Inefficiencies and Congestion
In Waiting Lists



Ingredients in “typical” waiting lists

Arrivals of agents and items
* [tems of different types
= Agents have private preferences - private type .
Uility for item j given item waiting times w = (wy, w,,..): ug(j, w)



oday: sources of inefficiency

» Randomness in arrivals of agents and items
= Ashlagi, Qian, Leshno, Saberi (2022)

= Perishable objects
» Ashlagi, Jagadeesan and Qian (2024)



A model with random arrivals and quasi-linear utilities

ltems: Arrive according to Poisson process, total rate u = 1
= Finite types: ] ={1,2,...,]}
= With probability u; arriving item is of type j

Agents: Arrive according to Poisson process with total rate A

= Agenttype 0 € 0, drawn i.i.d. according to distribution F
= Possibly uncountably many or finitely many types

Quasi-Linear Utility: Type 8 agent who is assigned j and waits w has
utility:

ug(j,w) =v(6,j) — c(w)
= Agents can leave immediately (balk) to obtain utility vg(¢) = 0
» Match values are private information

= vp(6,)) is bounded; c(-) is smooth, strictly increasing and convex or
concave



Price Discovery in Waiting Lists with Random
Arrivals

Question: what is (allocative) inefficiency due to fluctuating “prices™?

= Natural price discovery process

= Tatonnement processes — price increases with demand (agents join
gueue), decreases with supply (items arrive)

= Key distinction: prices fluctuate over time
= Prices are not specified, but learned
= Changes with each random arrival of agent or item
* Prices discovery never stops



Example — One Item

» Single item, arrives at Poisson rate 1

= Agents arrive at Poisson rate 2
= An agent’s value for the item is v~U[0,1] i.i.d.
= Agents can join the queue, or leave immediately

= Quasilinear utility
v—0.02-w

= Offline benchmark:
= Collect all items and agents that arrive until (large) time T

= Optimal to set a price of 1/2, assigning agents with v € [%, 1]



Example — One Item
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Example — One Item
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Price Discovery in Waiting Lists

Question: what is allocative inefficiency due to fluctuating “prices™?

» Result: Loss from price fluctuations is bounded by the step size
* Bound is tight
= Conditions for when loss is negligible

= Methodology: “Price adaptation” as a stochastic gradient decent (SGD)
= Duality, Lyapunov functions
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Convergence of tatonnement processes using gradient descent:

* In markets with multiple goods Cheung, Cole and Devanur, 2019, Cheung, Cole
and Tao, 2018, Cole and Fleischer, 2008, Uzawa, 1960, Correa and Stier-Moses,

2010, Powell and Sheffi, 1982.

(Centralized) Dynamic matching:
* Busic and Meyn 2014, Gurvich and Ward, 2014, Nazari and Stolyar 2016,
Kerimov, Ashlagi and Gurvich 2021a,b



Assignments and Allocative Efficiency

= Assignments n

Let n; € /5 denote the item assigned to agent who arrived at t €
A7, where A are the arrival epochs in which an agent arrives

» Allocative efficiency

1
W(n) = liminf z 9,
(77) %rggl A v( t Ut)

tEAT
That is, average assigned value per agent

= Optimal allocative efficiency

WP = E [Sl;p W(n)]

» Restricting attention to assignments 7 that satisfy a no-Ponzi condition



The Waiting List Mechanism

« Separate queue for each itemj €]

» First Come First Served (FCFS) assignment policy
« Agents who join a queue wait until assigned (no reneging)

» Choice of agent 8 who observes gq:
a(0,q) = argmax {v(0, j) — Elc(w;)|q] |
jeJuU{0}

- Observes all queue lengths q = (q4,..,9;)
« Can join any queue, or leave unassigned



The Waiting List Mechanism

« Separate queue for each itemj €]

» First Come First Served (FCFS) assignment policy
« Agents who join a queue wait until assigned (no reneging)

» Choice of agent 8 who observes gq:
a(f,q) = argmax {v(ﬁ,j) — pj(q)}
JeJU{0}
* Observes state-dependent prices:
pj(@) = p;(a;) = E[c(w))l q;]



