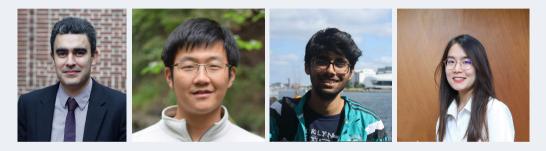
Simulation Is All You Need

A Unifying algorithm for Network Revenue Management (NRM) and Dynamic Spatial Matching (DSM)

by Yash Kanoria (Columbia) on

m Introduction


Literature Reviev

i<mark>aps in distributio</mark>r 200 lure of CE

Beyo

Take Aw

» Collaborators

Omar Besbes Columbia DRO

Yilun Chen CUHK Shenzhen

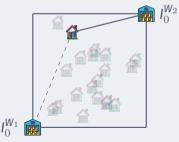
Akshit Kumar Columbia DRO Wenxin Zhang Columbia DRO

Motivation and Research Questions				
000000				

» Network Revenue Management: Online Allocation with Resource Constraints

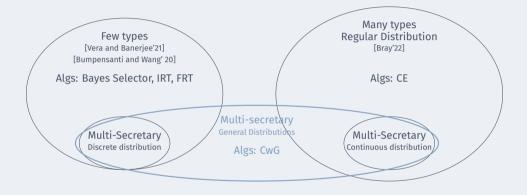
» Network Revenue Management: Online Allocation with Resource Constraints

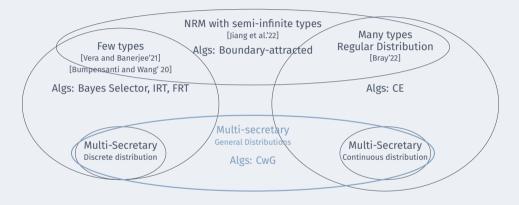
» Network Revenue Management: Online Allocation with Resource Constraints

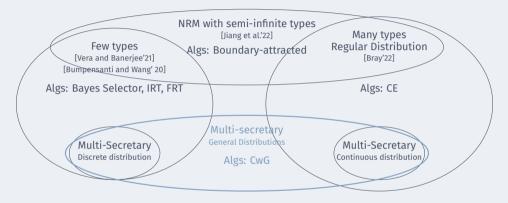


Budget Management in Ad Auctions

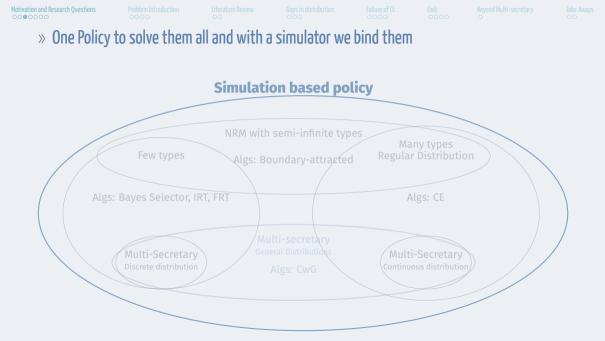
Order Fulfillment

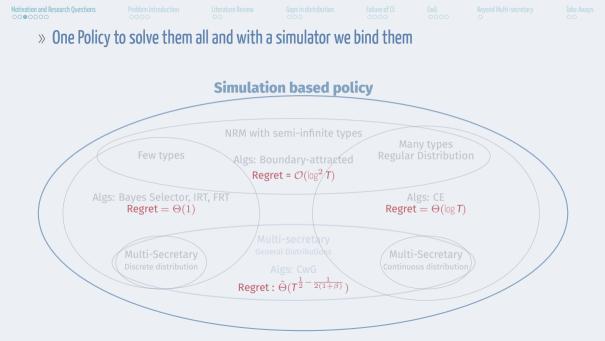


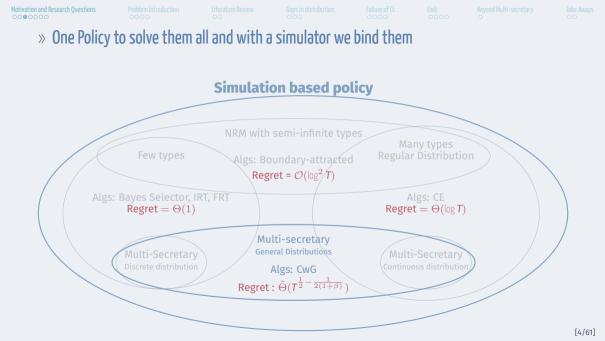



Motivation and Research Questions				
000000				

» Landscape of NRM Problems




Motivation and Research Questions				
000000				


» Landscape of NRM Problems

Research Question: One policy to solve them all?

oblem Introduction

Literature Re

tribution

ire of CE

Beyond Multi-secreta

Take Aways

» Dynamic Spatial Matching (DSM): Motivation

- * Ridehailing: spatial matching in two dimensions
- * Matching platforms
 - * Lodging e.g. Airbnb: supply and demand live in a multi-dimensional space (location, size, amenities, price, etc.)
 - * Labor e.g. Upwork: (expertise dimensions, price, duration, etc.)
- Network revenue management with a large number of demand types

olem Introduction

Literature Re

distribution

lure of CE

Beyond Multi-sec

Take Aways

» DSM: Setting and Research Questions

- * Supply and demand which live in *d* dimensional space.
- * Cost of match distance between the matched pair.
- * *T* supply units are present beforehand.
- Demand arrives sequentially. Needs to be matched immediately with a supply unit.

blem Introduction

Literature Revie

stribution

lure of CE

(wG

eyond Multi-secretary

Take Aways

» DSM: Setting and Research Questions

- * Supply and demand which live in *d* dimensional space.
- * Cost of match distance between the matched pair.
- * *T* supply units are present beforehand.
- Demand arrives sequentially. Needs to be matched immediately with a supply unit.
- * How to match demand and supply to minimize spatial costs of matching under dynamic arrivals?
- * How large are the costs arising from spatial heterogeneity and uncertainty about the future in dynamic matching

oblem Introduction

Literature Revie

tribution

ure of CE

Beyond Multi-sec

Take Away

» Summary of findings and talk outline

- $\ast~$ DSM with identical supply and demand distributions [K.]
 - Greedy matching suffices
 - $*\,$ Match distance \sim Nearest-neighbor-distance achievable, except one case
- * DSM with different supply and demand distributions [Chen, Akshit Kumar, K., Zhang]
 - * Greedy fails
 - * Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
- Multisecretary problem with lumpy value distribution (a 1d DSM problem) [Besbes, Akshit Kumar, K.]
 - * The Certainty Equivalent policy and SOAR with one sample path fail
 - RAMS with multiple sample paths achieves optimal regret scaling
 - * RAMS works also for $d \geq 2$, and across NRM settings.

