Find a route that minimizes the total cost among those

which allow a salesman to return to the first city by going through all cities once.
Knapsack: Determine which item should be selected to maximize the total value

of the items packed in an knapsack of fixed volume.
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Motivation
(o] }

m Difficult to find GS, because
m the configuration space {+1}" may be humongous (depending on |V]),
m the energy landscape H may be complicated (depending on [J.,] and {A.}).

m Use Markov Chain Monte Carlo (MCMC) methods to sample the Gibbs
distribution m5(0) < e at inverse temperature B > 0, with

n z—? uniform on the entire {+1}",

] ? uniform on GS.

m Compare the conventional MCMC methods (Glauber, Metropolis) with
m Digital Annealer (DA) by Fujitsu Laboratories,
m Stochastic Cellular Automata (SCA),
m its variant (called e-SCA).
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Review of the conventional MCs
[ 1o}

Akira Sakai

m Conventional single-spin flip MCs:

—oy ly=x], +
@ =1 v b % ViH(o) = (H(o™) - H(0)) .
y 5
1 e BHE@) o]
———— [t =0"],
Glauber dynamics: P/%(O', T) = VI e PHEO) + e=PHE@
1- Z 9 (o, 07) [t=0].
xeV
|17|67/3V;H(¢T) [t = (r,\’]’
Metropolis algorithm: PT(o,7) =
B I—ZPE‘(U,U") [t=0]
xeV
0000000

11/\»’\

1 Flip?

0000000,
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Review of the conventional MCs
(o] }

m Both are aperiodic and irreducible and satisfy the detailed balance condition:
Yot e{xl}V,  mg(0) Py(0,7) = ms(7) Pi(T,0).
@ E.g., for Metropolis, 7= 0% = Pl #VHO) = eBlaovae)) g

L g =g * P, 1 (P;)*” == 7.

ntoo

Theorem 1 (e.g., Catoni (1999))
Let {X,}%, be the {x1}¥-valued MC generated by Py = Pg or Pj. Then,
Ye>0,NeN, 3B8>0 [nzN = minP;(Xne GS|XO=0')2 1—.9].
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Review of the conventional MCs
(o] }

m Both are aperiodic and irreducible and satisfy the detailed balance condition:

Yot e{xl}V,  mg(0) Py(0,7) = ms(7) Pi(T,0).
@ E.g., for Metropolis, T = 0* = ¢ PH@eBYHO) - eAlaovnen) g

L g =g * P, 1 (P;)*” == 7.

ntoo

Theorem 1 (e.g., Catoni (1999))
Let {X,}%, be the {x1}¥-valued MC generated by Py = Pg or Pj. Then,
Ye>0,NeN, 3B8>0 [nzN = minP;(Xne GS|XO=0')2 1—.9].

m Other properties:
m Mixing time for 8 < 1 (e.g., Levin & Peres & Wilmer (2008)):
3
* _ . o\ %71 1 < C|V| logIVI,
Thix = min [n - max ||§,r * (Pp) _”ﬂ”Tv < 5} {Z v,
m Simulated annealing (e.g., Catoni (1999)): 38, = O(log n) such that

lgs

pox Py # By e By o (G|
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Generalization
000

Akira Sakai

m A {+1}V-valued MC generated by a transition matrix P is said to have rare
transition with rate function V' if (with the convention log 0 = —oo)

‘orelsl). lm g logPyor) = V(oo 2 PylonT) = PO,
ViH(o) [t=0"],

E.g., for both Glauber and Metropolis, V(o,7) =<0 [t =0,
co [o/w].

m Define the virtual energy U as

Ue)= min > Va.€)~ min min > V(1.9

V geG
(1Des Tefx1}V g€ (T)(

E54
where G(0) is the set of oriented spanning trees on {+1}" rooted at o such
that every T € {1}V \ {0} has outgoing degree 1.
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Generalization
000

m A {+1}V-valued MC generated by a transition matrix P is said to have rare
transition with rate function V' if (with the convention log 0 = —oo)

‘orelsl). lm g logPyor) = V(oo 2 PylonT) = PO,
ViH(o) [t=0"],
E.g., for both Glauber and Metropolis, V(o,7) =<0 [t =0,

) [o/w].
m Define the virtual energy U as

Ue)= min > Va.€)~ min min > V(1.9

V geG
(1Des Tefx1}V g€ (T)(

where G(0) is the set of oriented spanning trees on {+1}" rooted at o such
that every T € {1}V \ {0} has outgoing degree 1.