Stochastic price adaptation

 Prices increase and decrease upon arrival and allocation

« Allocative efficiency is the expected match value under the steady state
distribution

 When there are >2 items, the steady state distribution is not tractable



he Waiting List Mechanism

* The adjustment size A is the maximal change from one arrival:

A = (q) —pilg—1
max Sgg;x{pg(Q) pi(¢g—1)}

= For linear waiting costs, c(w) = ¢ - w, adjustment size is the

maximal cost of waiting for one item’s arrival:

A= C/.umin

» Denote the expected allocative efficiency under the waiting list
WWL = E[W ("))



Bounding Allocative Efficiency

Theorem:
Allocative efficiency under the waiting list is bounded by

A+ 2

WWL > WOPT _
2

=> The allocative efficiency loss is bounded by the cost of waiting for one item
arrival. High loss if an item arrives infrequently, low loss if the item arrives
frequently



Main Result: Intuition

e Suppose p* = cost of waiting six months

« |If an item arrives monthly, corresponding queue length is 5

« Each arrival significantly changes the price

« If an item arrives daily, corresponding queue length is 180
« Each arrival slightly changes the price




Relation to Static Assignment

Lemma: WPOFPT =+

W™ Is the optimal allocative efficiency in the corresponding
static assignment problem:

{3393'}96@,3'65

W* = max Z / zo;v(6,7)dF(0)
eg ’©

subject to Z zg; <1, x; € |0,1] VO € ©
1€T

©



Duality for the Static Assignment

Lemma (Monge-Kantorovich duality):

min h(p) = W*
p=0

for

1
h(p) = 0.1 —p:|+= .
(p) @,-é?ﬁ{’é)}[”( ) p,]+/1]§€]u,p]



Relation to Stochastic Gradient Descent

The expected adjustment is

A 1
Blgjenr =gl = 773 | Ma@ag=ndFO0) = 55m

which is a sub-gradient of the dual objective

h(p) = a 0, |dF(0) + —
(p) @jerglu}{(@} [U( ]) pj ;Mjpj

* That is, the expected step Is in a gradient descent direction

» But unlike when SGD is used for optimization, step size is fixed and
does not shrink to O



Proof Idea
= Define a Lyapunov function L(q) such that VL(q) = »(q)

= Using the dual objective we decompose and bound the value
generated from an arrival in state g;:

A .
E[v(0:, a(0¢, d¢))|de] > )\—HW
1

(L(qt) — E[L(qt+1)|a))

7

a Hmin ° A

~"

(I) Change in Potential
24 A
— T A
2(1+ N

"

(IT) Loss




Proof Idea

* Decompose the value generated from an arrival in state g;:

Elv(0¢, a0, qt))|ae] > )\——HW*
1

(L(at) — E[L(q¢+1)]ae))

/

\Hmin - A
(I) Change in Potential
2 A

O state independent - 2(1 -+ )\)

N— ——
(IT) Loss

O state dependent



Example of High Loss (of order A)

= Agents O = J, each agent only wants one corresponding item

U(H,]) — 1{9=]}

» |dentical arrival rates of items and corresponding agents

= Loss s close to A

Queue lengths follow an unbiased reflected random walk
Queue lengths q; = 0,1,2, ..., 1/A = p;/c equally likely in steady state

Loss when an agent arrives and price is too high, |
l.e., queue length hits its boundary

Probability of hitting the boundary is roughly */, /4.



When is the Loss Small?

Theorem: Assume an economy with finitely many agent types, linear waiting costs
c(w) = ¢ - w, and a unique market clearing price.
Then there exist a, 5, ¢y > 0 such that forany ¢ < ¢,

WWL > WOPT — ge—a/A

« Remark: generically, an economy with finitely many agents has a
unique market clearing

Intuition: If the dual is unique, no loss within a neighborhood of p*
Biased random walk towards p*



Waiting times, allocation and welfare

* When payoffs are quasi-linear with waiting times the outcome is “almost”
allocative efficient

* |t is not welfare maximizing as agents “waste” time in queues. To maximize
welfare, some pooling or randomization is necessary



Example: Why Is pooling necessary for welfare?

