

ADAPTIVE POLICIES AND APPROXIMATION SCHEMES FOR DYNAMIC MATCHING

Ali Aouad (MIT)

Alireza AmaniHamedani (LBS)

Amin Saberi (Stanford)

Dynamic matching markets

Deceased donor transplant (NHS, 2022-2023)

Organ	England N (pmp)	
Kidney Deceased donors Transplants Transplant list	1071 2018 4945	(18.9) (35.7) (87.5)
Pancreas Deceased donors Transplants Transplant list	276 110 239	(4.9) (1.9) (4.2)
Heart Deceased donors Transplants ³ Transplant list ³	159 155 250	(2.8) (2.7) (4.4)

Deceased donor transplant (NHS, 2022-2023)

	England		
Organ	N	(pmp)	
Kidney Deceased donors Transplants Transplant list	1071 2018 4945	(18.9) (35.7) (87.5)	
Pancreas Deceased donors Transplants Transplant list	276 110 239	(4.9) (1.9) (4.2)	
Heart Deceased donors Transplants ³ Transplant list ³	159 155 250	(2.8) (2.7) (4.4)	

o Market thickness vs. risk of abandonment

 Kidney exchanges (deceased donors), ridehailing emergency response.

Online matching problem with queueing agents

Deceased donor transplant (NHS, 2022-2023)

	England	
Organ	N	(pmp)
Kidney Deceased donors Transplants Transplant list	1071 2018 4945	(18.9) (35.7) (87.5)
Pancreas Deceased donors Transplants Transplant list	276 110 239	(4.9) (1.9) (4.2)
Heart Deceased donors Transplants ³ Transplant list ³	159 155 250	(2.8) (2.7) (4.4)

o Market thickness vs. risk of abandonment

o Ride-hailing, kidney exchanges (deceased donors), emergency response.

Online matching problem with queueing agents

Deceased donor transplant (NHS, 2022-2023)

Organ	England N (pmp)		
Kidney Deceased donors Transplants Transplant list	1071 2018 4945	(18.9) (35.7) (87.5)	
Pancreas Deceased donors Transplants Transplant list	276 110 239	(4.9) (1.9) (4.2)	
Heart Deceased donors Transplants ³ Transplant list ³	159 155 250	(2.8) (2.7) (4.4)	

o Market thickness vs. risk of abandonment

 Ride-hailing, kidney exchanges (deceased donors), emergency response.

Online matching problem with queueing agents

o Online matching: Karp et al. ['90], Mehta et al. ['07], Manshadi et al. ['12], Jaillet and Lu ['14], Huang & Xu ['21], Papadimitriou et al. ['21], ...

o Matching queues: Caldentey and Kaplan ['02], Bušić et al. ['13], Gurvitch and Ward ['14], Tsisiklis and Xu ['17], Anderson et al. ['17], Afèche et al. ['19], Chen et al. ['22], etc.

Online matching: Karp et al. ['90], Mehta et al. ['07], Manshadi et al. ['12], Jaillet and Lu ['14], Huang & Xu ['21], Papadimitriou et al. ['21], ... constant-factor sub-optimality

Matching queues: Caldentey and Kaplan ['02], Bušić et al. ['13], Gurvitch and Ward ['14], Tsisiklis and Xu ['17], Anderson et al. ['17], Afèche et al. ['19], Chen et al. ['22], etc.
 asymptotic optimality

Online matching: Karp et al. ['90], Mehta et al. ['07], Manshadi et al. ['12], Jaillet and Lu ['14], Huang & Xu ['21], Papadimitriou et al. ['21], ...

O Matching queues: Caldentey and Kaplan ['02], Bušić et al. ['13], Gurvitch and Ward ['14], Tsisiklis and Xu ['17], Anderson et al. ['17], Afèche et al. ['19], Chen et al. ['22],...

O Dynamic matching: Aouad & Saritaç ['20], Collina et al. ['20], Kessel et al. ['22], Li et al. ['23], Kohlenberg and Gurvich ['24], Yu and Vossen ['24], Patel & Wajc ['24],...

Online matching: Karp et al. ['90], Mehta et al. ['07], Manshadi et al. ['12], Jaillet and Lu ['14], Huang & Xu ['21], Papadimitriou et al. ['21], ...

o Matching queues: Caldentey and Kaplan ['02], Bušić et al. ['13], Gurvitch and Ward ['14], Tsisiklis and Xu ['17], Anderson et al. ['17], Afèche et al. ['19], Chen et al. ['22],...

