From Signaling to Interviews in Random Matching Market

Sophie Yu

The Wharton school of the University of Pennsylvania

Joint work: Maxwell Allman, Itai Ashlagi (Stanford), Amin Saberi (Stanford)

• Real-World Examples:

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.
- Why Interviews?

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.
- Why Interviews?
 - In two-sided markets, **agents are often uncertain** about their preferences.
 - Interviews provide an opportunity to refine preferences by gathering additional information.

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.
- Why Interviews?
 - In two-sided markets, **agents are often uncertain** about their preferences.
 - Interviews provide an opportunity to **refine preferences** by gathering additional information.
- Why Signals?

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.
- Why Interviews?
 - In two-sided markets, **agents are often uncertain** about their preferences.
 - Interviews provide an opportunity to refine preferences by gathering additional information.
- Why Signals?
 - Signals help express interest before interviews take place, reducing uncertainty.
 - Signals are especially crucial when the number of potential matches is large, **allowing for a more efficient interview process**.

- Real-World Examples:
 - Labor Markets: Job seekers and employers refine preferences.
 - Medical Residency Matching: Doctors and hospitals engage in multiple interviews to optimize placements.
 - Academic Job Market: Faculty positions and applicants mutually assess fit through interviews.
- Why Interviews?
 - In two-sided markets, **agents are often uncertain** about their preferences.
 - Interviews provide an opportunity to refine preferences by gathering additional information.
- Why Signals?
 - Signals help express interest before interviews take place, reducing uncertainty.
 - Signals are especially crucial when the number of potential matches is large, **allowing for a more efficient interview process**.
- Key Insight:
 - Interviews and signals help participants **narrow down their choices** in complex matching markets, improving the market efficiency.

$$n = |A| + |J|$$

Applicant *a*'s utility w.r.t. job *j*:

• **Pre**-interview utility: $U_{a,j}^B$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

• Every agent has **pre-interview** utilities w.r.t. every agent on the other side;

- Applicant *a*'s utility w.r.t. job *j*:
- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$
- Job *j*'s utility w.r.t applicant *a*:
- **Pre**-interview utility: $U_{j,a}^B$

refine

- **Post**-interview utility: $U_{j,a}^A$
- Every agent has **pre-interview** utilities w.r.t. every agent on the other side;
- Agents refine utilities through interviews:

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

refine

- **Post**-interview utility: $U_{j,a}^A$
- Every agent has **pre-interview** utilities w.r.t. every agent on the other side;
- Agents refine utilities through interviews:

Pre-interview utilities \implies **post-interview** utilities;

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

refine

- **Post**-interview utility: $U_{j,a}^A$
- Every agent has **pre-interview** utilities w.r.t. every agent on the other side;
- Agents refine utilities through interviews:

Pre-interview utilities \implies **post-interview** utilities;

- Applicant *a*'s utility w.r.t. job *j*:
- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

refine

- **Post**-interview utility: $U_{j,a}^A$
- Every agent has **pre-interview** utilities w.r.t. every agent on the other side;
- Agents refine utilities through interviews:

Pre-interview utilities ⇒ **post-interview** utilities;

• **Final matching** must be a **one to one matching** on the interview graph:

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

refine

• **Post**-interview utility: $U_{j,a}^A$

• Every agent has **pre-interview** utilities w.r.t. every agent on the other side;

• Agents refine utilities through interviews:

Pre-interview utilities ⇒ **post-interview** utilities;

• **Final matching** must be a **one to one matching** on the interview graph: Agents can only be **matched to the agents that they interview with.**

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$ \parallel refine
- **Post-**interview utility: $U_{a,j}^A$

Job *j*'s utility w.r.t applicant *a*:

• **Pre**-interview utility: $U_{j,a}^B$

refine

- **Post**-interview utility: $U_{j,a}^A$
- Every agent has **pre-interview** utilities w.r.t. every agent on the other side;
- Agents refine utilities through interviews:

Pre-interview utilities ⇒ **post-interview** utilities;

• **Final matching** must be a **one to one matching** on the interview graph: Agents can only be **matched to the agents that they interview with.**

A matching on the interview graph is **stable** if there is no **blocking-pair** that

A matching on the interview graph is **stable** if there is no **blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

A matching on the interview graph is **stable** if there is no **blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching

A matching on the interview graph is **stable** if there is no **blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching

Interview graph
Final matching

A matching on the interview graph is **interim stable** if there is no **interim blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching

Interview graph
Final matching

A matching on the interview graph is **interim stable** if there is no **interim blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching \implies interim

Interview graph
Final matching

A matching on the interview graph is **interim stable** if there is no **interim blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching \implies interim

Applicants A

Jobs J

Definition:

• A matching is **perfect interim stable** if it does not have any interim blocking pairs.

Interview graphFinal matching

A matching on the interview graph is **interim stable** if there is no **interim blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching \implies interim

Applicants A

Jobs J

Interview graphFinal matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

A matching on the interview graph is **interim stable** if there is no **interim blocking-pair** that

- They have interviewed each other
- They mutually prefer each other over their current match.

Deferred-Acceptance algorithm on the interview graph \implies stable matching \implies interim

Applicants A

Jobs J

Interview graph
Final matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

Applicants A

Jobs J

Interview graph
Final matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

Question: How to design the interview graph so that

Applicants A

Jobs J

Interview graph
 Final matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

Question: How to design the interview graph so that

- Ensure interim stability
- Reduce market congestion (conducting fewer interviews).

Applicants A

Jobs J

Interview graph
 Final matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

Question: How to design the interview graph so that

- Ensure interim stability
- Reduce market congestion (conducting fewer interviews).

Applicants A

Jobs J

	Interview graph
and a state of the	Final matching

Definition:

- A matching is **perfect interim stable** if it does not have any interim blocking pairs.
- A matching is almost interim stable if it becomes perfect interim stable, when a vanishingly small subset of agents is excluded.

Question: How to design the interview graph so that

- Ensure interim stability
- Reduce market congestion (conducting fewer interviews).

Focus: From signaling to interviews \implies interim stability + reduce congestions

For the talk: we focus on the single-tiered random market

For the talk: we focus on the single-tiered random market

- Single-tiered markets:
 - Market imbalance
 - Signaling mechanisms (short-side, long-side, both-side) =
 Number of signals
 - - Incentive compatibility

- almost interim stability
 perfect interim stability

For the talk: we focus on the single-tiered random market

- Single-tiered markets:
 - Market imbalance
 - Signaling mechanisms (short-side, long-side, both-side) => {

 almost interim stability
 perfect interim stability
 - - Incentive compatibility
- Methodology:
 - Develop a message-passing algorithm that efficiently determines interim stability and match outcomes by leveraging their local neighborhood structure
Our contribution

For the talk: we focus on the single-tiered random market

- Single-tiered markets:
 - Market imbalance
 - Signaling mechanisms (short-side, long-side, both-side) => {

 almost interim stability
 perfect interim stability
 - - Incentive compatibility
- Methodology:
 - Develop a message-passing algorithm that efficiently determines interim stability and match outcomes by leveraging their local neighborhood structure
- We also extend our results to the Multi-tiered markets:
 - Market tiered structure
 - Signaling mechanism based on the tiered structure Number of signals

 - Incentive compatibility

Our contribution

For the talk: we focus on the single-tiered random market

- Single-tiered markets:
 - Market imbalance
 - Signaling mechanisms (short-side, long-side, both-side) => {

 almost interim stability
 perfect interim stability
 - - Incentive compatibility
- Methodology:
 - Develop a message-passing algorithm that efficiently determines interim stability and match outcomes by leveraging their local neighborhood structure
- We also extend our results to the Multi-tiered markets: (not covered in this talk)
 - Market tiered structure
 - Signaling mechanism based on the tiered structure Number of signals
 - - Incentive compatibility