= Agents arrive at rate 1, types drawn from Uniform|[0,1]
= Objects arrive at rate 1, qualities drawn uniformly from {1,2}

"u(v,q) = vq
= A disjoint queue mechanism:

v=1 i FIFO queues
— e B
|- @ %=
< v €.
&° \é\\
- | —— @ =
b =0 T 1—¢€

* ¢ = 0 = No pooling (one queue per object)
"e = % = Complete pooling
» The agent with v = 0.5 should be indifferent...



Waiting times, allocation and welfare

* When payoffs are quasi-linear with waiting times the outcome is
“almost” allocative efficient

* |t is not welfare maximizing agents “waste” time in queues. To
maximize welfare, some pooling or randomization is necessary

= When objects have common gqualities:

= There is a monotone disjoint queueing mechanism (system of
gueues with pooled adjacent types) which generate “almost”
optimal welfare (Ashlagi, Monachou, Nikzad, ReStud 2023)

= Agents pick one queue and cannot decline an object

But an open question in multidimensional settings...




oday: sources of inefficiency

» Randomness in arrivals of agents and items
= Ashlagi, Qian, Leshno, Saberi (2022)

= Perishable objects
» Ashlagi, Jagadeesan and Qian (2024)



Congestion in Waiting Lists and Organ Allocation



Waiting list for kidneys from deceased donors in the US
(2015-2023)
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he paper

Organ waiting lists can become congested, leading to discard of valuable organs

Patients near the top of the list may decline to accept low-quality organs
Patients further down the list might very well accept one

Friction: limited number of patients can consider an organ before it expires
= kidneys accrue excess cold ischemic time

* 50 lower quality organs may expire before being offered to patients who would
accept them (despite there potentially being many such patients)

= Goal: formalize this force and investigate implications for welfare, discuss moral
hazard, and design



A fluid model with agents’ departures

= continuum of patients arrive at rate p
» safe organs arrive at rate sp (s < 1) and risky organs arrive at rate rp
= organs offered sequentially to patients in descending order of waiting time

= patients of type 0 leave w/o a match at rate 6(80)
» patients have expected utility preferences and type 6 get utility:

Uparient = E[1(get safe organ) + v(6)1(getrisky organ)], v(6) <1
» patients can decline risky organs and hold out for safe organs

= organs expire if declined by € mass of patients (“cold ischemic time” limit)
* in this case (or if no one wants them) then organs are discarded
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Structure of steady states

Waiting times
in queue
- Tsafe
patients
holdingout _|
for safe
Patients -
departures P Tyisky
other
patients _J

| patientarrivals

Tsate, Tiisky are equilibrium objects

patients of type 6 who are offered a
risky kidney will decline it and hold
out for a safe kidney if

—logv(6)
Tsafe - Trisky = ;?g) — VVv(H)



Existence of steady states

= assumption: distribution of W,(8) is absolutely continuous and W, and é are bounded
from above

Theorem:
There exists a steady-state joint distribution of types and waiting times

= key equilibrium objects (prices): waiting times T, s, and T;;s,
= patients w/walit time T, ¢, are offered safe organs and accept it

= patients w/wait time 2 T, are offered risky organs
= types with W, (0) < Tggre — Trisky acCcCEpt
= Types with W,,(8) > Tg4re — Trisky decline and wait for safe organs

Tsqare and Ty, are sufficient statistics for all types’ expected utilities



Homogenous departure rates

The steady state is congested if and only if

E,(c)>111ax{f. > }

¢ S+ rc

If the steady state is congested, then the equilibrium waiting times are

1 S | S
rri"‘ ¥ = — = log nd Ts"n('.: __.l 4
sk; 3 0g ((‘Fu ((f)) and saf 3 0g (Fu (())

o= 2L

Hp-l—..':‘f']: c is a“degree of congestion “




Inefficiency and discard can arise even without expiration
(Shi and Yin 2022)

= waiting times T, ., and T;5,, act as prices but don’t induce allocative efficiency

even when € = oo:

= Safe or)gans are “overdemanded” by patients with low v(8) (low value for a risky
organs
» Such patients “bet” on being offered a safe organ

