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Session: Online Matching on Random Graphs

• Online matching on stochastic block models (SBM) (this talk)

• Online matching on geometric random graph (Flore)

• Matching on dynamic graphs (Aditi)
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Outline and Co-authors

• First part on online matching models and theoretical

challenges. Joint work with Pascal Moyal (Université de

Lorraine), Claudia Ramirez and Nahuel Soprano-Loto (INRIA,

Paris)

• Practical Reinforcement Learning approach to online

matching. Joint work with Chiara Mignacco and Gilles Stoltz

(INRIA, Orsay)
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Two online matching models

• Online/Dynamic matching on a fixed network model

• Online matching for a stochastic block model.
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Network model

• Compatibility’s graph:

G = (V ,E ), where V are

the individuals classes and E

tells us that if {i , j} ∈ E for

two classes {i , j} ∈ V , then

their are compatible.

• Arrival rates vector:

(λi )i∈V ∈ (0,∞)V

• Departure rates vector:

(γi )i∈V ∈ [0,∞)V

• Rewards vector:

(ω{i ,j}){i ,j}∈E ∈ [0,∞)E
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Previous work

Bipartite stochastic matching model

• Caldentey et al. (2009)

• Adan and Weiss (2012)

• Bušić et al. (2013)

Compatibility’s general graph

• Mairesse and Moyal (2016)
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Generalized Max-weight policy

Vx ,j(i) = probability than given a state x and an arrival at node j ,

the policy decides to match an individual in node i .

Vx ,j is uniform in argmax
i∈E(j):x(i)>0

(η[x(i) + ϵi ,j ]
+ + ωi ,j)
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NCOND

Let R = {i ∈ V : γi > 0} the set of sites where there is

impatience. The pair (λ, γ) will satisfy NCOND if

λ(I ) < λ(E (I )),

for any I that is an independent subset of V \ R.
For W ⊂ V we define λ(W ) =

∑
i∈W λi , where λ(W ) is the total

arrival rate to W .

Note. This condition was identified in Mairesse and Moyal

(2016) as a necessary natural condition for the stability of a

large family of policies in models without impatience.
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More precise stability results

Theorem [Moyal, J., Soprano-Loto, Ramirez, 2022]

If the pair (λ, γ) satisfies NCOND, under max-weight, the

function f2(x) =
∑

i∈V x(i)2 is a Lyapunov function.

Let π be the only stationary distribution.

Corollary

There are constants α, c > 0 and 0 < ρ < 1 such that

dTV (Px(Xt ∈ ·), π) ≤ cρteα∥x∥∞ .
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Second model



Second-model

Multiclass matching on random graphs.

• Offline version: Given the graph find the maximal size

matching (using compatibility rules)

• Online version: Given a random sequence of nodes, match

them given only the information of already matched nodes.
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Perfect Matching

Single class: a subset of the edges such that every vertex in the

graph is incident to exactly one edge from this subset.

Multi-class: a subset of the edges such that every vertex in the

graph is incident to exactly one compatible edge from this subset.
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A stochastic block model (SBM) with p communities

A random graph G = (V,E):

• There are p communities C1, ...,Cp forming a partition of V.

• For any nodes ui ∈ C1 and uj ∈ Cj , the edge {ui , uj} ∈ E

with probability Pij , independently of everything else.

• Set G , the root graph (with self-loop) on the set of nodes

[1, p], such that for all i , j ∈ [1, p],

i ∼ j ⇐⇒ Pij > 0. 11



Joint construction of an online matching on the SBM

p=4, nodes of the graphs ”arrive sequentially”,

We indicate the class of the node.

1

. .

12



Joint construction of an online matching on the SBM

1 2

. .

12



Joint construction of an online matching on the SBM

1 2

3

. .

12



Joint construction of an online matching on the SBM

1 2

3

3. .

12



Joint construction of an online matching on the SBM

1 2

3

3
4

. .

12



Joint construction of an online matching on the SBM

1 2

3

3
4

2

. .

12



Markovian description

• Given (λi )i=1...p the arrival probabilities, (proportion of nodes

of each class),

• we define the process

Qn := (|Qn(1)|, · · · , |Qn(p)|),

as the number of unmatched items of each class at time n.

Then, Qn is an irreducible Markov DTMC for ”Markovian

policies”.
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Matching policy

Consider the following matching criterion. At step n,

1. If the incoming item vn is of community Cj , set the next

match as

uniform in Argmax {x(i) : x(i) > 0 and i ∼ j}.

2. Then,

• If vn indeed shares an edge with some node un ∈ Cj add the

edge {un, vn} to Mn−1.

• Else, leave Mn = Mn−1.
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Matching policy

Observe that:

• The matching Mn is perfect if and only if

(|Qn(1)|, · · · , |Qn(p)|) = 0.