n Introduction O

Literature Revi

o **in distribution**

ilure of CE

Beyond Multi

Take Away:

» Talk outline

- DSM with identical supply and demand distributions
 - Greedy matching suffices
 - st Match distance \sim Nearest-neighbor-distance achievable, except one case
- DSM with different supply and demand distributions
 - * Greedy fails
 - * Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
- Multisecretary problem with lumpy value distribution (a 1d DSM problem)
 [O. Besbes, Akshit Kumar & K. '22]
 - * SOAR with one sample path fails
 - * RAMS with multiple sample paths achieves optimal regret scaling
 - * Works also for $d \geq 2$, and across NRM settings.

oduction

Literature Review

ps in distribution

ilure of CE

Bey

Tal

» Multi-secretary Problem

0000

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

oduction

Literature Review

oo

Failure of CE

CwG

Beyond Multi-secret

Take Away

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

* The secretaries arrive in an online fashion.

oduction

Literature Reviev

is in distribution

ailure of CE

CwG

Beyond Multi-secreta

Take Aways

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.

roduction

Literature Review

is in distribution

ailure of CE

(wG

eyond Multi-secretary

Take Aways

» Multi-secretary Problem

0000

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.
- * The abilities (types) of the secretaries are drawn **independently** from a **common** and **known** distribution *F* over [0, 1].

oduction

Literature Review

s in distribution

ilure of CE

Beyon

Take Av

» Multi-secretary Problem

0000

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.
- * The abilities (types) of the secretaries are drawn **independently** from a **common** and **known** distribution *F* over [0, 1].

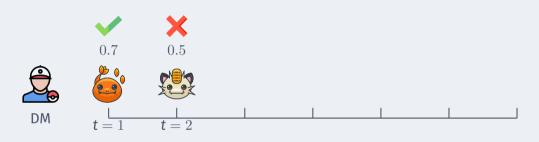
Note: This is a 1d DSM problem, with an atomic "supply" distribution with B units at 1 and T - B units at 0.

Problem Introduction			

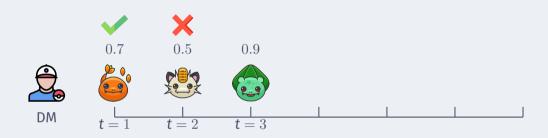
Problem Introduction			

Problem Introduction			

Problem Introduction			



Problem Introduction			



	Problem Introduction			
. Catta astal	'an all asma			

Problem Introduction			

Problem Introduction			

Problem Introduction			

	IntroductionLiterature RevieOOOO					
--	----------------------------------	--	--	--	--	--

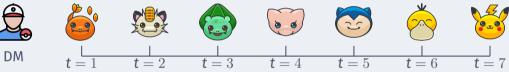
Problem Introduction			

Motivation and Research Questions	Problem Introduction	n Literature Review	Gaps in di	istribution	Failure of CE	CwG 0000	Beyond Multi-secretary O	Take Aways
» Gotta catc	h'em all som	е						
	V	×	\checkmark	X	×			
	0.7	0.5	0.9	0.8	0.3	5		
\ominus		6				3		
	No. of the second secon	2 S			C			

DM t = 1 t = 2 t = 3 t = 4 t = 5

	Problem Introduction				
» Gotta cato	h'em all some				
		V .	A 🗸	•	

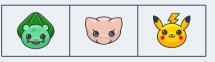
	Problem Introduction ○●○○			
» Gotta catch	em all some			



	Problem Introduction ○●○○			
» Gotta catch	iem all some			
	•			

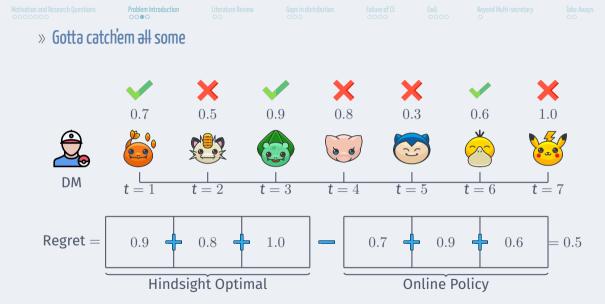
Motivation and Research Questions	Problem Introduction	Literature Review	Gaps in dis	tribution	Failure of CE	(wG 0000	Beyond Multi-secretary ⊙	Take Aways ○○
» Gotta catch	iem all som	е						
	V	X	V	×	×		~	
	0.7	0.5	0.9	0.8	0.3		0.6	1.0
^	<u>m</u>		•				.1.	_

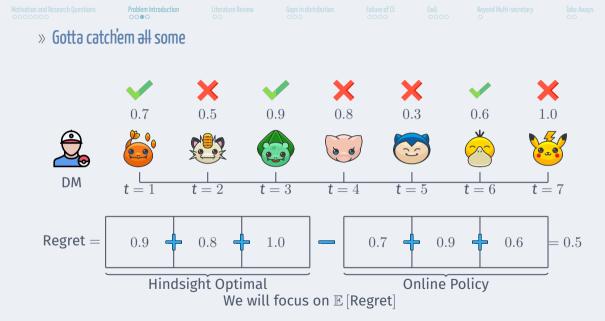
Motivation and Research Questions	Problem Introduction	Literature Review	Gaps in distribution	Failure of CE	(wG 0000	Beyond Multi-secretary ⊙	Take Aways	
» Gotta catch	em all some							
		× 、	/ x	×		<u>_</u>	×	



Online Policy

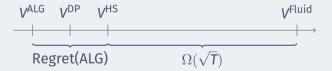
	Problem Introduction			
» Gotta catcl	nem all some			


Hindsight Optimal



Online Policy

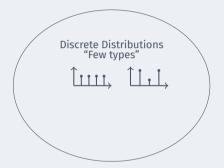
Motivation and Research Questions	Problem Introduction	Literature Review	Gaps in dis			wG Beyon	d Multi-secretary Take Aways
» Gotta catch	iem all some	е					
	~	×	\checkmark	×	×	×	×
	0.7	0.5	0.9	0.8	0.3	0.6	1.0
				٥٥		~	
DM	t = 1	t=2	$\frac{1}{t=3}$	$\frac{1}{t=4}$	$\frac{1}{t=5}$	t = 0	5 t = 7



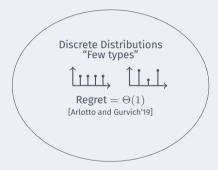
Multisecretary is a 1d DSM problem, with an atomic "supply" distribution with B units at 1 and T - B units at 0. $\Theta(\sqrt{T})$ optimal regret wrt fluid benchmark, which can be achieved by a trivial static policy.