» But patients who wait for a safe organ may die before getting it
* Despite that they would have been better off with a risk organ

» So the allocation is ex post inefficient, discard arises, and patients die unnecessarily

*Notes:
= waste can be eliminated using lotteries upon entry
= |f utilities are instead quasi linear with waiting time, the allocation is assortative



Congestion

= In standard queuing systems: Ty;qx, > 0 = there Is excess demand for risky
organs

Definition
The system is congested If Ty;5, > 0 but some risky organs are discarded

The system is congested when ¢ is small enough:
Proposition
There exists €*() > 0 s.t. the system is congested if and only if € < €*

» [dea: €* Iis the mass of patients that would hold out for safe organs w/o death



Multiplicity and self-fulfilling congestion

Proposition
1. if there are multiple steady states, then they are Pareto ranked
2. all steady states except (possibly) the best one are congested

In fact, there can be congestion in one steady state and no congestion
In a Pareto-dominating steady state ~ “self-fulfilling congestion”

* intuition: say there are two types, healthy (low §) and unhealthy (high §)
= unhealthy waiting for safe can cause congestion w/o raising T, s, much

= this can raise T;s, enough (by more than change in T,,¢.) to get equilibrium

for remainder of the talk: focus on the best steady-state



Welfare effect of congestion

= congestion hurts patients who would accept risky kidneys by inflating Ty,
= in equilibrium, this makes more patients hold out for safe kidneys

Proposition
If the system Is congested, then increasing e strictly lowers both T, ¢, and

Trisky
» SO congestion (if it arises or worsens) makes everyone worse off

» all comparative statics via monotone comparative statics for equilibrium
= Milgrom and Roberts (1994); also apply to the worst equilibrium



Congestion and constrained inefficiency

* how bad are the inefficiencies caused by congestion?
» does improving the supply of safe organs always improve welfare?

Proposition
Without organ expiry, increasing s strictly lowers Ty, ¢, and weakly lowers Ty,

Proposition

With organ expiry, there exist parameters for which increasing s strictly raises both
Tsafe and Trisky

* ntuition: increasing s makes more people hold out for safe organs

= this worsens congestion, and can do so enough to raise waiting times
= everyone worse off despite more people getting safe organs



Congestion and market thickness

= What happens if separate queuing systems are merged?
» e.g., make “region” larger, or move from regional to national waitlists

* increases market thickness, but effects on congestion?

Proposition
If the system Is congested, then increasing p strictly raises Ts,r. andTy;sxy

= intuition: if there is already congestion, having a thicker market worsens it

» and the system can transition from uncongested to congested if p increases
= and will eventually if p increases enough



Delegating decisions to hospitals

» doctors may have different incentives than patients

» penalty for adverse post-transplant outcomes (Schaefer et al. 22, Chan &
Roth, 23)

= Starting July 2023 pre-transplant mortalities penalties
= Starting July 2024 acceptance rate penalties



Doctors’ incentives and the congestion externality (I)

» suppose doctors of patients of type 8 get utility
Ugoctor = Pr[get safe organ] + A(6)Pr[get risky organ], where A1(6) <v(6)

» 50 doctors’ willingness to wait for a safe kidney is

—logA(0) —logv(0)
6(0) 6(0)

Assume W;(0) has an absolutely continuous distribution and is bounded

= W, (6)

W,(0) =




Doctors’ incentives and the congestion externality (lIl)

Proposition
If the system is congested under patient decisions, then:
1. the steady state will also be congested under hospital decisions

2. If v has full support on [0,1], then all types of patients have strictly lower expected
utility under hospital decisions than under patient decisions

3. total expected utility of hospitals is strictly lower under hospital decisions than
under patient decisions, with equality only if P[A(6) = 0] = 1.

