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Refugee Resettlement: Background 

o 35.3 million refugees worldwide:
• Syria 13.5 million

• Ukraine 12.6 million

• Venezuela 10.2 million

• Afghanistan 9.7 million

• Palestine 6.1 million (late 2023)



Refugee Resettlement: Background 

Refugee resettlement: An international

effort for a durable solution 

• Relocate refugees to host countries

• Finding them a new home

• Finding them a new job 
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United Nations High 
Commissioner for Refugees

Referred to
host countries

Largest hosts: 

Most resettlements: 

United States Refugee Admissions Program (USRAP)

Refugee resettlement: An international
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• Finding them a new home

• Finding them a new job 



Refugee Resettlement in the U.S. 

1. Church World Service (CWS)

2. Ethiopian Community Development Council (ECDC)

3. Episcopal Migration Ministries (EMM)

4. Hebrew Immigrant Aid Society (HIAS)

5. International Rescue Committee (IRC)

6. US Committee for Refugees and Immigrants (USCRI)

7. Global Refuge 

(formerly Lutheran Immigration and Refugee Services (LIRS))

8. United States Conference of Catholic Bishops (USCCB)

9. World Relief Corporation (WR)

10. Bethany Christian Services

Non-profit Resettlement Partners of the U.S. Government  

20k-50k resettlement cases 



Dynamics of  Refugee Resettlement

Case arrives at 

host country
Case is assigned 

to a locality within 

host country

Outcomes observed 
(e.g. employment status 

after X days/years)

Constraints

• Locality capacity constraints (N people/year)

• Family ties

• Medical/educational constraints

US, Netherlands, Switzerland, Norway, Sweden, etc.

Resettlement agency



Resettlement Locations



Location Matters
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The initial placement of 

a refugee family within 

a host country has a 

significant impact on 

their future success

(Bansak et al. 2018)



Impact of Locations Varies Across Cases



Impact of Locations Varies Across Cases

Opportunity: 

Improving outcomes through 

data-driven algorithmic 

assignment 



Refugee Resettlement: Value of Algorithmic Assignment

• 36.4 million refugees as of 2023 (UNHCR, 2023)

• Refugee resettlement program: relocate refugees to host country 

– Important decision: initial geographic placement has a profound impact on economic outcome

• Opportunity: improvement through data-driven algorithmic assignment 

Predict employment outcomes

through ML models 

Recommend a location

through optimization algorithm    

(Bansak et al. ‘18)



Refugee Resettlement: Value of Algorithmic Assignment

• 36.4 million refugees as of 2023 (UNHCR, 2023)

• Refugee resettlement program: relocate refugees to host country 

– Important decision: initial geographic placement has a profound impact on economic outcome

• Opportunity: improvement through data-driven algorithmic assignment 

Predict employment outcomes

through ML models 

Recommend a location

through optimization algorithm    

Through collaboration with a major U.S. resettlement agency, 

we design placement algorithm to incorporate our partner’s novel operational considerations

(Bansak et al. ‘18)

Our paper 



Refugee Resettlement as Dynamic Matching

One year

Week 1 Week 2 …

Refugee 

Arrival
Affiliate

Phoenix

Atlanta

• Dynamic matching: refugee matched upon arrival without 

knowing future 
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Refugee Resettlement as Dynamic Matching

One year

Week 1 Week 2 …

0.5

Refugee 

Arrival
Affiliate

Phoenix

Atlanta
Employment

Probability

• Dynamic matching: refugee matched upon arrival without 

knowing future 

➢ Maximize employment outcome s.t. resource constraint

• Novel aspect: post-allocation service



Novel Aspect: Post-Allocation Service 

One year

Week 1 Week 2 …

0.5

Refugee 

Arrival

Annual Quota
Affiliate

Phoenix

Atlanta
Employment

Probability

Service Providers

Post-Allocation service

Key operational consideration: avoid congestion for post-allocation services

(e.g., translators)



Need for “distribution-free” design 

• Dynamic matching: refugee matched upon arrival without knowing future 

Current year

Week 1 Week 2

? ?

Week 3

➢ Existing proposal: simulate future from data of past years (Bansak & Paulson ’22, Ahani et al. ’22)
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Need for “distribution-free” design 

• Dynamic matching: refugee matched upon arrival without knowing future 

Current year

Week 1 Week 2 Week 3

➢ Existing proposal: simulate future from data of past years (Bansak & Paulson ’22, Ahani et al. ’22)

Data of past years 

(“distributional” knowledge)

➢ Not robust due to across year variations in the refugee pool composition! 



Evidence of across year variation

✓Tied cases: a pre-determined target affiliate (family reunification policy)



Evidence of across year variation

Normalized # of tied cases varies significantly across the years… but less so within a year
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Normalized # of tied cases varies significantly across the years… but less so within a year



Research Question & Contribution

Research Question 

How to design a dynamic matching algorithm that optimizes for employment 
outcome, given specific “operational considerations”? 