Gap between fluid and hindsight benchmarks is already $\Omega(\sqrt{T})$.

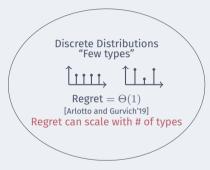
As in the recent NRM literature, we adopt the tighter hindsight benchmark.

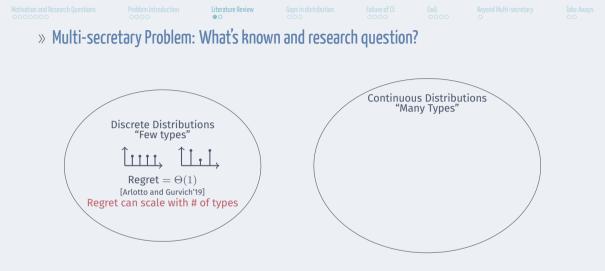


	Literature Review			
	•0			

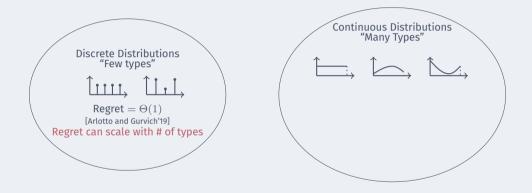

	Literature Review			
	•0			

Discrete Distributions "Few types"

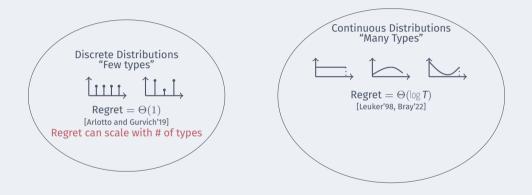

0000000 0000 0 0 000 000 000 000 000		Literature Review			
		•0			

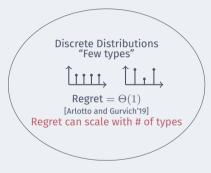


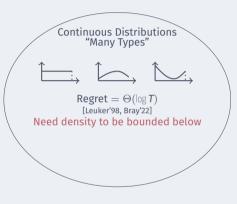
	Literature Review			

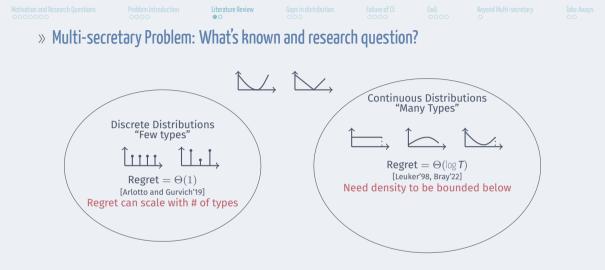


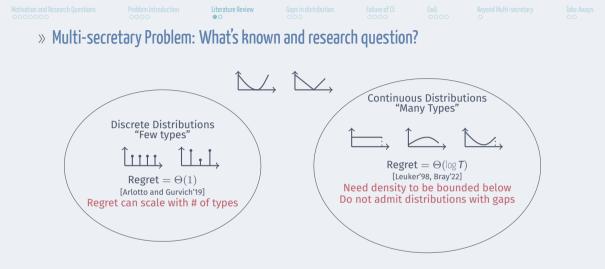
	Literature Review			

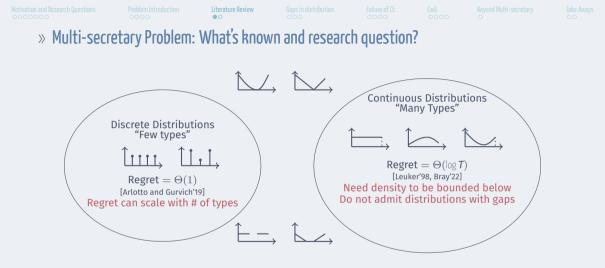


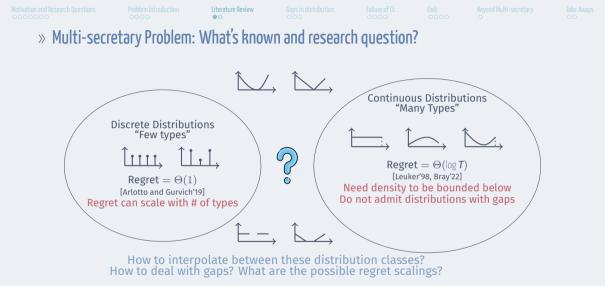








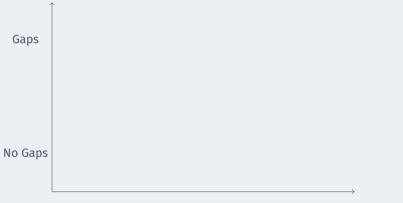




roblem Introduction

Literatu

aps in distribution


ailure of CE

Beyo

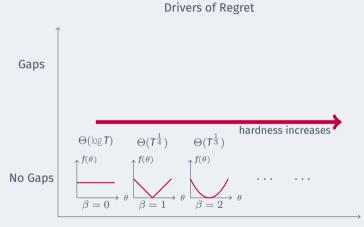
Take Awa

» Punchline for the Multi-secretary Problem

Problem Introduction

Literature I

oo


Failure of CE

E

Beyond Multi-secreta

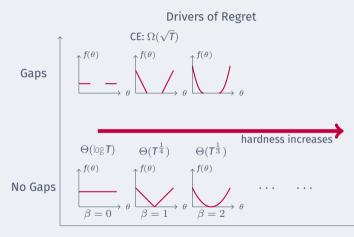
Take Aways

» Punchline for the Multi-secretary Problem

Problem Introduction

Literature Review

distribution


ure of CE

CwG

eyond Multi-secreta

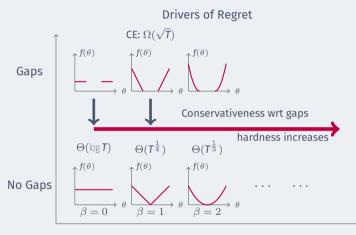
Take Aways

» Punchline for the Multi-secretary Problem

Problem Introduction

Literature Review

s in distribution


ailure of CE

(E

Beyond Multi-secre

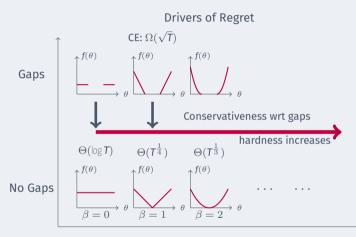
Take Away:

» Punchline for the Multi-secretary Problem

Problem Introduction

ire Review

0.


tribution

e of CE

Beyond Multi-secret

Take Aways

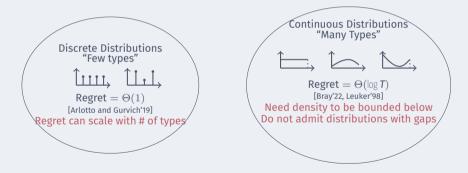
» Punchline for the Multi-secretary Problem

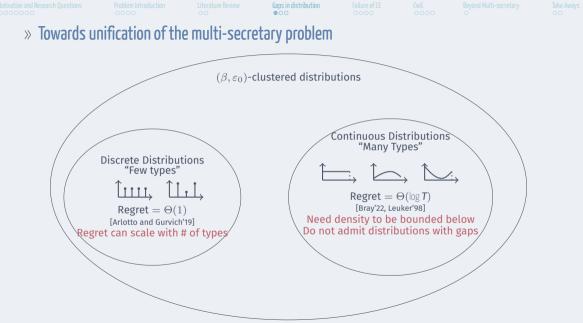
- * Distribution shape is a **fundamental** driver of regret.
- Dealing with gaps is an algorithmic challenge.
- Novel Principle: Conservativeness wrt gaps (CwG)
- Simulation-based approach automatically pursues CwG

roblem Introduction

Literature Re

Gaps in distribution


ilure of CE


()

Beyond Multi-secreta

Take Aways

» Towards unification of the multi-secretary problem

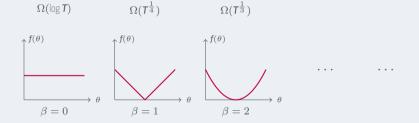
	Gaps in distribution ○●○		

» Fundamental Limits

Universal Lower Bound

For every $\beta \in [0,\infty)$, there exists a distribution F_{eta} such that

$$\sup_{B \in [T]} \mathbb{E}_{F_{\beta}} \left[\mathsf{Regret}(\mathsf{DP}) \right] = \begin{cases} \Omega \left(\log T \right), & \beta = 0, \\ \Omega \left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$


	Gaps in distribution ○●○		

» Fundamental Limits

Universal Lower Bound

For every $eta\in[0,\infty)$, there exists a distribution F_eta such that

$$\sup_{B \in [T]} \mathbb{E}_{F_{\beta}} \left[\mathsf{Regret}(\mathsf{DP}) \right] = \begin{cases} \Omega \left(\log T \right), & \beta = 0, \\ \Omega \left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$

ntroduction

Gaps in distributio

Failure of CE

Beyor

Take Away

For $(m{eta}, \mathbf{1})$ -clustered distributions

 $\int f(\theta)$ × 0 A $\int f(\theta)$ × 0 θ

- Let B_t be the remaining budget at time t
- Compute the budget ratio

» Certainty Equivalent Control

- $br_t = rac{\text{Remaining Budget}}{\text{Remaining Time}} = rac{B_t}{T-t}$
- $\ast\,$ Define a quantile threshold $p_t^{ce}=1-br_t$
- * Define a ability threshold $\gamma_t^{ce} = \mathit{F}^{-1}(\mathit{p}_t^{ce})$
- * hire \iff $heta_t \geq \gamma_t^{ce}$

oduction

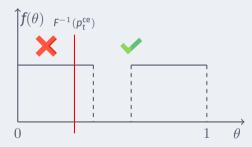
» Certainty Equivalent Control

Gaps in distributio

Failure of CE

Beyond Multi-secret

Take Aways


For Bi-modal Uniform Distribution

Let B_t be the remaining budget at time t

$$\mathsf{Budget}\ \mathsf{Ratio} = rac{\mathsf{Remaining}\ \mathsf{Budget}}{\mathsf{Remaining}\ \mathsf{Time}} = rac{B_t}{T-t}$$

CE Quantile Threshold
$$= 1 - \frac{B_t}{T-t} \triangleq p_t^{ce}$$

Decision: hire $\iff \theta_t \ge F^{-1}(p_t^{ce})$

blem Introduction

w Gap

Failure of CE

Take A

Regret Lower Bound

» Failure of Certainty Equivalent Control

Insufficiency of Certainty Equivalent Control

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

lem Introduction

view

Failure of

CwG

Beyond Multi-secreta

Take Away

Regret Lower Bound

» Failure of Certainty Equivalent Control

Insufficiency of Certainty Equivalent Control

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

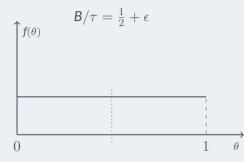
Remark

* Same scaling is achievable under a static threshold policy.

		Failure of CE		
1.11				

» Why does CE fail?

Literature Review


Gaps in distributio

Failure of CE

6 E

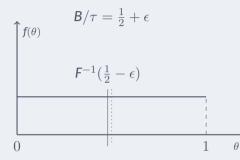
Tak

» Why does CE fail?

ntroduction

Literature Review

aps in distribution


Failure of CE

(wG

yond Multi-secretary

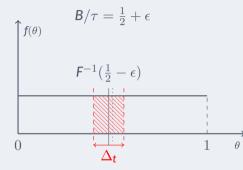
Take Aways

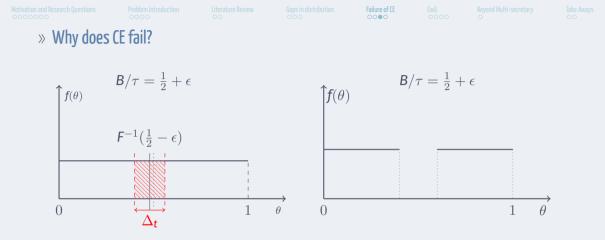
» Why does CE fail?