Applicants A

Jobs J

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$
- **Post**-interview utility: $U_{a,i}^A$

Job *j*'s utility w.r.t applicant *a*:

- **Pre**-interview utility: $U_{j,a}^B$
- **Post**-interview utility: $U_{j,a}^A$

Assumption: \forall applicant *a* and job *j*,

• Pre-interview utilities are i.i.d. $\sim \mathbb{B}$ (continuous distribution);

Strict preference

Applicants A

Jobs J

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$
- **Post**-interview utility: $U_{a,j}^A = U_{a,j}^B + A_{a,j} \leftarrow$ Idiosyncratic **post**-interview shock

Job *j*'s utility w.r.t applicant *a*:

- **Pre**-interview utility: $U_{j,a}^B$
- **Post**-interview utility: $U_{j,a}^A = U_{j,a}^B + A_{j,a} \leftarrow$ Idiosyncratic **post**-interview shock

Assumption: \forall applicant *a* and job *j*,

• **Pre**-interview utilities are i.i.d. $\sim \mathbb{B}$ (continuous distribution);

► Strict preference

Applicants A

Jobs J

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$
- **Post**-interview utility: $U_{a,j}^A = U_{a,j}^B + A_{a,j} \leftarrow$ Idiosyncratic **post**-interview shock

Job *j*'s utility w.r.t applicant *a*:

- **Pre**-interview utility: $U_{j,a}^B$
- **Post**-interview utility: $U_{j,a}^A = U_{j,a}^B + A_{j,a} \leftarrow$ Idiosyncratic **post**-interview shock

Assumption: \forall applicant *a* and job *j*,

- Pre-interview utilities are i.i.d. $\sim \mathbb{B}$ (continuous distribution);
- → Strict preference

• **Post**-interview shocks are i.i.d. $\sim A$.

Applicants A

Jobs J

Applicant *a*'s utility w.r.t. job *j*:

- **Pre**-interview utility: $U_{a,j}^B$
- **Post**-interview utility: $U_{a,j}^A = U_{a,j}^B + A_{a,j} \leftarrow$ Idiosyncratic **post**-interview shock

Job *j*'s utility w.r.t applicant *a*:

- **Pre**-interview utility: $U_{j,a}^B$
- **Post**-interview utility: $U_{j,a}^A = U_{j,a}^B + A_{j,a} \leftarrow$ Idiosyncratic **post**-interview shock

Strict preference

Assumption: \forall applicant *a* and job *j*,

- Pre-interview utilities are i.i.d. $\sim \mathbb{B}$ (continuous distribution);
- **Post**-interview shocks are i.i.d. $\sim A$.

Every agent's pre-interview utilities are i.i.d. generated; Every agent's post-interview utilities are also i.i.d. generated marginally.

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

applicant-signaling with d = 2

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

applicant-signaling with d = 2

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

job-signaling with d = 2

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

Both-side signaling: Each agent from both sides signals its top *d* preferred candidates based on the **pre-interview** utilities

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

Both-side signaling: Each agent from both sides signals its top *d* preferred candidates based on the **pre-interview** utilities

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

Both-side signaling: Each agent from both sides signals its top *d* preferred candidates based on the **pre-interview** utilities

Interview graph is formed by including all pairs where at least one party has signaled to the other.

One-side signaling: Each agent on the "chosen" side signals its top d preferred candidates based on the **pre-interview** utilities

Both-side signaling: Each agent from both sides signals its top *d* preferred candidates based on the **pre-interview** utilities

Interview graph is formed by including all pairs where at least one party has signaled to the other.