⇒ The matching is perfect infinitely often if and only if the Qn is

positive recurrent.
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Results

Define Q(n) = (Q1(n), · · · ,QL(n)) the Markov chain describing

the number of unmatched items at step n of each class.

Theorem (Soprano-Loto,J, Moyal)

Q is positive recurrent if and only if λ ∈ Ncond(G );

1. If λ ∈ Ncond(G ) then the matching is a.s. perfect infinitely

often;

2. Bounds on the expected number of unmatched nodes, to the

large-graph limits.
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Idea of the proof

• We can show that both Markovian dynamics (Model I and II)

are very close.

• Using our previous insights on Model I, we can prove that a

sum of square is again Lyapunov.
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Connected and open problems

• Optimality gaps for other regimes (mean number of

connections per node of order nγ , γ < 1).

• For γ = 0, (sparse case), the optimality gap characterized for

1 class.
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Intermezo towards applications



Application: Study of UNOS data

• The United Network for Organ Sharing (UNOS) has a detailed

database recording the last 31 years of organ donation in the

United States. These data is available on the OPTN platform

• We used a subset of data, the heart case - we assume that

these cases occur without taking into consideration distance,

given the short time living outside the body - differentiating

blood types (AB0 system) and urgency status (H1A, H1B and

H2) for pediatric cases - in order to work with fewer urgency

status (adults have 10 different status),

• all of these filters were applied in the data, except for some

specific parameters where we used a value for adults and

pediatric cases together.
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Application: System

Organ donation graph for pediatric cases differentiated by urgency status

for recipients -status H1A, H2A and H2 in red, orange and yellow

respectively- and blood type -circled in gray- for recipients (circles) and

donors (squares). 19



Application: System

In order to adjust our model of Markov processes to these data we

need to fit 5 values:

1. Arrival rate for donors, λD .

2. Arrival rate for recipients, λR .

3. Departure rate for donors, γD .

4. Departure rate for recipients, γR .

5. Number of elements per node in the initial system, WLi .
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Application: Parameters

https://optn.transplant.hrsa.gov/data
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Application: Policies
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Application: Results
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Application: Results
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What are we looking for?

• Interpretable policies

• Efficient policies at an intermediate time-scale.

• Robust policies

Proposal: Reinforcement learning orchestration between experts

policies.
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Reinforcement Learning approach



Reinforcement Learning

• Markov Decision Processes (MDPs):

• Finite state space S and action space A.

• Transition kernel T : S × A → P(S).

• Reward function R : S × A → P([0, 1]).

• Objective: Learn a policy π that maximizes the expected sum

of discounted rewards.

V π(s) = Eπ

[ ∞∑
t=0

γtr(st , at) | s0 = s

]

• Optimal policy π∗ maximizes the value function V π(s).
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Challenges in RL

• Large state or action spaces lead to prohibitively slow learning.

• Developing efficient algorithms to handle these spaces is

crucial for practical applications.

• Need for faster algorithms to ensure better performance.

• Existing methods struggle with model-free RL and large

MDPs.
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Orchestration of Expert Policies



Orchestration of RL Policies

• A collection Π = {π1, π2, . . . , πK} of expert policies.

• Combine these policies using state-dependent weights qk(s).

qΠ(a|s) =
K∑

k=1

qk(s)πk(a | s)

• Learn a policy qΠ in this class as close as possible to q∗Π.
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Advantage Functions

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st , at) | s0 = s, a0 = a

]

• Use of Advantage Functions Aπ(s, a) to improve policy

construction:

Aπ(s, a) = Qπ(s, a)− V π(s)
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Orchestration Strategy: Weight Calculation

• Sequential strategy ϕ:

qt(·|s) = ϕt(
∑
l≤t

Âπ
l (s, ·))

• Examples of ϕ: ϕt(x) = eηtx , ϕ(x) = eηx ,

ϕ(x) = max(x , 0)p...

• Exponential potential-based methods are often used to update

weights (Cai et al. 2020, Shani et al. 2020).

• When ϕ is exponential, we obtain (almost) the natural policy

gradient.
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Regret Definition and Bound (without estimation)

• Regret:

V ∗(s)− Vqt (s) = (V ∗(s)− V ∗
Π(s)) +

(
V ∗
qt (s)− V ∗

Π(s)
)

• We transfer bounds from adversarial learning to RL.
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Regret Definition and Bound (without estimation)

Theorem (J., Mignacco, Stoltz).

∀s ∈ S ,∀T ≥ 0 : V ∗
Π(s)−

1

T

T∑
t=1

Vqt (s) ≤
√
logK

(1− γ)2
√
T
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Experiments

Figure 1: Small network
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Thank you !
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