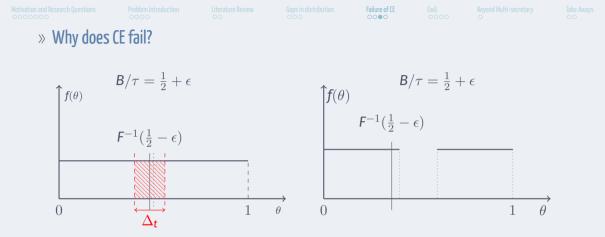
Introduction

Literature Review

Gaps in distribution


Failure of CE


CwG


ond Multi-secretary

Take Aways

» Why does CE fail?

0

τ.

 θ

11.1

 Δ_t

0

τ.

 θ

11.1

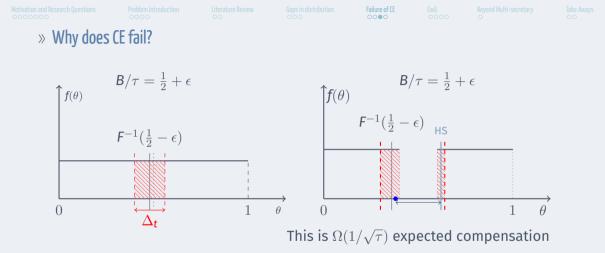
 Δ_t

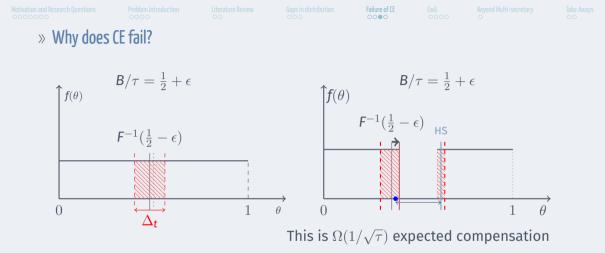
0

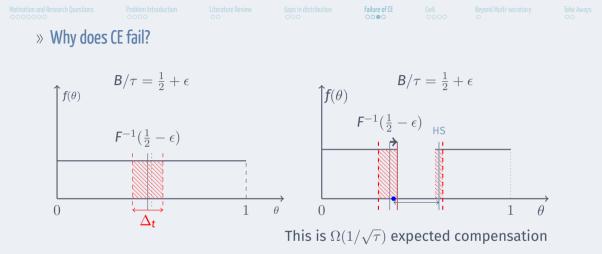
 θ

11.1

 Δ_t

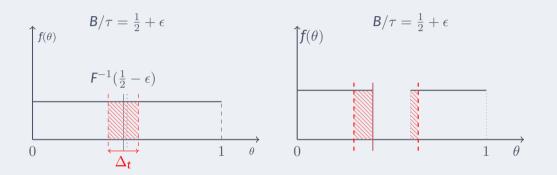


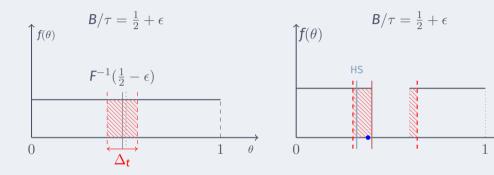

0


 θ

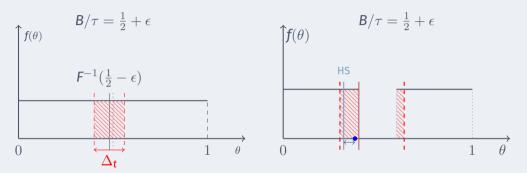
 $F^{-1}(\frac{1}{2}-\epsilon)$

 Δ_t





Conservativeness wrt gaps



This is $\tilde{\mathcal{O}}(1/\tau)$ expected compensation

olem Introduction

Review

ution

e of CE

CwG

Beyond Multi-secre

Take Aways

» Good in theory but practically infeasible

- * What is the conservativeness parameter I should use?
- * How to find where these gaps are? What happens if gaps shift?
- * E.g., no chance of deploying for Amazon's fulfillment problem

lem Introduction

Gaps i

Failure of CE

Beyond Multi-secr

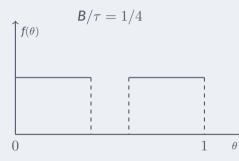
Take Aways

» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

oblem Introduction

ture Review


Gaps in distribution

ilure of CE CwG

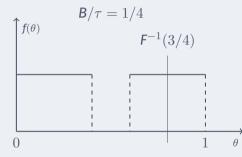
Beyond Multi-secret

Take Aways

» Conservativeness with respect to gaps

oblem Introduction

Review


Gaps in distribution

ilure of CE CwG

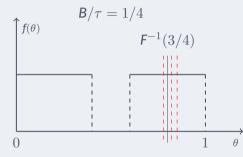
Beyond Multi-secreta

Take Aways

» Conservativeness with respect to gaps

oblem Introduction

Review


Gaps in distribution

ilure of CE CwG

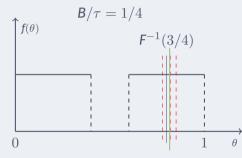
Beyond Multi-secre

Take Aways

» Conservativeness with respect to gaps

oblem Introduction

e Review


Gaps in distribution

ilure of CE CwG

Beyond Multi-secret

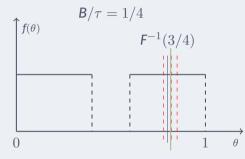
Take Aways

» Conservativeness with respect to gaps

oblem Introduction

n Lit

Gaps in distribut


ailure of CE CwG

Beyond Multi-secreta

Take Aways

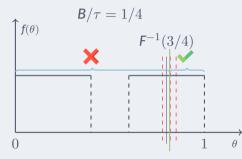
» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

blem Introduction

Review

Gaps in distribution

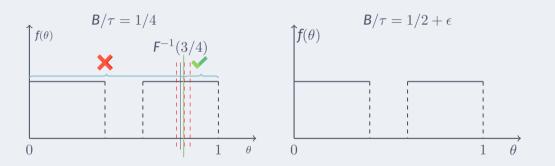

lure of CE CwG

Beyond Multi-secre

Take Aways

» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future



0000

» Conservativeness with respect to gaps

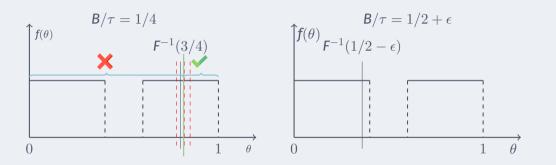
Algorithmic Idea: Simulate into the future

