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@ Set V; of neighbors of node ¢ — possible matches.

Class-i items arrive as a Poisson process with rate p;, for each 7 € V.
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Compatibility graph

Graph G undirected, connected, without self-loop, non-bipartite.

@ Set V of nodes — item classes. ° e‘

@ Set V; of neighbors of node ¢ — possible matches.
Class-i items arrive as a Poisson process with rate p;, for each 7 € V.

Items are matched according to the first-come-first-matched (FCFM) policy.

0000

The evolution of the sequence of unmatched item classes defines a Markov process
whose transition rates depend on the graph G and the arrival rates p;, i € V.
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Céline Comte TU/e & CNRS & LAAS



Neighbors and independent sets

Set of neighbors
@ The neighbor set of a class i € V is V;. ° e
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Neighbors and independent sets

Set of neighbors
@ The neighbor set of a class i € V is V;. ° e

@ The neighbor set of a set T C V is V(I) = ;1 Vi- °

Independent sets

@ A node set Z C V is an independent set if its elements are (pairwise) nonadjacent.
Equivalently, a node set Z C V is an independent set if ZNV(Z) = 0.

@ The family of independent sets of the graph G is denoted by I.
In our toy example, T = {®7 {13 {2}, {3}, {4}, {1, 3}, {1, 4} }.
o Welet I* =T\ {0} denote the family of nonempty independent sets.
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@ Literature review

© Basic results
@ Stability condition
@ Definition of the discrete-time Markov chain
@ Product-form stationary distribution and partial balance

© Performance analysis
@ Normalization constant
@ Performance metrics
@ Heavy-traffic analysis

@ Concluding remarks
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Literature review

Bipartite matching model under FCFM

Early works

@ René Caldentey, Edward H. Kaplan, and Gideon Weiss. “FCFS Infinite Bipartite Matching
of Servers and Customers”. Advances in Applied Probability 41.3 (Sept. 2009),
pp. 695-730. DOI: 10.1239/aap/1253281061

@ lvo Adan and Gideon Weiss. “Exact FCFS Matching Rates for Two Infinite Multitype
Sequences”. Operations Research 60.2 (Apr. 1, 2012), pp. 475-489. DOI:
10.1287/opre.1110.1027
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Stability (i.e., positive recurrence) condition

@ Ana Bugi¢, Varun Gupta, and Jean Mairesse. “Stability of the Bipartite Matching Model”.
Advances in Applied Probability 45.2 (June 2013), pp. 351-378. DOI:
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Bipartite matching model under FCFM

Performance evaluation

@ Ivo Adan et al. "Reversibility and Further Properties of FCFS Infinite Bipartite Matching”.
Mathematics of Operations Research 43.2 (Dec. 12, 2017), pp. 598-621. DOTI:
10.1287/moor.2017.0874

@ Céline Comte and Jan-Pieter Dorsman. “Performance Evaluation of Stochastic Bipartite
Matching Models”. Performance Engineering and Stochastic Modeling. Ed. by
Paolo Ballarini et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 425-440. por1: 10.1007/978-3-030-91825-5_26
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Literature review

Non-bipartite matching model under FCFM
Stability

@ Jean Mairesse and Pascal Moyal. “Stability of the Stochastic Matching Model”. Journal of
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Performance evaluation

@ Pascal Moyal, Ana Busi¢, and Jean Mairesse. “A Product Form for the General Stochastic
Matching Model". Journal of Applied Probability 58.2 (June 2021), pp. 449-468. DOTI:
10.1017/jpr.2020.100

@ Céline Comte. "Stochastic Non-Bipartite Matching Models and Order-Independent Loss
Queues”. Stochastic Models 38.1 (Jan. 2, 2022), pp. 1-36. DOI:
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© Basic results
@ Stability condition
@ Definition of the discrete-time Markov chain
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Stability condition

o Studied in [BGM13], [MM16], and [MBM21] e

@ The Markov process is positive recurrent if and only if a e‘

o) & 2Tl 1y (@)
ZieV(I) Hi
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Stability condition

o Studied in [BGM13], [MM16], and [MBM21] e

@ The Markov process is positive recurrent if and only if a e‘

o) & 2Tl 1y (@)
ZieV(I) Hi

In our toy example:

_ & _ M2
pl1p) =2, p(2) =P (s =
s M1+ pig
P4 = EE a1y = BEEE T p(qnay = BEE

@ This condition can be satisfied only if the graph is non-bipartite.
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State and state space

@ Sequence of unmatched items ordered by arrival times:
acf) € V*a ‘

c=(c1,c9,...

where ¢; is the class of the oldest unmatched item.
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where ¢; is the class of the oldest unmatched item.
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State and state space

