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* Real-World Examples:
* Labor Markets: Job seekers and employers refine preferences.

* Medical Residency Matching: Doctors and hospitals engage in multiple interviews to
optimize placements.

* Academic Job Market: Faculty positions and applicants mutually assess fit through
interviews.

* Why Interviews?

* In two-sided markets, agents are often uncertain about their preferences.

* Interviews provide an opportunity to refine preferences by gathering additional information.
* Why Signals?

* Signals help express interest before interviews take place, reducing uncertainty.

* Signals are especially crucial when the number of potential matches is large, allowing for a
more efficient interview process.

* Key Insight:

* Interviews and signals help participants narrow down their choices in complex matching
markets, improving the market efficiency.
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Question: How to design the interview graph so that
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e Post-interview shocks are 1.1.d. ~ A.

Every agent’s pre-interview utilities are 1.1.d. generated;

Every agent’s post-interview utilities are also 1.1.d. generated marginally.
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Moreover, if the market is strongly imbalanced, d > €2(log n) also works.
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Definition (Availability): Fix applicant a, we say a job j 1s available to a on H, if and only 1fj
weakly prefers a to its match in every stable matching on H.

Suppose there exists a job j that a interviews with:
e jis available to a

e a has positive post-interview shock w.r.t. j with A, ; > 0

Claim: a must strictly prefers its match to all uninterviewed jobs.

To prove interim stability:

o for every applicant a, determine if there exists a job j with A_ . > O that is available to a.
ry app JOO aj



Leveraging over local information

For every applicant a, determine if exists a job j with A, ; > 0 that 1s available to a.

Step 1: truncation on local neighborhood of a:
Step 2: find stable matching on local neighborhood:

Step 3: message-passing on tree
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Step 1: truncation on local neighborhood

e By [crawford’91], when agents are removed from one side of H:
e All remaining agents on the same side are weakly worse off,

e All agents on the opposite side are weakly better off.

H5(a,): 2-hop neighborhood of a;  H;(a,): 3-hop neighborhood of g,
Remove agents on depth 3 Remove agents on depth 4

e Ifmiseven, a; 1s worse off on H,(a;) compared with H, e.g.,

e j; 1s available to a; on H, (a,;) = Jj; 1s available to a; on H.

e Ifmis odd, a, is better off on H,(a,) compared with H, e.g.,
—
e j; 1s available to a; on H = j, 1s available to a; on H _(a,).

Interview graph H

Focus on local
neighborhood
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e The interview graph H is a one-sided random d regular graph;

e Ifw(l) <d < O(Polylog n), the local neighborhood of a with depth O (log n/ (log d Vv loglog n))

on H 1s almost tree-like;

e The stable matching on tree is unique.

A node proposes to its parent,
only 1f it prefers its parent over
all nodes proposed to it.
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Claim: If a node proposes to

(1) ) () its parent, the proposing node
/ must be available to its
parent on the tree.
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(a) The proposing phase. (b) The clean-up phase.
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Step 3: message-passing on tree

e Compute the marginal proposing probability
e Suppose each node proposes to j with probability p

e Since utilities are 1.1.d. = the preferences of j are uniformly generated.
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1

P(j proposingtoa) = [E

1 + Number of proposals j receives

1
1 + Binom(d, p) ]

B 1_(1 _p)d+1
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Degree d

e By truncation method on H, for odd number m,
e P(jisavailabletoaon H, (a)) < P(Jis available to a on H ) < P(j is available to a on H,(a) );

o Since A, ; are 1.1.d., upper & lower bound of P(3 a job j with A, ; > O that is available to a on H);
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Simulation results

Applicants and jobs within at least one interim blocking pair Applicants and jobs within at least one interim blocking pair

Total count

under applicant-signaling with 800 =n_ = 1200, n,= 1000,
d=10, g =NI(0,1), and 04 =U[-1,1]

under applicant-signaling with n, =n;=1000,
l1=d=30, 05 =NI(0,1), and D4 =U[-1,1]
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800 850 900

10 12 14 16 18 20
d: number of signals

Applicant-signaling
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Simulation results

Applicants and jobs within at least one interim blocking pair
with n,=n;=1000,
l1=d=20, 0g=N(0,1) and D4 = §p

Applicants and jobs within at least one interim blocking pair
with n,=n;=1000,
1=d=20, 0g =6p, and D4 =U[-1,1]

Total count
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/ LA " .\ -.-= Matched jobs
400 - / | | ‘N 4 -
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d: number of signals d: number of signals

Both-side-signaling
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Conclusion and open problems

e Conclusion
e Study single-tiered and multi-tiered market

* How signaling mechanism, market structure and number of signals impact on the
achievement of almost interim stability and perfect interim stability.

e Methodology:

* Develop a message-passing algorithm that efficiently determines interim stability and
match outcomes by leveraging their local neighborhood structure

e Open problems:
* Vertical heterogeneity;
* Sequential signaling;
* Application of message-passing algorithm to real-world datasets;
* Many-to-many matchings to construct interview graph;

* Preferences generated from mallow distribution.

* Draft is available upon request (hysophie@upenn.edu)
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Proof sketch for both-side signaling (sparse)

* Suppose there are no post-interview shocks
e Given d = o(logn), the signals sent out by the agent is almost disjoint with the signals she receives.
* Even after interview, agent strictly prefer the candidates she signals to > candidates signals to her.
* Suppose we run applicants proposing DA.
* Phase 1: applicants first propose to the jobs that they signal to.
Since d = o(log n), there will be a non-negligible fraction of agents remain unmatched.
* Phase 2: unmatched applicant start to propose to jobs that send signal to her
Jobs prefer the new proposals, since those are the signals sent out by them

—> triggers a long rejection chain
Incentive to — constant fraction of applicants are matched with jobs that signal to them
deviate — constant fraction of jobs are matched with applicants that signal to them

\/

S o

Signals sent by & > S1gnals received by &




Proof sketch for sparse signaling regime

* Suppose there are no pre-interview shocks:
* After interview, preferences over its neighbors are 1.1.d. generated;

* Similar as the one-side signaling.
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