Theorem 2 (e.g., Catoni (1999))

Let {X,}?, be the {1}V -valued MC generated by an aperiodic P having rare
transitions with irreducible rate function V (i.e., the matrix [e"V"] is irreducible).
Then the unique stationary distribution obeys (07 P e PU@PB) " In particular,

Ye>0, 'NeN, 18>0

n>N = minPB(X,, eargminU|Xo :0')2 l—s].
o

mf(o)+ V(o) = f()+V(T,0) = U(o) = f(o)— mTinf(‘r).
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Generalization
(o] le]

© [Proof of Theorem 1] Recall that both Glauber and Metropolis are aperiodic
and irreducible and satisfy

H(o)+ V(o,0%) = H(0) + ViH(0) = H(o) V H(0™)
=H(o") + V(o, o).

Therefore U(o) = H(o) — min, H(t), hence argmin U = GS. [ ]
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Generalization
(o] le]

© [Proof of Theorem 1] Recall that both Glauber and Metropolis are aperiodic
and irreducible and satisfy

H(o)+ V(o,0%) = H(0) + ViH(0) = H(o) V H(0™)
= H(o") + V(o", o).

Therefore U(o) = H(o) — min, H(t), hence argmin U = GS. [ ]

m Theorem 2 is obtained from the following general result of MCs:

Proposition 3 (e.g., Catoni (1999))

The unique stationary distribution i of an aperiodic and irreducible transition
matrix P on {1}V equals

uey= > [] Pa.® / > ] pae

g€G(o) (né)eg Te(x1}V g€G(T) (n.§)eg
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Generalization
oe] )

Key points so far:
Find the rate function V and the virtual energy U:

-1
V(o, ) = lim — log Pg(o, 7),
(o,7) pm g Pp(07,7)

U(o) = ml(n) Z V(n,€) — min min Z V(n, &),

14
e =8

or
= /lfle _Fl logus(o) if [eV™] is aperiodic and irreducible.
f(o) + V(o,7) = f(r) + V(1,0) = U(o) = f(o) — min f(1).

Ye>0, INeN, 3/320 n>N = minP,g(X,,eargminU|XO=0')21—.9].
o

arg min U = GS for both Glauber and Metropolis.
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DA
0000

m Digital annealer (invented in 2017 by Fujitsu Laboratories):

3 ﬁ [ [ [ (1-e#7) [r=0,

PDA(O' T) Ny escv yes zeV-§
’ [ ](1-emme) [t =ol.
eV
0000000
: FliI in(lcl)cndc.ntly : :
1 vV v
000
sl S
0000000
VIH(@o) [t=0"],
m Rate function: V™(o,7) =10 [t =0], . argmin U™ = GS.
I [o/w].
+ 1 + +
Q PXo,0") = e FV:H® e PV H(@) 1 — e BVIH©O), u
ﬂ e et L L)

=Rp () €[1/IVI.1]

Akira Sakai Hokkaido University

Mathematical foundation of various MCMC methods @ French Japanese Conference on Probability & Interactions



DA
0e00

Theorem 4 (with Fukushima-Kimura, Kawamoto and Noda (2023))
‘>0, 'NeN, >0 [nZN = minPP(X, € GS| Xy =0) 2 1—8].

(5% P = m)(@) = ) ePVHO(Ry (07) = Ry (7).
xeV

J=0 > nﬁ*Pg"znﬁ.

IfJ>0,h=0,then J=0 & ﬂﬁ*PﬁDA:ﬂ'ﬁ.

© [Proof of Theorem 4]
m By B, it sufficestoshow J 0 = g% PEA # Tg.
1 [w.p. ePVHO, ~ {1 [W.p. e FVEH@O],

m Let X, = . o
- {0 [w.p. 1 — PV H@, 0 [w.p. 1— V0D

Then,
1

- - v, =1].
ZzeV—x Xz +1 ZzeV—x Yz +1 ’ ]

m lfoeGS, z# x, then VIH(0") = VIH(0) — 4J,;, hence Rs (07%) < Ry (o).
m Since J £ 0, x € V such that Rz (0) < R (o). ]

Rﬁ’x((r) =E [

XXZ l:|, Rﬁ,x((r\)zE[
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DA
[e]e] le]

m E.g., max-cut on the complete graph with |V| = 128:
1 [w.p. pi],
H(o)==4 > Jyooy, withiid Jo, ={-1 [wp. p_].
xyev 0 [wpl-p,—p.l
® N = 20000 steps in each of 128 trials.
m Exponential cooling schedule: B, = Bo(Bn/Bo)"™ with By = 0.001, By = 20.