Intuition: delegation to doctors makes more types hold out for safe organs,
which worsens congestion and increases waiting times



Congestion frictions - summary

» grgan expiry can lead to congestion on deceased donor waiting lists

= causing substantial inefficiencies and externalities

» delegation to risk-averse doctors can worsen congestion and harm welfare
= possibility of self-fulfilling congestion that harms everyone

Potential remedies:

= expedite offers of low-quality organs, or create separate waiting lists by organ
types (Castro et al., 2020)

= caution in expanding regions
* involve patients in rejection/acceptance decisions
» relax hospitals’ disincentives for accepting risky organs



owards an adaptive policy

= Status quo:

organs are allocation based on fixed priorities and fixed organs
characteristics (e.g., KDPI)

= [nformation arrives over time
= Organ quality is revealed over time



Further informational and implementation challenges

* Information about an organ quality aggregates during time
* Biopsy results, OR (clamp), imaging, refusal reasons from experts

* \What makes an organ marginal and hard-to-place? How to place such organs?

= Can we identify quickly marginal organs? How to expedite the process for such
organs? Need for an adaptive policy

*The following data from a working paper with Grace Guan, Mike Rees, Paulo Somaini and Alvin
Roth



Increasing utilization of marginal organs

Refusals are signals but also part of communication
« Add information about quality and acceptance chances
« Refine/redesign information communication with centers
- (e.g., ask if the center may accept it for any patient)

Expediting
« Classify marginal organs
« Batch offers
« Adapt KDRI during offering process
« Target aggressive centers




Summary

» grgan expiry can lead to congestion on deceased donor waiting lists
» delegation to risk-averse doctors can worsen congestion and harm welfare
= possibility of self-fulfilling congestion that harms everyone

Possibilities:

= expedite offers of low-quality organs, or create separate waiting lists by organ
types (Castro et al., 2020)

» Create separate lists by organ type (possibly with some information design)
= caution in designing local regions
» relax hospitals’ disincentives for accepting risky organs



	Slide 1: Inefficiencies and Congestion in Waiting Lists
	Slide 2: Ingredients in “typical” waiting lists
	Slide 3: Today: sources of inefficiency
	Slide 4: A model with random arrivals and quasi-linear utilities
	Slide 5: Price Discovery in Waiting Lists with Random Arrivals 
	Slide 6: Example – One Item
	Slide 7: Example – One Item
	Slide 8: Example – One Item
	Slide 9: Price Discovery in Waiting Lists
	Slide 10: Literature
	Slide 11: Assignments and Allocative Efficiency
	Slide 12: The Waiting List Mechanism
	Slide 13: The Waiting List Mechanism
	Slide 14: Stochastic price adaptation
	Slide 15: The Waiting List Mechanism
	Slide 16: Bounding Allocative Efficiency
	Slide 17: Main Result: Intuition
	Slide 18: Relation to Static Assignment
	Slide 19: Duality for the Static Assignment
	Slide 20: Relation to Stochastic Gradient Descent
	Slide 21: Proof Idea
	Slide 22: Proof Idea
	Slide 23: Example of High Loss  (of order cap delta)
	Slide 24: When is the Loss Small?
	Slide 25: Waiting times, allocation and welfare
	Slide 26: Example: Why is pooling necessary for welfare?
	Slide 27: Waiting times, allocation and welfare
	Slide 28: Today: sources of inefficiency
	Slide 29: Congestion in Waiting Lists and Organ Allocation
	Slide 30: Waiting list for kidneys from deceased donors in the US (2015-2023)
	Slide 31: The paper
	Slide 32: A fluid model with agents’ departures
	Slide 33: Literature
	Slide 34: Structure of steady states
	Slide 35: Existence of steady states
	Slide 36: Homogenous departure rates
	Slide 37: Inefficiency and discard can arise even without expiration  (Shi and Yin  2022) 
	Slide 38: Congestion
	Slide 39: Multiplicity and self-fulfilling congestion
	Slide 40: Welfare effect of congestion
	Slide 41: Congestion and constrained inefficiency
	Slide 42: Congestion and market thickness
	Slide 43: Delegating decisions to hospitals
	Slide 44: Doctors’ incentives and the congestion externality (I)
	Slide 45: Doctors’ incentives and the congestion externality (II)
	Slide 46: Congestion frictions - summary
	Slide 47: Towards an adaptive policy
	Slide 48: Further informational and implementation challenges
	Slide 49: Increasing utilization of marginal organs
	Slide 50: Summary