(1) Respects annual quota & avoid congestion for post-allocation service

(2) Does not require distributional knowledge (e.g., past years’ data)



Research Question & Contribution

Contribution

(1) Develop a model of dynamic matching with post-allocation service

(2) Design new learning-based algorithms
✓  Distribution-free, near-optimal performance guarantee, & computationally fast 

(3) Case study on refugee resettlement data 

✓ Improving performance over existing proposals

Research Question 

How to design a dynamic matching algorithm that optimizes for employment 
outcome, given specific “operational considerations”? 

(1) Respects annual quota & avoid congestion for post-allocation service

(2) Does not require distributional knowledge (e.g., past years’ data)



Model: Dynamic Matching with Post-Allocation Service
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𝜖 ≥ 0 = service slack  𝜌𝑖 = capacity ratio

Note: (1) endogenous arrival rate to queues!

          (2) 𝜌𝑖 = baseline arrival rates
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𝑏𝑡,𝑖 = 𝑏𝑡−1,𝑖 + 𝑧𝑡,𝑖 − 𝑠𝑡,𝑖 +

𝜖 = service slack  

• Objective = total employment −𝛼 ×(total over-allocation) −𝛾 × (time-average backlog)

s.t.  No over-allocation can occur from free case

𝜌𝑖 = capacity ratio

Objective = 
𝑀𝑎𝑥𝒛𝑡
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, ∀𝑡 ∈ 𝑇 , ∀𝑖 ∈ [𝑚]

Total employment Over-allocation

(due to tied cases)

Average backlog

(due to “bursty” matching)

Hard constraint: no over-allocation can occur from free cases

Regret = sup
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑑𝑖𝑠𝑡

𝐸 Optimal "Offline" − 𝐸[𝐴𝐿𝐺]

Goal: online algorithm with 𝑜(𝑇) regret 
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• High-level Idea: learn (update) the dual variables & design a score-based matching rule 
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𝑏𝑡+1,𝑖 ≥  𝑏𝑡,𝑖 + 𝑧𝑡𝑖 − 𝑠𝑡,𝑖, 𝑏𝑡+1,𝑖 ≥ 0
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Algorithm Design

• High-level Idea: learn (update) the dual variables & design a score-based matching rule 
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➢ Time-varying 𝜷𝒕
∗
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Algorithm Design

Congestion-aware (CA) algorithm

High-level: use backlog information to 

penalize bursty matching while learning & 

optimizing 

▪ Directly learning time-invariant dual variables 

𝜽∗, 𝝀∗  via online learning

▪ Indirectly learning time-variant dual variables

▪ Connections between backlog dynamics & sub-

gradient descent in a surrogate dual problem →

(scaled) current backlog = dual estimate!

• High-level Idea: learn (update) the dual variables & design a score-based matching rule 

➢ Time-invariant 𝜽∗, 𝝀∗  → direct learning via adversarial online learning (& stationary arrivals)

➢ Time-varying 𝜷𝒕
∗

𝑡=1
𝑇 : too many duals to learn!

(Agrawal & Devanur ’14, Balseiro et al. ’21)



Algorithm Design

Congestion-aware (CA) algorithm Congestion-oblivious (CO) algorithm

High-level: use backlog information to 

penalize bursty matching while learning & 

optimizing 

▪ Directly learning time-invariant dual variables 

𝜽∗, 𝝀∗  via online learning

▪ Indirectly learning time-variant dual variables

▪ Connections between backlog dynamics & sub-

gradient descent in a surrogate dual problem →

(scaled) current backlog = dual estimate!

High-level: control backlog by ensuring fast and 

high prob. convergence of endogenous arrival 

rates while learning & optimizing

▪ Surrogate-primal program ignore backlog

▪ Directly learning time-invariant dual variables 
𝜽∗, 𝝀∗  via online learning …

▪ but this time, with time-varying learning rates

which we prove results in high-probability last-

iterate convergence of both duals and 

endogenous arrival rates!

• High-level Idea: learn (update) the dual variables & design a score-based matching rule 

➢ Time-invariant 𝜽∗, 𝝀∗  → direct learning via adversarial online learning (& stationary arrivals)

➢ Time-varying 𝜷𝒕
∗

𝑡=1
𝑇 : too many duals to learn!

(Agrawal & Devanur ’14, Balseiro et al. ’21)



Congestion-aware (CA) Algorithm

Dual

Primal

Free 
case?