@ Sequence of unmatched items ordered by arrival times: e

C:(ClacQP"aCf)GV*’ a e‘

where ¢; is the class of the oldest unmatched item.
@ The empty state, with £ = 0, is denoted by &.
@ The set of unmatched items is an independent set, meaning that the state space is

c=Jcr,

Zel

where C7 is the set of sequences ¢ € V* where the set of classes is Z, for each Z € 1
(with the convention that Cy = {@}).
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Product-form stationary distribution

e Stationary distribution [MM16]: for (c1,ca,...,ce) € C\ {2}, e

(e, e, .. c0) = (D) e Hey a e‘

pljl D ieV({erczncp)) P °
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Product-form stationary distribution

e Stationary distribution [MM16]: for (c1,ca,...,ce) € C\ {2}, e
C O— ]
W(ClaCZV"?CK):W(@)H o °
21 2oieV({en carnep}) Hi

@ In our toy example:

T (@0.0,0.0,0) =xp)2 £ 1B

ph2 2 p2 + pa 2 + pra 2 + g

@ In other words, for each Z € I* and (c1,¢2,...,¢c—1,¢0) € C1,
_ ey
TI'(C]_,CQ,...,C[_l,C[)—W(Cl,CQ,...,C[_l) T
ZiEV(I) M
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Direct proof using partial balance

Transitions out of and into a state

States with State in Cz
—1 item c=(c1,¢2,...,¢p)
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Direct proof using partial balance
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Direct proof using partial balance

Transitions out of and into a state

State in Cz
c=(c1,ca,---,C0)

7 \

States with
—1 item

States with
+1 class-i item

“Partial” balance equations
@ Balance between state ¢ and states with —1 item:

7T(Cla ce acf) (EiEV(I) IU”L> = ﬂ-(Cl? s CZ—I)MCW

@ Balance between state ¢ and states with +1 class-7 item:
/+1

m(ery ... co)pi = Z?T(Cl, e Cpe1, 0, Cpy e C) (Zjevi\V({cl,...,cp,l}) Mj) , 1¢ V(D).

p=1
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The bigger picture

What are product-form stationary distributions useful for? ° e‘
@ Compute performance metrics — in the rest of this talk °
@ Analyze scaling regimes — in the rest of this talk

o Optimization and learning — preprint + ongoing work
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The bigger picture

What are product-form stationary distributions useful for? ° e‘
@ Compute performance metrics — in the rest of this talk °

@ Analyze scaling regimes — in the rest of this talk

o Optimization and learning — preprint + ongoing work

Variants of the model
@ Bipartite vs. non-bipartite graph
@ Abandonment (a.k.a. renegging)

@ Admission control
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© Performance analysis
@ Normalization constant
@ Performance metrics
@ Heavy-traffic analysis
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Normalization constant

@ Stationary distribution of the set of unmatched item classes:
(D)= w(e). Tel O 9‘
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Normalization constant

@ Stationary distribution of the set of unmatched item classes:
n(I) =) =), Tel G e‘

ceCr °

@ We prove that this distribution satisfies the recursion

-2 (St

ieT JET Hj
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@ We prove that this distribution satisfies the recursion
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Normalization constant

@ Stationary distribution of the set of unmatched item classes: e

) O—@ ]
(7) g; (¢), Tel "

@ We prove that this distribution satisfies the recursion

-2 (St

ieT JET Hj

z\@p), el

The normalization constant 7(&) follows from the normalization equation ), ;7(Z) = 1.

o Key step: 7(cy,...,¢p,0) = w(cl,...,q)m Tel' i€l (c1,...,c0) €C2UCRH )
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Performance metrics

o Waiting probability of class i: e

O—@ ]
L T ,
” Zeﬂ%/(z)ﬂ ! °
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Performance metrics

o Waiting probability of class i:

(3)
w; = Z m(Z), which implies M = 1 a 9‘0

Tel:igV(T) Yievhi 2
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Performance metrics

o Waiting probability of class i:

(3)
w; = Z m(Z), which implies M = 1 a 9‘0

Tel:i¢V(T) Diey Ki 2

@ Mean queue length:

L= UT), where ((I)= 1i(z()z) (ZZ

Tel+ ez 2ujeT M

UT\ {Z})> -
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w; = Z m(Z), which implies M = 1 a 9‘0

Tel:igV(T) Yievhi 2

@ Mean queue length:

L= Z UZI), where ((7)= 1 i(z()z) (Z 5

Tel+ ez 2ujeT M

U\ {z})) .

Similar formulas for the per-class performance.
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Similar formulas for the per-class performance.