O Dynamic matching: Aouad & Saritaç ['20], Collina et al. ['20], Kessel et al. ['22], Li et al. ['23], Kohlenberg and Gurvich ['24], Yu and Vossen ['24], Patel & Wajc ['24],...

Recent literature focuses on simple, static policies

Online matching: Karp et al. ['90], Mehta et al. ['07], Manshadi et al. ['12], Jaillet and Lu ['14], Huang & Xu ['21], Papadimitriou et al. ['21], ...

o Matching queues: Caldentey and Kaplan ['02], Bušić et al. ['13], Gurvitch and Ward ['14], Tsisiklis and Xu ['17], Anderson et al. ['17], Afèche et al. ['19], Chen et al. ['22],...

O Dynamic matching: Aouad & Saritaç ['20], Collina et al. ['20], Kessel et al. ['22], Li et al. ['23], Kohlenberg and Gurvich ['24], Yu and Vossen ['24], Patel & Wajc ['24],...

Research question: How to design adaptive policies?

This talk

Designing adaptive policies: Primal-dual interpretation

This talk

- Designing adaptive policies: Primal-dual interpretation
- 2 Near-optimal algorithms for small networks or Euclidean networks

This talk

- Designing adaptive policies: Primal-dual interpretation
- 2 Near-optimal algorithms for small networks or Euclidean networks
- 3 New LP relaxation framework: Hybrid of dynamic programming and fluid

"Types" in edge-weighted bipartite graph

1 Network

e.g. Euclidean graph ⇒ cost is distance (pickup time in ridehailing)

2 Stochastic process

 $c_{i,j}$

Poisson arrivals

Poisson arrivals

$$\lambda_i
ightharpoons \Big($$

abandonments

n

m

3 Optimality criterion

throughput target au^*

$$\limsup_{t \to \infty} \frac{\mathbb{E}[T^{\pi}(t)]}{t} \ge \tau^*$$

3 Optimality criterion

cost-throughput target (c^*, τ^*)

$$\limsup_{t \to \infty} \frac{\mathbb{E}[C^{\pi}(t)]}{t} \le c^*$$

$$\limsup_{t \to \infty} \frac{\mathbb{E}[T^{\pi}(t)]}{t} \ge \tau^*$$

3 Optimality criterion

cost-throughput target (c^*, τ^*)

$$\limsup_{t \to \infty} \frac{\mathbb{E}[C^{\pi}(t)]}{t} \le c^*$$

$$\limsup_{t \to \infty} \frac{\mathbb{E}[T^{\pi}(t)]}{t} \ge \tau^*$$

3 Optimality criterion

cost-throughput target (c^*, τ^*)

$$\limsup_{t \to \infty} \frac{\mathbb{E}[C^{\pi}(t)]}{t} \le c^* \cdot (1 + \epsilon)$$

$$\limsup_{t \to \infty} \frac{\mathbb{E}[T^{\pi}(t)]}{t} \ge \tau^* \cdot (1 - \epsilon)$$

Some challenges

o Average-cost infinite-dimensional MDP: formulation

o "Endogenous" market thickness: steady-state induced by policy

Some challenges

o Average-cost infinite-dimensional MDP: formulation

o "Endogenous" market thickness: steady-state induced by policy

o No asymptotic scaling & thin market △: unlike O(1)-regret dynamic matching Ashlagi et al. ['23], Gupta ['22], Wei et al. ['23]

Static LP relaxation [AS, '20]

Static LP relaxation [AS, '20]