: affiliate maximizing : target affiliate

Update the dual variables:

Yes No 

o Affiliate 𝑖 chosen ⇒ dual variables ↑ 

o Affiliate 𝑖 not chosen ⇒ dual variables ↓

High-level: use backlog information to penalize 

bursty matching while learning & optimizing 

▪ Directly learning time-invariant dual variables 

𝜽∗, 𝝀∗  via multiplicative update rules

▪ Indirectly learning time-variant dual variables 

𝜷𝒕
∗

𝑡=1
𝑇  : projected gradient descent 

      = scaled current backlog 



Theoretical Results 

Congestion-aware (CA) algorithm

Theorem [Main Result I]
For ∀ 𝜖 ≥ 0, CA algorithm obtains a regret
 

min 𝒪 𝑇 +
𝛾

𝜖
, 𝒪 𝛾𝑇

Proposition [Lower-bound I] If 𝛾 = Ω(𝑇), no 

online algorithm can achieve 𝑜(𝑇) regret



Theoretical Results 

Critical point

Near critical StableAlmost stable

Congestion-aware (CA) algorithm Congestion-oblivious (CO) algorithm

Theorem [Main Result I]
For ∀ 𝜖 ≥ 0, CA algorithm obtains a regret
 

min 𝒪 𝑇 +
𝛾

𝜖
, 𝒪 𝛾𝑇

Theorem [Main Result II]
If 𝜖 = Ω(1), CO algorithm obtains a regret of:
 

𝒪 𝑇 +
𝛾

𝜖

Proposition [Lower-bound I] If 𝛾 = Ω(𝑇), no 

online algorithm can achieve 𝑜(𝑇) regret

Proposition [Lower-bound II] If 𝜖 = 𝒪 1/ 𝑇  & 

𝛾 = Ω( 𝑇), CO algorithm cannot achieve 𝑜(𝑇) regret



Theoretical Results 

Critical point

Near critical StableAlmost stable

Congestion-aware (CA) algorithm Congestion-oblivious (CO) algorithm

Theorem [Main Result I]
For ∀ 𝜖 ≥ 0, CA algorithm obtains a regret
 

min 𝒪 𝑇 +
𝛾

𝜖
, 𝒪 𝛾𝑇

Theorem [Main Result II]
If 𝜖 = Ω(1), CO algorithm obtains a regret of:
 

𝒪 𝑇 +
𝛾

𝜖

Proposition [Lower-bound I] If 𝛾 = Ω(𝑇), no 

online algorithm can achieve 𝑜(𝑇) regret

Proposition [Lower-bound II] If 𝜖 = 𝒪 1/ 𝑇  & 

𝛾 = Ω( 𝑇), CO algorithm cannot achieve 𝑜(𝑇) regret

Takeaways:

• CA achieves sublinear regret whenever possible

• CO cannot achieve sublinear regret in near critical regime & 𝛾 “sufficiently” large 



Theoretical Results 

Critical point

Near critical StableAlmost stable

Congestion-aware (CA) algorithm Congestion-oblivious (CO) algorithm

Theorem [Main Result I]
For ∀ 𝜖 ≥ 0, CA algorithm obtains a regret
 

min 𝒪 𝑇 +
𝛾

𝜖
, 𝒪 𝛾𝑇

Theorem [Main Result II]
If 𝜖 = Ω(1), CO algorithm obtains a regret of:
 

𝒪 𝑇 +
𝛾

𝜖

Proposition [Lower-bound I] If 𝛾 = Ω(𝑇), no 

online algorithm can achieve 𝑜(𝑇) regret

Proposition [Lower-bound II] If 𝜖 = 𝒪 1/ 𝑇  & 

𝛾 = Ω( 𝑇), CO algorithm cannot achieve 𝑜(𝑇) regret

High-level Proof Ideas:
• CA: combines adversarial online learning & drift-analysis 

• CO: establishes negative drift for backlog w.h.p. by proving high-probability last-iterate 

convergence of dual variables (Harvey et al. ’19)
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✓ Distribution-free (⇒ robust)

✓ Tied cases & over-allocation

✓ Theoretical guarantee 

✓ Post-allocation services

(→ time-varying nature of 

dual problem) ✓ Reverse order of 

matching & waiting 



Case study

• Data: actual arrival sequence to resettlement agency in Year 2015 

• Benchmarks: (1) Actual    (2) Sampling (Bansak & Paulson ‘22)          (3) CA (our algorithm)

(actual historical 

placement)

(simulate future arrival patterns 

from previous year’s data)

(capacity = actual # of refugees resettled)

✓ Significant improvement upon current practice & existing proposal 

CAActual Sampling CAActual Sampling CAActual Sampling



Case study 

[this paper] Existing Proposals

Robust (Free of history-based projection)? Yes No

Computationally fast? Yes No

Actual

[BP’22]
This paper

o Other practical benefits:

We can improve one outcome without 

hurting the other two!



Conclusion & future directions

Summary 

• Dynamic matching with post-allocation service

– Refugee resettlement: helping refugees & avoiding overburdening the service providers

• Developing learning-based algorithms

– Distribution-free & near-optimal performance guarantee 

– Performance improvement over existing proposals + other practical benefits (check our paper!) 

Future directions

• Beyond refugee matching: other applications of managing post-allocation service & congestion in 

healthcare (e.g. Shi et al. (2016); post-(bed) allocation service) & humanitarian services 



Thank you!

Check out the paper for more details!
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