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Compatibility graph
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3

4

Graph G undirected, connected, without self-loop, non-bipartite.

Set V of nodes → item classes.

Set Vi of neighbors of node i → possible matches.

Class-i items arrive as a Poisson process with rate µi, for each i ∈ V.

Items are matched according to the first-come-first-matched (FCFM) policy.
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New item

The evolution of the sequence of unmatched item classes defines a Markov process
whose transition rates depend on the graph G and the arrival rates µi, i ∈ V.
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Neighbors and independent sets
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4

Set of neighbors

The neighbor set of a class i ∈ V is Vi.

The neighbor set of a set I ⊆ V is V(I) =
⋃

i∈I Vi.

Independent sets

A node set I ⊆ V is an independent set if its elements are (pairwise) nonadjacent.
Equivalently, a node set I ⊆ V is an independent set if I ∩ V(I) = ∅.
The family of independent sets of the graph G is denoted by I.
In our toy example, I = {∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}}.
We let I+ = I \ {∅} denote the family of nonempty independent sets.
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Ana Bušić, Varun Gupta, and Jean Mairesse. “Stability of the Bipartite Matching Model”.
Advances in Applied Probability 45.2 (June 2013), pp. 351–378. doi:
10.1239/aap/1370870122
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Studied in [BGM13], [MM16], and [MBM21]

The Markov process is positive recurrent if and only if

ρ(I) ≜
∑

i∈I µi∑
i∈V(I) µi

< 1, I ∈ I+.

In our toy example:
ρ({1}) = µ1

µ2
, ρ({2}) = µ2

µ1 + µ3 + µ4
, ρ({3}) = µ3

µ2 + µ4
,

ρ({4}) = µ4

µ2 + µ3
, ρ({1, 3}) = µ1 + µ3

µ2 + µ4
, ρ({1, 4}) = µ1 + µ4

µ2 + µ3
.

This condition can be satisfied only if the graph is non-bipartite.
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State and state space

1 2

3

4

Sequence of unmatched items ordered by arrival times:

c = (c1, c2, . . . , cℓ) ∈ V∗,

where c1 is the class of the oldest unmatched item.

The empty state, with ℓ = 0, is denoted by ∅.

The set of unmatched items is an independent set, meaning that the state space is

C =
⋃
I∈I

CI ,

where CI is the set of sequences c ∈ V∗ where the set of classes is I, for each I ∈ I
(with the convention that C∅ = {∅}).
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Céline Comte TU/e & CNRS & LAAS 10 / 22



State and state space

1 2

3

4

Sequence of unmatched items ordered by arrival times:

c = (c1, c2, . . . , cℓ) ∈ V∗,

where c1 is the class of the oldest unmatched item.

The empty state, with ℓ = 0, is denoted by ∅.

The set of unmatched items is an independent set

, meaning that the state space is

C =
⋃
I∈I

CI ,

where CI is the set of sequences c ∈ V∗ where the set of classes is I, for each I ∈ I
(with the convention that C∅ = {∅}).
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Product-form stationary distribution
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Stationary distribution [MM16]: for (c1, c2, . . . , cℓ) ∈ C \ {∅},

π(c1, c2, . . . , cℓ) = π(∅)

ℓ∏
p=1

µcp∑
i∈V({c1,c2,...,cp}) µi

.

In our toy example:

π
(
1 , 1 , 3 , 1 , 3

)

= π(∅)
µ1

µ2

µ1

µ2

µ3

µ2 + µ4

µ1

µ2 + µ4

µ3

µ2 + µ4
.

In other words, for each I ∈ I+ and (c1, c2, . . . , cℓ−1, cℓ) ∈ CI ,

π(c1, c2, . . . , cℓ−1, cℓ) = π(c1, c2, . . . , cℓ−1)
µcℓ∑

i∈V(I) µi
.
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Céline Comte TU/e & CNRS & LAAS 11 / 22



Product-form stationary distribution

1 2

3

4

Stationary distribution [MM16]: for (c1, c2, . . . , cℓ) ∈ C \ {∅},

π(c1, c2, . . . , cℓ) = π(∅)

ℓ∏
p=1

µcp∑
i∈V({c1,c2,...,cp}) µi

.

In our toy example:

π
(
1 , 1 , 3 , 1 , 3

)
= π(∅)

µ1

µ2

µ1

µ2

µ3

µ2 + µ4

µ1

µ2 + µ4

µ3

µ2 + µ4
.