CwG

blem Introduction

v Gaps

Failure of CE


CwG O • O O

Beyond Multi-secretary

Take Aways

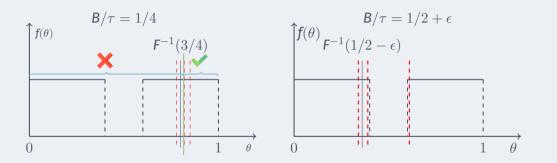
» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

blem Introduction

ew Ga

on Failure


of CE CwG

Beyond Multi-secretary

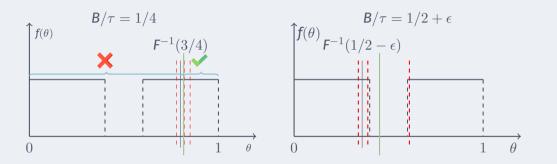
Take Aways

» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

blem Introduction

N Gaps


Failure of CE

Multi-secretary

Take Aways

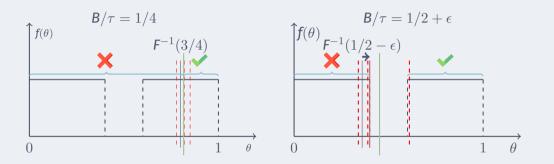
» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

blem Introduction

riew Ga

ion Failure


e of CE CwG

Beyond Multi-secretary

Take Aways

» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

If far from a gap, use the CE threshold If close to gap, use the gap as threshold

blem Introduction

ure Review

rtion

of CE

CwG

Beyond Mu

Take Away

Punchline

» Conservativeness with respect to gaps

Regret of RAMS Policy

If F is a $(\beta,\varepsilon_0)\text{-clustered}$ distribution, then

$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{RAMS})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$

If *F* is a discrete distribution, $\mathbb{E}\left[\mathsf{Regret}\left(\mathsf{RAMS}\right)\right] = \mathcal{O}(1/\varepsilon_0)$

blem Introduction

ure Review

tion

of CE

yond Multi-secretary

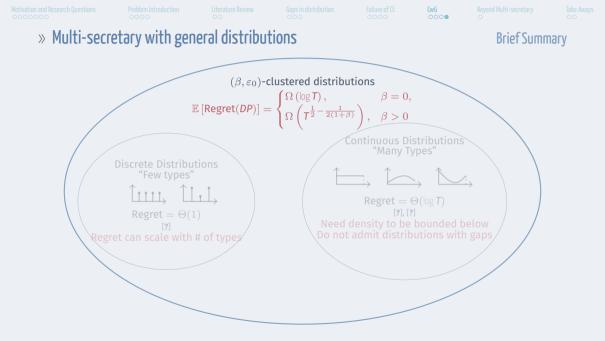
Take Aways

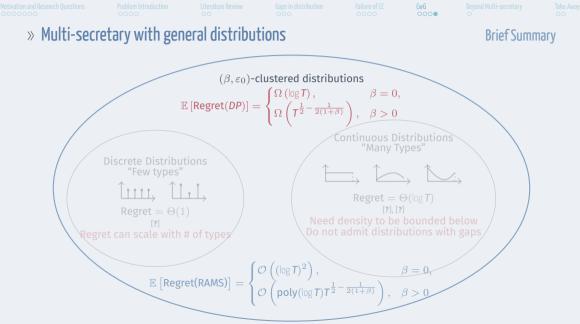
Punchline

» Conservativeness with respect to gaps

Regret of RAMS Policy

If F is a $(\beta,\varepsilon_0)\text{-clustered}$ distribution, then


$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{RAMS})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$


If F is a discrete distribution, $\mathbb{E}\left[\mathsf{Regret}\left(\mathsf{RAMS}\right)\right] = \mathcal{O}(1/\varepsilon_0)$

Remark

- * $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, RAMS ($\mathcal{O}((\log T)^2)$) outperforms CE ($\Omega(\sqrt{T})$).
- $\ast\,$ Matches the universal lower bound upto polylog factors $\,\Rightarrow\,$ RAMS is near-optimal.

» One Policy to solve them all?

ntroduction

Review

on Fa

CE

Beyond Multi-secretary

- * The multi-secretary problem is special but RAMS is general: in each period, simulate several futures and choose the action which minimizes the expected "compensation" in hindsight. Compensation \equiv How to much we need to pay an agent who knows the future to take a particular action, for a given future.
- * Can be applied to NRM and stochastic online matching problems to recover almost all known guarantees in the literature.

n **Introduction**

Literature Review

tion

CE

Beyond Multi-secreta

Take Away

Beyond Multi-secretary

» One Policy to solve them all?

Proposition (RAMS is as good as any algorithm)

Given an NRM setting P, consider *any* algorithm A for P, such that with τ periods remaining, uniformly over the state, the expected compensation under A is bounded above by $\delta_{\tau}(A)$. Then RAMS achieves an expected compensation bounded uniformly by $\delta_{\tau} + 1/\tau^{1.1}$. As a result the regret of RAMS is bounded above by a constant plus the regret guarantee for algorithm A,

$$ext{Regret(RAMS)} \leq ext{Constant} + \sum_{ au=1}^{ au} \delta_{ au}(\mathsf{A}) \,.$$

m Introduction

erature Review

ribution

e of CE

Beyond Multi-secret

Take Aways

» What to take away from this talk?

Simple and practical simulation-based policy SOAR is broadly applicable:

- * RAMS (Repeatedly Act based on Multiple Sims) recovers the guarantees for almost all settings in the NRM literature (e.g., constant regret for finite types, $\log^2 T$ for semi-infinite types)
- * Establishes novel guarantees for dynamic spatial matching problems

Thank you!

DSM Part II 00000000 tion l

Review

istribution

TCE .