Parameter space for the Max-Cut problem

W sa
] bpa
@ [ Te
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DA
[eJe]e] ]

m The actual statement for the exponential cooling schedule:

Theorem 5 (with Fukushima-Kimura, Kawamoto and Noda (2023))
JA (= the 1st critical depth), 7B (= the difficulty), "a > A, Yb € (0, B), q € N,

=M(g)ﬂﬁ]

B [n=1,2,...,N]
a be
IOgPZA*"'*PgA(UDA(XN)Zflx():0') —1/be\Va
= limsup ! i < _(_) =—y.
Nosoo log N a

Intuitively, for large N,

Pg’:\ Kok PZA(UDA(XN) > e | Xo=0) < N7,

N
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SCA

[ JeJele]e]
e Py (.)
m Stochastic Cellular Automata (SCA): P;CA(o-,-r) = ——— where
q Z” e—BH,/(a',r])

ﬁq(a', T) = —% Z Jyyor Ty — % Z h(o,+1,)— % Z O\ Ty.
Xy X E;

m Since A, (0,0) = H(o) - %lVL

PNo,T) =2 M(0) S

m Since Hq(a' T) = Z(Z Joyory + hy +qo',c)‘r,c %th(rx,

X
\__ﬂ/_/
/.7'!(0')
0000000,
B A
B hx(@)qor P |

ez H H
SCA(U ™= ]_l 7 ’ Flip independettly
o 2 cosh ('g(hx(ﬂ') + qo-x)) ip independently

[XXXXXXR
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SCA
0@000

m P5% is aperiodic and irreducible and 5 (o) o 3, e P satisfies

Yo.pelzl}), agNoPi o) = mog (P (1, 0).

.q .q
. SCA SCA , pSCA v SCA\#n SCA
= * * —
c g = Mgy Ba H (Pﬁ”l nfeo T -
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SCA
0@000

m P5% is aperiodic and irreducible and 5 (o) o 3, e P satisfies

fope(=l}, mgNo)PEy (o m) = mg PGy (. o).
. SCA _ _SCA SCA v SCA\#n SCA
Mg = Tpg ¥ PB,I/ H* (Pﬁ,!/ nToo Tpq -

®m Rate function: Vo, 7) = H,(0r,7) — min, A, (o, n) = Hy (0", T) — m(0).

1 SCA
dlog ———— =—-m (o) + L 1o Ze’ﬁvf/ (Cp———_—rr [ |
© 5 log S P (o) + 5 log 4 . (o)

m Since m,(0) + V(0 7) = m,(1) + VS(z, 0),

UjCA((r) =my(o) - mqin my,(1).

Theorem 6 (with Fukushima-Kimura et al. (2023); Okuyama et al. (2019))

TSA = O(log V) for B < 1 (depending on {Jyy), (hy}, q) (cf., T2, > Tc|V]).

mix mix =

argmin U5 = GS ifg > 1x the largest eigenvalue of [~ J,lyxy. As a result,

Ye>0,38>0, INeN

n>N = m(rinPgZA(X,,EGS|XO:U')2l—sJ.
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m E.g., max-cut on the complete graph with |V| = 128:

1 [w.p. psl,
H(o)==4 > Jyooy, withiid Jo, ={-1 [wp. p_].
eV 0 [wp l-p,-pl
m N = 20000 steps in each of 128 trials.

m Exponential cooling schedule: S, = Bo(By/Bo)"" with By = 0.001, By = 20.