(SLP)
$$\min_{x_{i,j}, x_{i,a} \ge 0} \sum_{(i,j)} c_{i,j} \cdot x_{i,j}$$
s.t.
$$\sum_{j} x_{i,j} + x_{i,a} = \lambda_i , \qquad \forall i$$

$$\sum_{(i,j)} x_{i,j} \ge \tau^* ,$$

$$\frac{\mu_i}{\lambda_j} \cdot x_{i,j} \le x_{i,a} , \qquad \forall (i,j)$$

Static LP relaxation [AS, '20]

$$(SLP) \quad \min_{x_{i,j}, x_{i,a} \geq 0} \qquad \sum_{(i,j)} c_{i,j} \cdot x_{i,j}$$

$$\text{s.t.} \qquad \sum_{j} x_{i,j} + x_{i,a} = \lambda_i \;, \qquad \forall i$$

$$\sum_{(i,j)} x_{i,j} \geq \tau^* \;,$$

$$\frac{\mu_i}{\lambda_j} \cdot x_{i,j} \leq x_{i,a} \;, \qquad \forall (i,j)$$

The value of adaptive policies

The value of adaptive policies

3 customer types, one server type with $\;\lambda=1\;$

The value of adaptive policies

3 customer types, one server type with $\lambda=1$

o Decision variable x_M^ℓ : stationary probability that $\ell \in \mathbb{N}$ servers are waiting, and the optimal policy is about to match them with a customer in $\forall M, \ell$ (PASTA property [Wolff '82])

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

$$\begin{array}{ll} \text{DLP}) \\ & \underset{x \geq 0}{\min} \\ & \sum_{\ell,M} \sum_{j \in M} \gamma_j \cdot c_j \cdot x_M^\ell \\ \text{s.t.} \\ & (x_M^\ell)_{M,\ell} \in \mathcal{K} \\ & \\ & \text{birth-death process} \end{array}$$

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

Single queue: An exact Dynamic LP

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

Single queue: An exact Dynamic LP

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

$$\min_{{\boldsymbol x} \geq 0}$$

s.t.

$$\sum_{\ell,M} \sum_{j \in M} \gamma_j \cdot c_j \cdot x_M^{\ell}$$

$$(x_M^\ell)_{M,\ell} \in \mathcal{K}$$

throughput target

$$(\mathcal{K}) - \begin{cases} \lambda \cdot \sum_{M} x_{i,S}^{\ell-1} = \sum_{M} x_{M}^{\ell} \cdot (\gamma(M) + \mu \cdot \ell) \\ \sum_{M,\ell} x_{M}^{\ell} = 1 \end{cases}$$

Single queue: An exact Dynamic LP

o Decision variable $\,x_M^\ell\,$: stationary probability that $\,\ell\in\mathbb{N}\,$ servers are waiting, and the optimal policy is about to match them with a customer in $\,\forall M,\ell\,$

(PASTA property [Wolff '82])

(DLP)
$$\min_{\boldsymbol{x} \geq 0} \qquad \sum_{\ell,M} \sum_{j \in M} \gamma_j \cdot c_j \cdot x_M^{\ell} \\
\text{s.t.} \qquad (x_M^{\ell})_{M,\ell} \in \mathcal{K} \\
\sum_{\ell} \sum_{M} \gamma(M) \cdot x_M^{\ell} \geq \tau^* . \qquad (\mathcal{K}) = \sum_{M} x_M^{\ell-1} = \sum_{M} x_M^{\ell} \cdot (\gamma(M) + \mu \cdot \ell) \\
\sum_{M,\ell} x_M^{\ell} = 1$$

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy has queue length-dependent thresholds δ^ℓ (increasing concave).

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy has queue length-dependent thresholds δ^ℓ (increasing concave).

Theorem 1 [AAS'24]: There exists a Fully Polynomial Time Approximation Scheme for the bi-criteria dynamic matching problem with a single queue. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(\epsilon^{-O(1)} \cdot |\mathcal{I}|^{O(1)}\right)$.

Theorem 1 [AAS'24]: There exists a Fully Polynomial Time Approximation Scheme for the bi-criteria dynamic matching problem with a single queue. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(\epsilon^{-O(1)} \cdot |\mathcal{I}|^{O(1)}\right)$.

Proof: Primal-dual algorithm

- \circ Exponential queue lengths \Longrightarrow Polynomial truncation (sensitivity analysis)
- \circ Exponential matching sets \Longrightarrow Separation in the dual

o Small networks: $n \leq \Upsilon$

 \circ Small networks: $n \leq \Upsilon$ (*m* arbitrary)

- o Small networks: $n \leq \Upsilon$
- o "pigeons fly with pigeons, hawkes fly with hawkes"

- o Small networks: $n \leq \Upsilon$
- o "pigeons fly with pigeons, hawkes fly with hawkes"