In other words, for each I ∈ I+ and (c1, c2, . . . , cℓ−1, cℓ) ∈ CI ,

π(c1, c2, . . . , cℓ−1, cℓ) = π(c1, c2, . . . , cℓ−1)
µcℓ∑

i∈V(I) µi
.
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Céline Comte TU/e & CNRS & LAAS 11 / 22



Direct proof using partial balance
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Transitions out of and into a state

State in CI
c = (c1, c2, . . . , cℓ)

States with
+1 class-i item

∀i /∈ V(I)

States with
−1 item

“Partial” balance equations

Balance between state c and states with −1 item:

π(c1, . . . , cℓ)
(∑

i∈V(I) µi

)
= π(c1, . . . , cℓ−1)µcℓ ,

Balance between state c and states with +1 class-i item:

π(c1, . . . , cℓ)µi =

ℓ+1∑
p=1

π(c1, . . . , cp−1, i, cp, . . . , cℓ)
(∑

j∈Vi\V({c1,...,cp−1}) µj

)
, i /∈ V(I).
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Céline Comte TU/e & CNRS & LAAS 12 / 22



Direct proof using partial balance

1 2

3

4

Transitions out of and into a state

State in CI
c = (c1, c2, . . . , cℓ)

States with
+1 class-i item

∀i /∈ V(I)

States with
−1 item

µi

∑
i∈V(I) µi

µcℓ

“Partial” balance equations

Balance between state c and states with −1 item:

π(c1, . . . , cℓ)
(∑

i∈V(I) µi

)
= π(c1, . . . , cℓ−1)µcℓ ,

Balance between state c and states with +1 class-i item:

π(c1, . . . , cℓ)µi =

ℓ+1∑
p=1

π(c1, . . . , cp−1, i, cp, . . . , cℓ)
(∑

j∈Vi\V({c1,...,cp−1}) µj

)
, i /∈ V(I).
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The bigger picture
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4

What are product-form stationary distributions useful for?

Compute performance metrics → in the rest of this talk

Analyze scaling regimes → in the rest of this talk

Optimization and learning → preprint + ongoing work

Variants of the model

Bipartite vs. non-bipartite graph

Abandonment (a.k.a. renegging)

Admission control
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Céline Comte TU/e & CNRS & LAAS 13 / 22



Outline

1 Literature review

2 Basic results
Stability condition
Definition of the discrete-time Markov chain
Product-form stationary distribution and partial balance

3 Performance analysis
Normalization constant
Performance metrics
Heavy-traffic analysis

4 Concluding remarks
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Normalization constant

1 2

3

4

Stationary distribution of the set of unmatched item classes:

π(I) =
∑
c∈CI

π(c), I ∈ I.

We prove that this distribution satisfies the recursion

π(I) = ρ(I)
1− ρ(I)

(∑
i∈I

µi∑
j∈I µj

π(I \ {i})

)
, I ∈ I+.

The normalization constant π(∅) follows from the normalization equation
∑

I∈I π(I) = 1.

Key step: π(c1, . . . , cℓ, i) = π(c1, . . . , cℓ)
µi∑

j∈V(I) µj
, I ∈ I+, i ∈ I, (c1, . . . , cℓ) ∈ CI ∪ CI\{i}.
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Performance metrics

1 2

3

4

Waiting probability of class i:

ωi =
∑

I∈I: i/∈V(I)

π(I),

which implies

∑
i∈V µiωi∑
i∈V µi

=
1

2
.

Mean queue length:

L =
∑
I∈I+

ℓ(I), where ℓ(I) = π(I)
1− ρ(I)

+
ρ(I)

1− ρ(I)

(∑
i∈I

µi∑
j∈I µj

ℓ(I \ {i})

)
.

Similar formulas for the per-class performance.

The mean waiting time follows by applying Little’s law.

Similar results for the bipartite variant of the model [CD21].
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Heavy-traffic analysis

1 2

3

4

with I = {1, 3}

113
µ1
µ3

µ2 + µ4

≃ M/M/1 multi-class queue

Independent set I ∈ I that is maximal for the inclusion,
meaning that V(I) = V \ I.

When the load ρ(I) ≜
∑

i∈I µi∑
i∈V(I) µi

tends to 1

,

the set of unmatched classes is I with probability 1,
items of classes in I wait with probability 1,
while items of classes in V \ I wait with probability 0,

the mean number of unmatched items is ∼ ρ(I)
1−ρ(I) .

Take-away: minimizing the maximum load is
likely a good heuristic to optimize performance.
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Numerical results: Cycle
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Numerical results: Cycle with a chord
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Remark: Augmented state descriptor of [MBM21]

1 2

3

4

Independent copy V = {i, i ∈ V} of the set of item classes.

Augmented state descriptor s = (s1, s2, . . . , sk) ∈ (V ∪ V)∗:

Stationary distribution [MBM21]: π(s1, s2, . . . , sk) ∝
k∏

p=1

µsp .

The complexity is “hidden” in the description of the state space and normalization constant.
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Céline Comte TU/e & CNRS & LAAS 20 / 22



Remark: Augmented state descriptor of [MBM21]

1 2

3

4

Independent copy V = {i, i ∈ V} of the set of item classes.

Augmented state descriptor s = (s1, s2, . . . , sk) ∈ (V ∪ V)∗:

1 34 s = ( 1 )

Stationary distribution [MBM21]: π(s1, s2, . . . , sk) ∝
k∏

p=1

µsp .

The complexity is “hidden” in the description of the state space and normalization constant.
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