Parameter space for the Max-Cut problem

Parameter space for the Max-Cut problem
i B sca B sca
W sa [J] oa
5 [ Te B | T
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[o]e]e] lo}

Q
STATICAZORSATFVT

BFA 20N> 2 EDMEEELEE
(2000./ — KMax-CutfFE)

0[ STATICA
20| ASSP@300MHz
0.13ms

w

Est. 2W

Simulated Bifurcation
20} FPGA@248Mhz

10} 0.5ms

Est. 40W

STPSHEE
Count (100 trials)
w
(=]

||| -

30| SA on CPU
201-50ms

32000 32500 33000
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(A)
STATICABEDHRER - FiR

ISSCC2020%%, HILUFVIBEFREF T :
N- QueenF‘iE (N 22)

IEEE Journal of Solid State

Circuits (IEEE Xplorel#%)

B#Z#hE an1  SH#E wa  IEEE Spectrum

Novel Annealing Progassor s the
Best Ever at Solving Combinatorial
ptimization Problems

BUETFHEF T
J. L7 %

R

h‘b(DZI /9 5
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Akira Sakai Hokkaido University

M natical foundation of vat MCMC methods @ French Japanese Conference on Probability & Interactions



&-SCA
000

m Let D, = {x: o, # 7.} and rewrite P;7(o", 7) by isolating the effect of ¢ as

l_l eg(lzrﬂ\ COSh (%371‘(0-)) ez h(o)Tx
rey cosh (5(h (o) + o)) 2 cosh (5 (o))

[]e@pdo) T[] (1-a@p@),  ed0) = 0ple™.

PoNo, )

x€Dg YeV\Dg +
m =SCA: Pyo.r)= [ | epso) || (1-epuo)
X€Dg 1 yeV\Dg +
- S-S [T puo) [] (1-puo).
S:DgrCSCV x€Dgr YeS\Do

IQQQQQ?QIV
o0 [

th mdcpcndcml\ (with q L 0)
@ 0 000 0 Qe
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&-SCA
(o] le]

m Since Py is aperiodic and irreducible, there must be a unique stationary
distribution g, which is not Gibbs in general.

m Rate function: V#(o, 1) = Z (ﬁx(o)o-,x)+.

x€Dg ¢

© FlogPio,7) = Z = log p(0) + o(1)

x€Dg+

= (%71)((0')03. + 1 log (200sh(§l~1x(0'))))+0(1). .

x€Dg ¢
m Since V¥ is irreducible, there is a virtual energy U¢(o) = ,IBiTm ’F‘ log mi(0).
In fact, 75, € (0, 1) (independent of 8) such that

boe P < (o) < ;e PV,
Theorem 7 (with Fukushima-Kimura et al. (2027?))

B
argmin U® > GS (i.e., GS\ argmin U* = @).

n; ? ng uniformly in B; limgye, 77, exists for every & € (0, 1).
£,

© [Proof of Theorem 7H] o € GS\argminU®* = 0 = lim limge ﬂ;(ﬂ')
= limgpe, lime o 75(07) = limgpe, 7p(07) = @ which is a contradiction. [
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m E.g., max-cut on the complete graph with [V| = 128:
1 [w.p. pi],
H(o)==4 > Jyooy, withiid Jo, ={-1 [wp. p_].
xyev 0 [wpl-p,—p.l
® N = 20000 steps in each of 128 trials.
m Exponential cooling schedule: S, = Bo(By/Bo)"" with By = 0.001, By = 20.

Parameter space for the Max-Cut problem Parameter space for the Max-Cut problem
B &sca M esca
B sca [ oa
O Tie [ Tie
i
08 10 08 10
[ 2
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Concluding remark
L]

Today’s key points:
Find the rate function V and the virtual energy U:

-1
V(o, ) = lim — log Pg(o, 7),
(o,7) pm g Pp(07,7)

U(o) = mm Z V(n,€) — min min Z V(n, &),
€G(0) Te{+1}V geG(1)
(mé)eg (né)eg
or

-1
= /lfle 5 logus(o) if [eV™] is aperiodic and irreducible.

(o) + V(o,7) = f(r) + V(T,0) = U(0o) = f(o) — min f(1).

"e>0,INeN,3B>0|[n=2N = minP,g(X,,eargminU|XO=0')21—.9].
o

]

arg min U = GS for both Glauber and Metropolis.

arg min U™ = GS.

argmin U3 = GS if ¢ > %x the largest eigenvalue of [-J,lyxv.
arg min U® > GS.

DA and &-SCA are the best in performance among today’s MCs.

NoEEA
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