Beyond Multi-secre

Take Aways

APPENDIX on (β, ε_0) -clustered distributions

[28/61]

DSM Part II

Problem Introduction

Literatu 00 Gaps in distributi

ailure of CE

Be

-secretary

lare Away

» $(eta,arepsilon_0)$ -clustered distribution

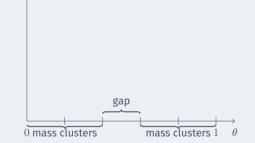
DSM Part II

 $f(\theta)_{\uparrow}$

0000

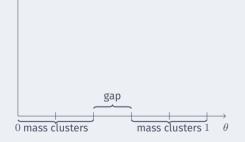
Literatu 00 Gaps in distribut

lure of CE


E

ond Multi-secretary

Take Away


» $(eta,arepsilon_0)$ -clustered distribution

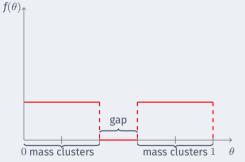
 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $f(\theta)_{\uparrow}$

» $(oldsymbol{eta},arepsilon_0)$ -clustered distribution

pution


CE

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

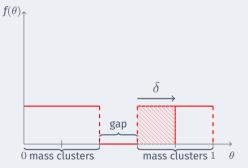
mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

» $(eta,arepsilon_0)$ -clustered distribution

of CE

ond Multi-secretary


Take Aways

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

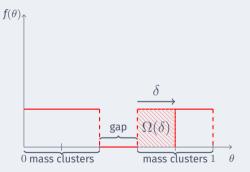
mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

» $(eta,arepsilon_0)$ -clustered distribution

Beyond Multi-secreta

Take Aways



 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

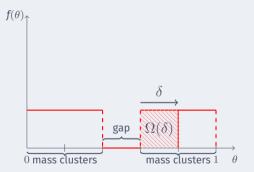
 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

of CE

.wG 0000 yond Multi-secretary

Take Aways


 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

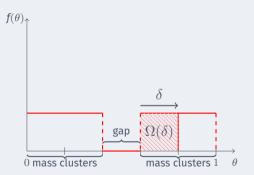
 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$

» $(eta,arepsilon_0)$ -clustered distribution

ps in distribution


of CE

ÎwG

yond Multi-secretary

Take Aways

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

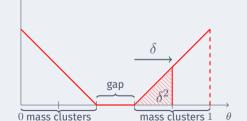
 $\mu(\text{mass clusters}) \geq \varepsilon_0$

For discrete distrbutions, $\beta = 0$, $\varepsilon_0 = \min_j p_j$

» $(oldsymbol{eta}, arepsilon_0)$ -clustered distribution

0

 $f(\theta)_{\uparrow}$


 $\mathsf{Gap} \equiv \mathsf{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 1$ (mass accumulation around gaps)

 $|\mathit{F}(\mathit{m}+\delta)-\mathit{F}(\mathit{m})|\geq \delta^2$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$

.

APPENDIX on PART II

[31/61]

•0000000

home services

» Feature Based Dynamic Matching

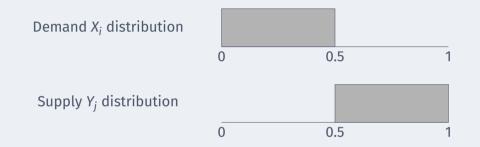
- * Platform has a pool of *T* service providers, who live in *d* dimensional feature space.
 - * e.g., $Y_k = (price, rating)$

- * Platform has a pool of *T* service providers, who live in *d* dimensional feature space.
 - * e.g., $Y_k = (price, rating)$
- * *T* customers arrive online and have i.i.d. preferences, i.e., weights over the features.
 - * e.g., $X_i = -($ sensitivity to price, sensitivity to rating)

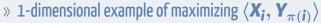
- * Platform has a pool of *T* service providers, who live in *d* dimensional feature space.
 - * e.g., $Y_k = (price, rating)$
- * *T* customers arrive online and have i.i.d. preferences, i.e., weights over the features.
 - * e.g., $X_i = -($ sensitivity to price, sensitivity to rating)
- * Match value is given as $\langle X_i, Y_k \rangle$

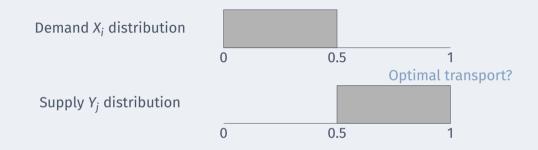
- * Platform has a pool of *T* service providers, who live in *d* dimensional feature space.
 - * e.g., $Y_k = (price, rating)$
- * *T* customers arrive online and have i.i.d. preferences, i.e., weights over the features.
 - * e.g., $X_i = -($ sensitivity to price, sensitivity to rating)
- * Match value is given as $\langle X_i, Y_k \rangle$
- * Both service provider and customer leave upon matching.

- * Platform has a pool of *T* service providers, who live in *d* dimensional feature space.
 - * e.g., $Y_k = (price, rating)$
- * *T* customers arrive online and have i.i.d. preferences, i.e., weights over the features.
 - * e.g., $X_i = -($ sensitivity to price, sensitivity to rating)
- * Match value is given as $\langle X_i, Y_k \rangle$
- * Both service provider and customer leave upon matching.
- $\ast~$ Supply and demand distributions are known and possibly different.

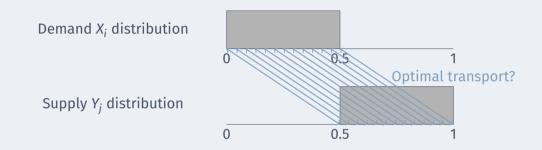


» Performance metric: regret with respect to fluid benchmark


- * We aim to maximize the expected average match value $\frac{1}{T} \sum_{i=1}^{T} \langle X_i, Y_{\pi(i)} \rangle$
- * Fluid benchmark is the value of the optimal transport between the demand distribution and the supply distribution
- $\ast\,$ We aim to minimize the additive regret wrt the fluid benchmark. We want o(1) regret.
- * Problem is equivalent to minimizing $\frac{1}{T} \sum_{i=1}^{T} \|X_i Y_{\pi(i)}\|^2$



» 1-dimensional example of maximizing $\langle \pmb{X_i}, \pmb{Y_{\pi(i)}}
angle$



DSM Part II Problem Introduction Literature Review Gaps in distribution Failure of CE GwG Beyond Multi-secretary Take Aways

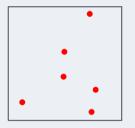
» 1-dimensional example of maximizing $\langle \pmb{X_i}, \pmb{Y_{\pi(i)}}
angle$

- Optimal transport has value per match 0.208
- Greedy fails: produces a random matching, expected value per match is only 0.188

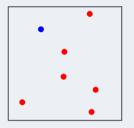
We introduce a simple forward-looking algorithm dubbed SOAR

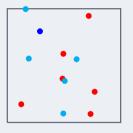
Simulate

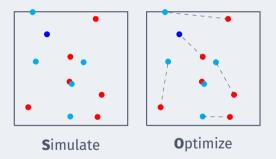
Optimize


Assign

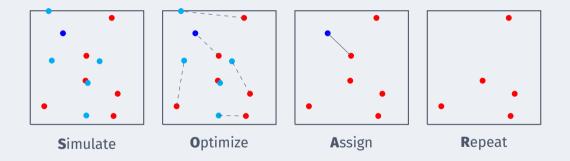
Repeat

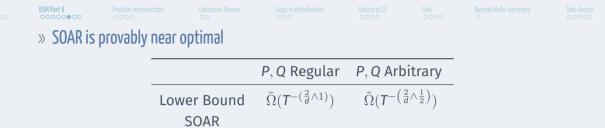

SOAR calculates each matching decision based on a simulation of the future, and hindsight optimization on that future.