@ The mean waiting time follows by applying Little's law.
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Performance metrics

o Waiting probability of class i:

(3)
w; = Z m(Z), which implies M = 1 a 9‘0

Tel:igV(T) Yievhi 2

@ Mean queue length:

L= Z UZI), where ((7)= 1 i(z()z) (Z 5

Tel+ ez 2ujeT M

U\ {z})) .

Similar formulas for the per-class performance.
@ The mean waiting time follows by applying Little's law.
@ Similar results for the bipartite variant of the model [CD21].
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Heavy-traffic analysis

@ Independent set Z € I that is maximal for the inclusion, a e‘

meaning that V(Z) =V \ Z.

Céline Comte TU/e & CNRS & LAAS



Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ Independent set Z € I that is maximal for the inclusion, a e‘

with 7 = {1,3}J
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ When the load p(Z) £ 2257@‘;“ tends to 1 ith 7 = {1 3}J
ic i wit - )

@ Independent set Z € I that is maximal for the inclusion, a e‘
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ When the load p(Z) £ 2257@‘;“ tends to 1 ith 7 = {1 3}J
ic i wit - )

w— _O®

~ M/M/1 multi-class queue

@ Independent set Z € I that is maximal for the inclusion, a e‘
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ When the load p(Z) £ 2257(1;“ tends to 1, ith 7 = {1 3}J
ic i wit - )

] the set OI unn atCI ed Classes iS I Wlth probabl|lty ].,

~ M/M/1 multi-class queue
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.
@ When the load p(Z) £ 22’671“2 tends to 1,
iev(T) Mi with Z = {1, 3}

o the set of unmatched classes is Z with probability 1,
o items of classes in Z wait with probability 1,

while items of classes in V \ Z wait with probability 0, [ — @@@
H3—>

~ M/M/1 multi-class queue

@ Independent set Z € I that is maximal for the inclusion, a e‘
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ When the load p(Z) £ 2257(1;“ tends to 1, ith 7 = {1 3}J
ic i wit - )

o the set of unmatched classes is Z with probability 1,
o items of classes in Z wait with probability 1,

while items of classes in V \ Z wait with probability 0, m
o the mean number of unmatched items is ~ 15(5()1). 13— @@@

@ Independent set Z € I that is maximal for the inclusion, a e‘

~ M/M/1 multi-class queue
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Heavy-traffic analysis

meaning that V(Z) =V \ Z.

@ When the load p(Z) £ 22’671“2 tends to 1,

iev(T) Mi with Z = {1, 3}
o the set of unmatched classes is Z with probability 1,

o items of classes in Z wait with probability 1,
while items of classes in V \ Z wait with probability 0,

@ H1—
e the mean number of unmatched items is ~ 1fp(I). 3 —s

o Take-away: minimizing the maximum load is
likely a good heuristic to optimize performance. ~ M/M/1 multi-class queue

@ Independent set Z € I that is maximal for the inclusion, a e‘
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Numerical results: Cycle with a chord
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Numerical results: Cycle with a chord
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Céline Comte
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Remark: Augmented state descriptor of [MBM21]

e Independent copy V = {i,i € V} of the set of item classes. a e‘
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Remark: Augmented state descriptor of [MBM21]

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:

e Independent copy V = {i,i € V} of the set of item classes. a e‘
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e Independent copy V = {i,i € V} of the set of item classes. a e‘

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:
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e Independent copy V = {i,i € V} of the set of item classes. a e‘

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:
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e Independent copy V = {i,i € V} of the set of item classes. a e‘

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:
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Remark: Augmented state descriptor of [MBM21]

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:

M 5= (@)

e Independent copy V = {i,i € V} of the set of item classes. a e‘
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Remark: Augmented state descriptor of [MBM21]

e Independent copy V = {i,i € V} of the set of item classes. a e‘
@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:
M =@

k
e Stationary distribution [MBM21]:  7(sq1, s2,...,sk) X H M, -
p=1
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Remark: Augmented state descriptor of [MBM21]

@ Augmented state descriptor s = (s1,52,...,8;) € (VUV)*:

M 5= (@)

k
e Stationary distribution [MBM21]:  7(sq1, s2,...,sk) X H M, -
p=1

e Independent copy V = {i,i € V} of the set of item classes. a e‘

@ The complexity is “hidden” in the description of the state space and normalization constant.
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Concluding remarks

Take-away a e‘

@ Product-form stationary distribution
@ Closed-form expressions for performance metrics
@ Heavy-traffic analysis
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Concluding remarks

Take-away a e‘

@ Product-form stationary distribution e
@ Closed-form expressions for performance metrics

@ Heavy-traffic analysis

Future works
@ Extensions to state-dependent arrival rates? hypergraphs? other policies?

@ More fundamental relationship between balance, reversibility, and insensitivity?
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