- o Small networks: $n \leq \Upsilon$
- o "pigeons fly with pigeons, hawkes fly with hawkes"

scarce servers ⇔ infrequent customers

abundant servers \Leftrightarrow frequent customers

- o Small networks: $n \leq \Upsilon$
- o "pigeons fly with pigeons, hawkes fly with hawkes"

scarce servers ⇔ infrequent customers > abundant servers ⇔ frequent customers

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \sum_{i \in \mathcal{S}^{\mathrm{s}}} \sum_{\boldsymbol{M},j \in M_{i}} \gamma_{j} c_{i,j} \cdot x_{\mathbf{M}}^{\boldsymbol{\ell}} \quad + \quad \sum_{i \in \mathcal{S}^{\mathrm{a}}} \sum_{j \in [m]} \gamma_{j} c_{i,j} \cdot y_{i,j} \\ s.t. \qquad \dots$$

A tale of two timescales

Small networks

Theorem 2 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching problem for small networks $n \leq \Upsilon$. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(\epsilon^{-\Upsilon} \cdot |\mathcal{I}|^{O(1)}\right)$.

Theorem 3 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching problem for Euclidean networks. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(g(\epsilon,d)\cdot |\mathcal{I}|^{O(1)}\right)$.

Theorem 3 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching problem for Euclidean networks. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(g(\epsilon,d)\cdot |\mathcal{I}|^{O(1)}\right)$.

o Euclidean networks: embedded in fixed-dimensional Euclidean space

o Euclidean networks: embedded in fixed-dimensional Euclidean space

Kidney transplants: ABO-compatibility [AR, '21]

Theorem 3 [AAS'24]: There exists an FPTAS for the bi-criteria dynamic matching problem for Euclidean networks. For each $\epsilon \in (0,1)$, we compute a $(1+\epsilon)$ -approximate policy in time $O\left(g(\epsilon,d)\cdot |\mathcal{I}|^{O(1)}\right)$.

- o Euclidean graphs: embedded in fixed-dimensional Euclidean space
- o Dimension can be "small": ride-hailing ($d\sim2-4$), kidney exchange ($d\sim10$)

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	near-optimal FPTAS

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	near-optimal FPTAS
Small network	-	near-optimal FPTAS

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	near-optimal FPTAS
Small network	_	near-optimal FPTAS
Spatial network	3-approx. (metric) [AS, '22]	near-optimal FPTAS (Euclidean)

rare in the matching literature ©

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	near-optimal FPTAS
Small network	_	near-optimal FPTAS
Cost network	3-approx. (metric) [AS, '22]	near-optimal PTAS (Euclidean)

	Competitive Ratio	Approximation Ratio
Reward network	(1-1/√e)≈0.393 [PW,'24]	(1-1/e)-approx. [AS, '22]

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	near-optimal FPTAS
Small network	_	near-optimal FPTAS
Cost network	3-approx. (metric) [AS, '22]	near-optimal PTAS (Euclidean)

	Competitive Ratio	Approximation Ratio
Reward network	(1-1/√e)≈0.393 [PW,'24]	(1-1/e)-approx.

	Static	Adaptive
Single queue	0.656-approx. [KSSW, '22]	
Small network	_	near-optimal FPTAS
Cost network	3-approx. (metric) [AS, '22]	near-optimal PTAS (Euclidean)

	Competitive Ratio	Approximation Ratio
Reward network	(1-1/√e)+ <i>ϵ</i> ≈0.393+ <i>ϵ</i>	(1-1/e+ <i>ϵ</i>)-approx.

Amanihamedani, Aouad, Pollner, and Saberi ['24]

Take-aways

- o Dynamic matching with abandonment for thick/thin markets (1 no scaling)
- Surprising tractability: Euclidian networks, small networks
- o LPs for adaptive policies: a hybrid LP framework
- o Simpler policies? In follow-up work, more fine-grained analysis of correlations

Thank you, questions?

maouad@mit.edu

Soon on arXiv

Appendix

Open questions

- o Breaching 1-1/e for (single-unit) matching in AS ['22]?
- o The hardness of approximation bounds?
- o Cost-minimization is hard...
 - Heterogeneous server patience with a single customer?
 - Approximations for matching rewards waiting costs?