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Applicants A

Jobs J

Theorem (sparse signaling): $\omega(1) \le d \le O(\operatorname{Poly} \log n)$

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Applicants A

Jobs J

Theorem (sparse signaling): $\omega(1) \le d \le O(\operatorname{Poly} \log n)$

If |A| ≤ (1 + o(1)) |J|, every stable matching on H is almost interim stable w.h.p.;

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d **Theorem (sparse** signaling): $\omega(1) \le d \le O(\operatorname{Poly} \log n)$

- If |A| ≤ (1 + o(1)) |J|, every stable matching on H is almost interim stable w.h.p.;
- If |A| ≥ (1 + Ω(1)) |J|, no stable matching on H is almost interim stable w.h.p., if the post-interview shocks are dominated by the pre-interview utilities, e.g.,
 - \mathbb{B} is normal distribution, \mathbb{A} is any bounded distribution.

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (sparse signaling): $\omega(1) \le d \le O(\operatorname{Poly} \log n)$

- If |A| ≤ (1 + o(1)) |J|, every stable matching on H is almost interim stable w.h.p.;
- If |A| ≥ (1 + Ω(1)) |J|, no stable matching on H is almost interim stable w.h.p., if the post-interview shocks are dominated by the pre-interview utilities, e.g.,
 - \mathbb{B} is normal distribution, \mathbb{A} is any bounded distribution.

For market with **sparse** signaling:

• Weakly imbalanced market, either short-side or long-side signaling

 \implies almost interim stability

• Strongly imbalanced market, only short-side signaling

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (dense signaling): $d = \Omega(\log^2 n)$

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (dense signaling): $d = \Omega(\log^2 n)$

• If |A| < |J|, every stable matching on *H* is perfect interim stable w.h.p.;

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d **Theorem (dense** signaling): $d = \Omega(\log^2 n)$

- If |A| < |J|, every stable matching on *H* is perfect interim stable w.h.p.;
- If |A| = |J|, applicant-optimal stable matching is perfect interim stable w.h.p.;

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (dense signaling): $d = \Omega(\log^2 n)$

- If |A| < |J|, every stable matching on *H* is perfect interim stable w.h.p.;
- If |A| = |J|, **applicant-optimal** stable matching is **perfect** interim stable w.h.p.;
- If |A| > |J|, **no** stable matching on *H* is **perfect** interim stable w.h.p., if the post-interview shocks are dominated by the pre-interview utilities, e.g.,
 - \mathbb{B} is normal distribution, \mathbb{A} is any bounded distribution.

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (dense signaling): $d = \Omega(\log^2 n)$

- If |A| < |J|, every stable matching on *H* is perfect interim stable w.h.p.;
- If |A| = |J|, **applicant-optimal** stable matching is **perfect** interim stable w.h.p.;
- If |A| > |J|, **no** stable matching on *H* is **perfect** interim stable w.h.p., if the post-interview shocks are dominated by the pre-interview utilities, e.g.,
 - \mathbb{B} is normal distribution, \mathbb{A} is any bounded distribution.

For market with **dense** signaling:

- Imbalanced market, only short-side signaling
- Balanced market, either-side-signaling

 \implies perfect interim stability

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **applicant-signaling** with d

Theorem (dense signaling): $d = \Omega(\log^2 n)$

- If |A| < |J|, every stable matching on *H* is perfect interim stable w.h.p.;
- If |A| = |J|, **applicant-optimal** stable matching is **perfect** interim stable w.h.p.;
- If |A| > |J|, **no** stable matching on *H* is **perfect** interim stable w.h.p., if the post-interview shocks are dominated by the pre-interview utilities, e.g.,
 - \mathbb{B} is normal distribution, \mathbb{A} is any bounded distribution.

For market with **dense** signaling:

- Imbalanced market, only short-side signaling
- Balanced market, either-side-signaling

 \implies perfect interim stability

Moreover, if the market is strongly imbalanced, $d \ge \Omega(\log n)$ also works.

Definition (Availability): Fix applicant a, we say a job j is **available** to a on H, if and only if j weakly prefers a to its match in every stable matching on H.

