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Research question: How to design adaptive policies?
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This talk

Designing adaptive policies: Primal-dual interpretation
Near-optimal algorithms for small networks or Euclidean networks

New LP relaxation framework: Hybrid of dynamic programming and fluid
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Dynamic matching model
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Some challenges
o Average-cost infinite-dimensional MDP: formulation
o "Endogenous” market thickness: steady-state induced by policy

o No asymptotic scaling & thin market #.: unlike O(1)-regret dynamic
matching Ashlagi et al. ['23], Gupta ['22], Wei et al. ['23]
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Single queue: Primal-dual solution

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an

optimal policy has queue length-dependent thresholds 5t (increasing concave).
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Single queue: Primal-dual solution

Theorem 1 [AAS'24]: There exists a Fully Polynomial Time Approximation Scheme

for the bi-criteria dynamic matching problem with a single queue. For each

e € (0,1), we compute a (1 + €)-approximate policy in time O (e_O(l) : \I\O(l)).




Single queue: Primal-dual solution

Theorem 1 [AAS'24]: There exists a Fully Polynomial Time Approximation Scheme

for the bi-criteria dynamic matching problem with a single queue. For each

e € (0,1), we compute a (1 + €)-approximate policy in time O (e_O(l) : \I\O(l)).

Proof: Primal-dual algorithm

o Exponential queue lengths —=> Polynomial truncation (sensitivity analysis)

o Exponential matching sets ——=> Separation in the dual
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oSmall networks: 1 <Y

o "pigeons fly with pigeons, hawkes fly with hawkes”

scarce servers < infrequent customers > abundant servers & frequent customers
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Small networks: The hybrid LP

"dynamic” variables "static” variables

R e N\ N\
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A tale of two timescales
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@ Scheduled on a “virtual queue”
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Small networks

Theorem 2 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching
problem for small networks m < T . Foreach € € (0,1) , we compute a
(1 + €)-approximate policy in time O (E_T : \I\O(l)).
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Euclidean networks (main result)

Theorem 3 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching
problem for Euclidean networks. For eache € (0,1), we compute a (1 4 ¢)-

approximate policy in time O (g(e, d) - ]I|O(1)) .
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Euclidean networks (main result)

o Euclidean networks: embedded in fixed-dimensional Euclidean space

L/

Kidney transplants: ABO-compatibility
[AR, 21]
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Euclidean networks (main result)

Theorem 3 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching
problem for Euclidean networks. For eache € (0,1), we compute a (1 4 ¢)-

approximate policy in time O (g(e, d) - ]I|O(1)> .

o Euclidean graphs: embedded in fixed-dimensional Euclidean space

o Dimension can be “small”: ride-hailing (d~2-4), kidney exchange (d~10)
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Our contributions

Static Adaptive
Single queue 0.656-approx. [KSSW, 22] near-optimal FPTAS
Small network - near-optimal FPTAS
Spatia| network 3-approx. (metric) [AS, '22] near-optimal FPTAS (Euclidean)

rare in the matching literature ©

O

O
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Our contributions

Competitive Ratio Approximation Ratio
Reward network (1—1/\/e)+6z0.393+e§ (1-1/e+e€)-approx.

Amanihamedani, Aouad, Pollner, and Saberi ['24]



Take-aways

o Dynamic matching with abandonment for thick/thin markets (4. no scaling )
o Surprising tractability: Euclidian networks, small networks

o LPs for adaptive policies: a hybrid LP framework

o Simpler policies? In follow-up work, more fine-grained analysis of correlations
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Thank you, questions?

maouad@mit.edu

Soon on arXiv
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Open questions

o Breaching 1-1/e for (single-unit) matching in AS ['22]?
o The hardness of approximation bounds?

o Cost-minimization is hard. ..

« Heterogeneous server patience with a single customer?

« Approximations for matching rewards - waiting costs?
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Step 2 (outline): Reduction to DLP via clustering

Cluster servers and customers: Each cell has at most — types (= small # types)
€

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=

~O



MULTIVARIATE DLP
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Tighter relaxations: Dynamic-LP

o Decision variable xg,s . stationary probability that g servers of type i are waiting and the

optimal policy is about to match them with a customerin S
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Tighter relaxations: Dynamic-LP

o Decision variable CC? stationary probability that g servers of type i are waiting and the

optimal policy is about to match them with a customerin S

(DLP)
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Tighter relaxations: Dynamic-LP

o Decision variable LE,E],S . stationary probability that g servers of type i are waiting and the

optimal policy is about to match them with a customerin S

(DLP)

min
x>0

S.t.

q _
Z%S =1
. Syq

Fact: DLP is tighter [KSSW'22] [YV'24]
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Dual formulation and properties

Lemma [AAS'24]:
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Dual formulation and properties

Lemma [AAS'24]:

o Matchingset: S; ¢ C SF, C S

o Thresholds on reduced costs:

Si_q — {] < [m] - Ci,j 53*} and S,L—i_q — {j c [m] D Cig 0* < 53*}
/

shadow price (contention)



Dual formulation and properties

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an
optimal policy is characterized by queue length-dependent thresholds 53*.

Lemma [AAS'24]: Thresholds (65" ), are monotone increasing and concave.




"Reasonable” adaptive policies
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Can we solve (DLP) efficiently?
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Can we solve (DLP) efficiently?

Theorem 1 [AAS'24]: There is a fully polynomial-time approximation scheme for D-LP.

Proof ideas:
1. State space collapse: limited adaptivity

2. Efficient separation oracle: sliding ellipsoid, using both primal & dual
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On adaptivity

o Definition: A (J-bounded solution uses up to & agents in each queue.

o Aninstance is (), €)-adapted if any solution’s matching rates can be
approximated by some () -bounded solution within factor 1- €.

@=0(we(2) (me3i))

o Easy upper bound:

Lemma [AAS’'24]: Every instance is () = O (log (Tma:()) , € -adapted.
€T




Step 1 - Sensitivity

Sensitivity: we can inflate, deflate each

rates by O(€)-fraction with small loss.




Step 2 - Distribution design problem
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Main algorithmic results

Corollary 1 [AAS'24]: There is an FPTAS for the single-server setting.

Theorem 2 [AAS'24]: The cost-throughput problem on d-Euclidan graphs with
uniform reneging rates can be approximated within factorl —e in timepoly(e “@Q, |Z]).

Theorem 3 [AAS'24]: There exists an online rounding of DLP that is (1-1/e)-
approximate (lossless reduction to offline contention resolution).
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Reduction to contention resolution scheme

Vondrak et al. ['11]: For any matroid and any feasible x € P,, there exists an efficient (1-1/e) —
balanced contention resolution scheme.

(choosing item i with proba 1-1/e conditional on being independently sampled with proba x;)
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Algorithmic recipe

Approximately solve DLP

1,5

Upon an arrival of type j, independently draw server requests with probability (ng(t)*)
1

Y

1.
2.
3. Run CRS(j) on requests to match
4.

Discard the unused requests.
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Vondrak et al. ['11]: For any matroid and any feasible x € P,, there exists an efficient (1-1/e) —
balanced contention resolution scheme.

(choosing item i with proba 1-1/e conditional on being independently sampled with proba x;)

Algorithmic recipe

Approximately solve DLP

1,S

Upon an arrival of type j, independently draw server requests with probability (ng(t)*)
1

Y

1.
2.
3. Run CRS(j) on requests to match
4.

Discard the unused requests.

Fact: Discarding induces correlations ®




Continuous-time discarding



Continuous-time discarding

x(n —1) fake types



Continuous-time discarding

X(n —1) anti-CRS selection