PROOF OUTLINE THEOREM 3

Step 1 (outline): Localized matching

Step 2 (outline): Reduction to DLP via clustering

Cluster servers and customers: Each cell has at most $\frac{1}{\epsilon}$ types (pprox small # types)

MULTIVARIATE DLP

o PASTA property [Wolff '82]: the arrivals are independent of the state

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

$$\min_{\substack{x \geq 0}} \sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$
 s.t.
$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$
 queue-adapted process

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

$$(DLP)$$

$$\min_{\boldsymbol{x} \geq 0} \sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$
s.t.
$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$

$$\sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$

$$(\mathcal{P}_i) \begin{cases} \lambda_i \cdot \sum_{S} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^q \cdot (\gamma(S) + \mu_i \cdot q) \\ \sum_{S,q} x_{i,S}^q = 1 \end{cases}$$

$$\text{queue-adapted process}$$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

(DLP)

$$\min_{m{x} \geq 0}$$

s.t.

$$\sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$
$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$

no contention

$$(\mathcal{P}_i) \begin{cases} \lambda_i \cdot \sum_{S} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^q \cdot (\gamma(S) + \mu_i \cdot q) \\ \forall S, q \end{cases}$$

$$\sum_{S,q} x_{i,S}^q = 1$$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

(DLP)
$$\min_{\boldsymbol{x} \geq 0} \qquad \sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q \\
\text{s.t.} \qquad (x_{i,S}^q)_{S,q} \in \mathcal{P}_i \\
\sum_{i,q} \sum_{S \subseteq [m]: \atop j \in S} x_{i,S}^q \leq 1, \quad \forall j$$

$$(\mathcal{P}_i) \qquad \lambda_i \cdot \sum_{S} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^q \cdot (\gamma(S) + \mu_i \cdot q) \\
\forall S, q \\
\sum_{S,q} x_{i,S}^q = 1$$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

(DLP)

$$\min_{\boldsymbol{x} \geq 0}$$

s.t.

$$\sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$

$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$

$$\sum_{i,q} \sum_{S \subseteq [m]: \atop i \in S} x_{i,S}^q \le 1 , \quad \forall j$$

throughput target

$$\sum_{i,S,q} \sum_{j \in S} \gamma_{j} \cdot c_{i,j} \cdot x_{i,S}^{q}
(x_{i,S}^{q})_{S,q} \in \mathcal{P}_{i}
\sum_{i,q} \sum_{\substack{S \subseteq [m]: \\ j \in S}} x_{i,S}^{q} \leq 1, \quad \forall j$$

$$(\mathcal{P}_{i})$$

$$\sum_{S,q} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^{q} \cdot (\gamma(S) + \mu_{i} \cdot q)
\forall S, q$$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

(DLP) $\min_{\boldsymbol{x} \geq 0} \qquad \sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q \\
\text{s.t.} \qquad (x_{i,S}^q)_{S,q} \in \mathcal{P}_i \\
\sum_{i,q} \sum_{\substack{S \subseteq [m]: \\ j \in S}} x_{i,S}^q \leq 1 , \quad \forall j \\
\sum_{S,q} x_{i,S}^q = 1$ $\sum_{i,q} \sum_{S \subseteq [m]: \\ \gamma(S) \cdot x_{i,S}^q \geq \tau^* .$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$ stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

$$\min_{\substack{i,S,q \ j \in S}} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$
s.t.
$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$

$$\sum_{\substack{i,q \ S \subseteq [m]: \\ j \in S}} x_{i,S}^q \le 1, \quad \forall j$$

$$\sum_{i,S,q} \sum_{j \in S} \gamma_{j} \cdot c_{i,j} \cdot x_{i,S}^{q}$$

$$(x_{i,S}^{q})_{S,q} \in \mathcal{P}_{i}$$

$$\sum_{i,q} \sum_{\substack{S \subseteq [m]: \\ j \in S}} x_{i,S}^{q} \leq 1 , \quad \forall j$$

$$(\mathcal{P}_{i})$$

$$\sum_{S,q} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^{q} \cdot (\gamma(S) + \mu_{i} \cdot q)$$

$$\forall S, q$$

$$\sum_{S,q} x_{i,S}^{q} = 1$$

 $\sum_{i,q} \sum_{S \subseteq [m]} \gamma(S) \cdot x_{i,S}^q \geq \tau^* \; . \quad \bigg| \; + \text{ some other polymatroid constraints! } \odot$