Definition (Availability): Fix applicant *a*, we say a job *j* is **available** to *a* on *H*, if and only if *j* **weakly prefers** *a* **to its match** in **every stable matching** on *H*.

Suppose there exists a job *j* that *a* interviews with:

- *j* is **available** to *a*
- *a* has positive **post-interview** shock w.r.t. *j* with $A_{a,j} \ge 0$

Definition (Availability): Fix applicant a, we say a job j is **available** to a on H, if and only if j weakly prefers a to its match in every stable matching on H.

Suppose there exists a job *j* that *a* interviews with:

- *j* is **available** to *a*
- *a* has positive **post-interview** shock w.r.t. *j* with $A_{a,j} \ge 0$

Claim: *a* must strictly prefers its match to all uninterviewed jobs.

Definition (Availability): Fix applicant *a*, we say a job *j* is **available** to *a* on *H*, if and only if *j* **weakly prefers** *a* **to its match** in **every stable matching** on *H*.

Suppose there exists a job *j* that *a* interviews with:

- *j* is **available** to *a*
- *a* has positive **post-interview** shock w.r.t. *j* with $A_{a,j} \ge 0$

Claim: *a* must strictly prefers its match to all uninterviewed jobs.

To prove interim stability:

• for every applicant *a*, determine if there exists a job *j* with $A_{a,j} \ge 0$ that is available to *a*.

Leveraging over local information

For every applicant *a*, determine if exists a job *j* with $A_{a,j} \ge 0$ that is available to *a*.

Step 1: **truncation** on **local neighborhood** of *a*:

Step 2: find stable matching on local neighborhood:

Step 3: message-passing on tree

Step 1: truncation on local neighborhood

Step 1: truncation on local neighborhood

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

Step 1: truncation on local neighborhood

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

Interview graph H
- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

- $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3
 - If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

- $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3
 - If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3

 $H_3(a_1)$: 3-hop neighborhood of a_1

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3

 $H_3(a_1)$: 3-hop neighborhood of a_1 Remove agents on depth 4

 a_5

 (j_9)

 (j_{10})

 (j_{11})

 (j_{12})

 j_2

 $\begin{bmatrix} a_4 \end{bmatrix}$

 (j_8)

 a_3

 j_7

 $\left(j_{6}\right)$

 j_5

 j_4

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.

 a_2

 a_3

 a_4

 a_5

 a_6

 a_7

 j_1

 j_2

 j_3

 j_4

 j_5

 j_6

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3 $H_3(a_1)$: 3-hop neighborhood of a_1 Remove agents on depth 4

 a_5

 (j_9)

 (j_{10})

 (j_{11})

 (j_{12})

 j_2

 $\begin{bmatrix} a_4 \end{bmatrix}$

 (j_8)

 a_3

 j_7

 $\left(j_{6}\right)$

 j_5

 j_4

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.

 a_2

 a_3

 j_1

 j_2

 j_3

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3 $H_3(a_1)$: 3-hop neighborhood of a_1 Remove agents on depth 4

 a_5

 $\left(j_9 \right)$

 (j_{10})

 (j_{11})

 (j_{12})

 j_2

 a_4

 (j_8)

 a_3

 j_7

 j_6

 j_5

 j_4

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.

• If m is odd, a_1 is better off on $H_m(a_1)$ compared with H, e.g.,

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3 $H_3(a_1)$: 3-hop neighborhood of a_1 Remove agents on depth 4

 a_5

 $\left(j_9 \right)$

 (j_{10})

 (j_{11})

 (j_{12})

 j_2

 $\begin{bmatrix} a_4 \end{bmatrix}$

 (j_8)

 a_3

 j_7

 $\binom{j_6}{}$

 j_5

 j_4

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.
- If m is odd, a_1 is better off on $H_m(a_1)$ compared with H, e.g.,
 - j_1 is available to a_1 on $H \Longrightarrow j_1$ is available to a_1 on $H_m(a_1)$.