- o PASTA property [Wolff '82]: the arrivals are independent of the state
- o Decision variable $x_{i,S}^q$: stationary probability that q servers of type i are waiting and the optimal policy is about to match them with a customer in S

$$\min_{\boldsymbol{x} \geq 0} \sum_{i,S,q} \sum_{j \in S} \gamma_j \cdot c_{i,j} \cdot x_{i,S}^q$$
s.t.
$$(x_{i,S}^q)_{S,q} \in \mathcal{P}_i$$

$$\sum_{i,q} \sum_{\substack{S \subseteq [m]: \\ j \in S}} x_{i,S}^q \leq 1, \quad \forall j$$

$$\sum_{i,q} \sum_{\substack{S \subseteq [m]: \\ j \in S}} \gamma(S) \cdot x_{i,S}^q \geq \tau^*.$$

$$(\mathcal{P}_i) \begin{cases} \lambda_i \cdot \sum_{S} x_{i,S}^{q-1} = \sum_{S} x_{i,S}^q \cdot (\gamma(S) + \mu_i \cdot q) \\ \forall S, q \end{cases}$$

$$\sum_{S,q} x_{i,S}^q = 1$$

Fact: DLP is tighter [KSSW'22] [YV'24]

Romeijn et al. ['92] (transversality)

$$\alpha_{i} + \sum_{j \in S} \gamma_{j} \cdot \left(\delta_{i}^{q} + \theta - c_{i,j} - \frac{\beta_{j}}{\gamma_{j}}\right) \leq \lambda_{i} \cdot \delta_{i}^{q+1} - \mu_{i} \cdot q \cdot \delta_{i}^{q} \quad \forall i, S, q$$

$$\alpha_{i} \leq \lambda_{i} \cdot \delta_{i}^{1}, \quad \delta_{i}^{q} \leq 0, \quad \theta, \beta_{i} \geq 0$$

Lemma [AAS'24]: DLP dual describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

Lemma [AAS'24]: DLP dual describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

- o Matching set: $S_i^{-q} \subseteq S_{i,q}^* \subseteq S_i^{+q}$
- o Thresholds on reduced costs:

$$S_i^{-q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* < \delta_i^{q*} \right\} \text{ and } S_i^{+q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* \le \delta_i^{q*} \right\}$$

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

- o Matching set: $S_i^{-q} \subseteq S_{i,q}^* \subseteq S_i^{+q}$
- o Thresholds on reduced costs:

$$S_i^{-q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* < \delta_i^{q*} \right\} \text{ and } S_i^{+q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* \le \delta_i^{q*} \right\}$$

reduced cost

reduced cost

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

- o Matching set: $S_i^{-q} \subseteq S_{i,q}^* \subseteq S_i^{+q}$
- o Thresholds on reduced costs:

$$S_i^{-q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* < \underbrace{\delta_i^{q*}} \right\} \text{ and } S_i^{+q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* \leq \underbrace{\delta_i^{q*}} \right\}$$

thresholds =marginal costs

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

- o Matching set: $S_i^{-q} \subseteq S_{i,q}^* \subseteq S_i^{+q}$
- o Thresholds on reduced costs:

$$S_i^{-q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \underbrace{\theta^*}_{i} < \delta_i^{q*} \right\} \text{ and } S_i^{+q} = \left\{ j \in [m] : c_{i,j} + \underbrace{\beta_j^*}_{\gamma_j} - \underbrace{\theta^*}_{i} \le \delta_i^{q*} \right\}$$

throughput reward

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

- o Matching set: $S_i^{-q} \subseteq S_{i,q}^* \subseteq S_i^{+q}$
- o Thresholds on reduced costs:

$$S_i^{-q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* < \delta_i^{q*} \right\} \text{ and } S_i^{+q} = \left\{ j \in [m] : c_{i,j} + \frac{\beta_j^*}{\gamma_j} - \theta^* \le \delta_i^{q*} \right\}$$

shadow price (contention)

Lemma [AAS'24]: DLP describes weakly coupled average-cost MDPs, where an optimal policy is characterized by queue length-dependent thresholds δ_i^{q*} .

Lemma [AAS'24]: Thresholds $(\delta_i^{q*})_q$ are monotone increasing and concave.

"Reasonable" adaptive policies

Can we solve (DLP) efficiently?

Can we solve (DLP) efficiently?

Theorem 1 [AAS'24]: There is a fully polynomial-time approximation scheme for D-LP.

Can we solve (DLP) efficiently?

Theorem 1 [AAS'24]: There is a fully polynomial-time approximation scheme for D-LP.

Proof ideas:

- 1. State space collapse: limited adaptivity
- 2. Efficient separation oracle: sliding ellipsoid, using both primal & dual

TRUNCATION LEMMA

o **Definition**: A Q-bounded solution uses up to Q agents in each queue.

- o **Definition**: A Q-bounded solution uses up to Q agents in each queue.
- o An instance is (Q,ϵ) -adapted if any solution's matching rates can be approximated by some Q-bounded solution within factor 1- ϵ .

- \circ **Definition**: A Q-bounded solution uses up to Q agents in each queue.
- o An instance is (Q,ϵ) -adapted if any solution's matching rates can be approximated by some Q-bounded solution within factor 1- ϵ .
- o Easy upper bound:

$$Q = O\left(\log\left(\frac{\tau_{\max}}{\epsilon\tau^*}\right) \cdot \left(\max_i \frac{\lambda_i}{\mu_i}\right)\right)$$

- \circ **Definition**: A Q-bounded solution uses up to Q agents in each queue.
- o An instance is (Q,ϵ) -adapted if any solution's matching rates can be approximated by some Q-bounded solution within factor 1- ϵ .
- o Easy upper bound:

$$Q = O\left(\log\left(\frac{\tau_{\max}}{\epsilon \tau^*}\right) \cdot \left(\max_i \frac{\lambda_i}{\mu_i}\right)\right)$$

Lemma [AAS'24]: Every instance is $Q = O\left(\log\left(\frac{\tau_{\max}}{\epsilon \tau^*}\right)\right)$, ϵ -adapted.

Step 1 - Sensitivity

Sensitivity: we can inflate, deflate each rates by $O(\epsilon)$ -fraction with small loss.

Step 2 – Distribution design problem

Step 2 – Distribution design problem

CRS REDUCTION-REWARDS SETTING

Main algorithmic results

Corollary 1 [AAS'24]: There is an FPTAS for the single-server setting.

Theorem 2 [AAS'24]: The cost-throughput problem on d-Euclidan graphs with uniform reneging rates can be approximated within factor $1 - \epsilon$ in time poly $(\epsilon^{-d}Q, |\mathcal{I}|)$.

Theorem 3 [AAS'24]: There exists an online rounding of DLP that is (1-1/e)-approximate (lossless reduction to offline contention resolution).

Correlated LP-rounding approach [AS, '22]

Servers

Correlated LP-rounding approach [AS, '22]

Compatibility-sets = Pooling effects

Correlated LP-rounding approach [AS, '22]

Reduction to contention resolution scheme

Vondrák et al. ['11]: For any matroid and any feasible $x \in \mathcal{P}_x$, there exists an efficient (1-1/e) – balanced contention resolution scheme.

(choosing item i with proba 1-1/e conditional on being independently sampled with proba x_i)

Reduction to contention resolution scheme

Vondrák et al. ['11]: For any matroid and any feasible $x \in \mathcal{P}_x$, there exists an efficient (1-1/e) – balanced contention resolution scheme.

(choosing item i with proba 1-1/e conditional on being independently sampled with proba x_i)

Algorithmic recipe

- 1. Approximately solve DLP
- 2. Upon an arrival of type j, independently draw server requests with probability $(x_{i,S}^{Q_i(t)*})_{i,S}$
- 3. Run CRS(j) on requests to match
- 4. Discard the unused requests.

Reduction to contention resolution scheme

Vondrák et al. ['11]: For any matroid and any feasible $x \in \mathcal{P}_x$, there exists an efficient (1-1/e) – balanced contention resolution scheme.

(choosing item i with proba 1-1/e conditional on being independently sampled with proba x_i)

Algorithmic recipe

- 1. Approximately solve DLP
- 2. Upon an arrival of type j, independently draw server requests with probability $(x_{i,S}^{Q_i(t)*})_{i,S}$
- 3. Run CRS(j) on requests to match
- 4. Discard the unused requests.

Fact: Discarding induces correlations 🖰

Continuous-time discarding

Continuous-time discarding

Continuous-time discarding