Interview graph H

- By [crawford'91], when agents are removed from one side of *H*:
 - All remaining agents on the same side are weakly worse off,
 - All agents on the opposite side are weakly better off.

 $H_2(a_1)$: 2-hop neighborhood of a_1 Remove agents on depth 3 (j_1) (j_2) (j_3) (a_2) (a_3) (a_4) (a_5) (a_6) (j_4) (j_5) (j_6) (j_7) (j_8) (j_9) (j_{10}) (j_{11}) (j_{12})

 $H_3(a_1)$: 3-hop neighborhood of a_1 Remove agents on depth 4

- If *m* is even, a_1 is worse off on $H_m(a_1)$ compared with *H*, e.g.,
 - j_1 is available to a_1 on $H_m(a_1) \Longrightarrow j_1$ is available to a_1 on H.
- If m is odd, a_1 is better off on $H_m(a_1)$ compared with H, e.g.,
 - j_1 is available to a_1 on $H \Longrightarrow j_1$ is available to a_1 on $H_m(a_1)$.

Focus on local

neighborhood

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

Hierarchical proposal-passing algorithm on tree

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

A node proposes to its parent, only if it prefers its parent over all nodes proposed to it.

Hierarchical proposal-passing algorithm on tree

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

A node proposes to its parent, only if it prefers its parent over all nodes proposed to it.

Hierarchical proposal-passing algorithm on tree

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

A node proposes to its parent, only if it prefers its parent over all nodes proposed to it.

Hierarchical proposal-passing algorithm on tree

- The interview graph *H* is a one-sided random *d* regular graph;
 - If $\omega(1) \le d \le O(\text{Polylog } n)$, the local neighborhood of *a* with depth $O(\log n / (\log d \lor \log \log n))$ on *H* is almost tree-like;
- The stable matching on tree is **unique**.

A node proposes to its parent, only if it prefers its parent over all nodes proposed to it.

Claim: If a node **proposes** to its parent, the proposing node must be **available** to its parent on the tree.

Hierarchical proposal-passing algorithm on tree

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.

$$\mathbb{P}(j \text{ proposing to } a) = \mathbb{E}\left[\frac{1}{1 + \text{Number of proposals } j \text{ receives}}\right]$$

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.

$$\mathbb{P}(j \text{ proposing to } a) = \mathbb{E}\left[\frac{1}{1 + \text{Number of proposals } j \text{ receives}}\right]$$
$$= \mathbb{E}\left[\frac{1}{1 + \text{Binom}(d, p)}\right]$$
$$= \frac{1 - (1 - p)^{d+1}}{(d+1)p}.$$

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.
 - By **iteratively update** the proposing probability \implies the marginal proposing probability of a neighbor to the root node on tree

$$\mathbb{P}(j \text{ proposing to } a) = \mathbb{E}\left[\frac{1}{1 + \text{Number of proposals } j \text{ receives}}\right]$$
$$= \mathbb{E}\left[\frac{1}{1 + \text{Binom}(d, p)}\right]$$
$$= \frac{1 - (1 - p)^{d+1}}{(d+1)p}.$$

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.
 - By **iteratively update** the proposing probability ⇒ the marginal proposing probability of a neighbor to the root node on tree

- By truncation method on *H*, for odd number *m*,
 - $\mathbb{P}(j \text{ is available to } a \text{ on } H_{m-1}(a)) \leq \mathbb{P}(j \text{ is available to } a \text{ on } H) \leq \mathbb{P}(j \text{ is available to } a \text{ on } H_m(a));$

- Compute the marginal proposing probability
 - Suppose each node proposes to j with probability p
 - Since utilities are i.i.d. \implies the preferences of *j* are uniformly generated.
 - By **iteratively update** the proposing probability \implies the marginal proposing probability of a neighbor to the root node on tree

- By truncation method on *H*, for odd number *m*,
 - $\mathbb{P}(j \text{ is available to } a \text{ on } H_{m-1}(a)) \leq \mathbb{P}(j \text{ is available to } a \text{ on } H) \leq \mathbb{P}(j \text{ is available to } a \text{ on } H_m(a));$
 - Since $A_{a,j}$ are i.i.d., upper & lower bound of $\mathbb{P}(\exists a \text{ job } j \text{ with } A_{a,j} \ge 0 \text{ that is available to } a \text{ on } H)$;

Applicants A

Jobs J

 $H \triangleq$ interview graph constructed by **both-side-signaling** with d

Applicants A

Consider balanced market: |A| = |J|

Theorem: sparse signaling regime: $\omega(1) \le d \le o(\log n)$

- Suppose there are no post-interview shocks: **no** stable matching on *H* is **almost** interim stable w.h.p.;
- Suppose there are no pre-interview shocks: every stable matching on *H* is almost interim stable w.h.p..

 $H \triangleq$ interview graph constructed by **both-side-signaling** with d

Jobs J

Applicants A

 $H \triangleq$ interview graph constructed by **both-side-signaling** with d

Consider balanced market: |A| = |J|

Theorem: sparse signaling regime: $\omega(1) \le d \le o(\log n)$

- Suppose there are no post-interview shocks: **no** stable matching on *H* is **almost** interim stable w.h.p.;
- Suppose there are no pre-interview shocks: every stable matching on *H* is almost interim stable w.h.p..

Theorem: dense signaling regime: $d = \Omega(\log^2 n)$

• **Every** stable matching on *H* is **perfect** interim stable w.h.p..

Jobs J

Applicants A

 $H \triangleq$ interview graph constructed by **both-side-signaling** with d

no post-interview shocks

Consider balanced market: |A| = |J|

Theorem: sparse signaling regime: $\omega(1) \le d \le o(\log n)$

- Suppose there are no post-interview shocks: **no** stable matching on *H* is **almost** interim stable w.h.p.;
- Suppose there are no pre-interview shocks: every stable matching on *H* is almost interim stable w.h.p..

Theorem: dense signaling regime: $d = \Omega(\log^2 n)$

• **Every** stable matching on *H* is **perfect** interim stable w.h.p..

Simulation results

Applicant-signaling

Simulation results

Both-side-signaling

Conclusion and open problems

- Conclusion
 - Study single-tiered and multi-tiered market
 - How signaling mechanism, market structure and number of signals impact on the achievement of almost interim stability and perfect interim stability.
 - Methodology:
 - Develop a **message-passing algorithm** that efficiently **determines interim stability** and match outcomes by leveraging their **local neighborhood** structure
- Open problems:
 - Vertical heterogeneity;
 - Sequential signaling;
 - Application of message-passing algorithm to real-world datasets;
 - Many-to-many matchings to construct interview graph;
 - Preferences generated from mallow distribution.
- Draft is available upon request (<u>hysophie@upenn.edu</u>)
Proof sketch for both-side signaling (sparse)

- Suppose there are no post-interview shocks
 - Given $d = o(\log n)$, the signals sent out by the agent is almost **disjoint** with the signals she receives.
 - Even after interview, agent strictly prefer the candidates she signals to \succ candidates signals to her.
 - Suppose we run applicants proposing DA.
 - Phase 1: applicants first propose to the jobs that they signal to.

Since $d = o(\log n)$, there will be a non-negligible fraction of agents remain unmatched.

• Phase 2: unmatched applicant start to propose to jobs that send signal to her

Jobs prefer the new proposals, since those are the signals sent out by them

 \implies triggers a long rejection chain

Incentive to deviate

 \implies constant fraction of applicants are matched with jobs that signal to them

 \implies constant fraction of jobs are matched with applicants that signal to them

Proof sketch for sparse signaling regime

- Suppose there are no pre-interview shocks:
 - After interview, preferences over its neighbors are i.i.d. generated;
 - Similar as the one-side signaling.