Simulate





- $* \frac{1}{NND^2}$ is a lower bound on the regret.
- * For d = 1, the matching constraint leads to a tighter lower bound.
- * For irregular distributions, a simple example tells us $1/\sqrt{T}$ is a lower bound. $1/\sqrt{T} \gg 1/\text{NND}^2$ for $d \leq 3$.

DSM Part II Problem Introduction Literature Review Gaps in distribution Failure of CE CwG Beyond Multi-secretary Technic Ce Secretary Technic Ce Technic Ce

P, Q Regular P, Q Arbitrary

Lower Bound
$$\tilde{\Omega}(T^{-(\frac{2}{d}\wedge 1)}) = \tilde{\Omega}(T^{-(\frac{2}{d}\wedge \frac{1}{2})})$$

SOAR $\tilde{\mathcal{O}}(T^{-(\frac{2}{d}\wedge 1)}) = \tilde{\mathcal{O}}(T^{-(\frac{2}{d}\wedge \frac{1}{2})})$

- $* \frac{1}{NND^2}$ is a lower bound on the regret.
- * For d = 1, the matching constraint leads to a tighter lower bound.
- * For irregular distributions, a simple example tells us $1/\sqrt{T}$ is a lower bound. $1/\sqrt{T} \gg 1/\text{NND}^2$ for $d \leq 3$.

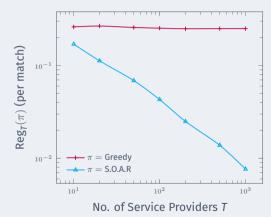
SOAR achieves the optimal regret scaling in all cases.

P, Q Regular P, Q Arbitrary

Lower Bound
$$\tilde{\Omega}(T^{-(\frac{2}{d}\wedge 1)}) = \tilde{\Omega}(T^{-(\frac{2}{d}\wedge \frac{1}{2})})$$

SOAR $\tilde{\mathcal{O}}(T^{-(\frac{2}{d}\wedge 1)}) = \tilde{\mathcal{O}}(T^{-(\frac{2}{d}\wedge \frac{1}{2})})$

- $* \frac{1}{NND^2}$ is a lower bound on the regret.
- * For d = 1, the matching constraint leads to a tighter lower bound.
- * For irregular distributions, a simple example tells us $1/\sqrt{T}$ is a lower bound. $1/\sqrt{T} \gg 1/\text{NND}^2$ for $d \leq 3$.


SOAR achieves the optimal regret scaling in all cases.

Proof idea: Expected regret incurred by SOAR's match when t periods remain is the same as the regret for offline matching of t pairs (which is larger than 1/t). Sum over t and divide by T. Result \sim regret for offline matching of T pairs.

» Numerical evaluation of SOAR's performance

00000000

Figure: d = 1, demand ~ Unif(0, 1/2), supply ~ Unif(0, 1)

Take Aw

- » Talk outline
 - DSM with identical supply and demand distributions
 - * Greedy matching suffices
 - *~ Match distance \sim Nearest-neighbor-distance achievable, except one case
 - DSM with different supply and demand distributions
 - * Greedy fails
 - * Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
 - Multisecretary problem with lumpy value distribution (a 1d DSM problem)
 [O. Besbes, Akshit Kumar & K. '22]
 - * SOAR with one sample path fails
 - * RAMS with multiple sample paths achieves optimal regret scaling
 - * Works also for $d \geq 2$, and across NRM settings.

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Gaps in distrib

Failure of CE

Cv C Beyond Multi-secret

Take Aways

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

* The secretaries arrive in an online fashion.

Gaps in distrib

Failure of CE

Cw O Beyond Multi-secret

Take Aways

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.

Gaps in distribu

Failure of CE

CwG

Beyond Multi-secreta

Take Aways

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.
- * The abilities (types) of the secretaries are drawn **independently** from a **common** and **known** distribution *F* over [0, 1].

Gaps in dis

Failure of

0

Beyond Multi-secreta

Take Aways

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

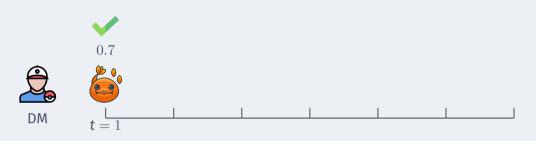
- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** *hire* or *reject* decisions.
- * The abilities (types) of the secretaries are drawn **independently** from a **common** and **known** distribution *F* over [0, 1].

Note: This is a 1d DSM problem, with an atomic "supply" distribution with *B* units at 1 and T-B units at 0. $\Theta(\sqrt{T})$ optimal regret wrt fluid benchmark, which is trivial to achieve. We'll adopt a tighter benchmark to obtain algorithmic insights.

	Problem Introduction			Take Aways
Calla and	hall a second			

» Gotta catchem all some

	Problem Introduction			
	12 II			


» Gotta catchem all some

	Problem Introduction			Take Aways
				F

» Gotta catch'em all some

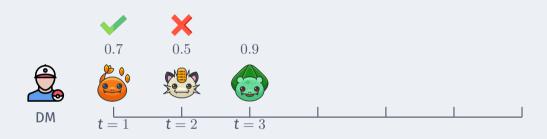
	Problem Introduction			Take Aways
				F


» Gotta catch'em all some

	Problem Introduction			Take Aways

» Gotta catch'em all some

	Problem Introduction			Take Aways
C 11				


» Gotta catchem all some

	Problem Introduction			Take Aways
	1.2 11			

» Gotta catch'em all some

	Problem Introduction			

» Gotta catch'em all some

	Problem Introduction			

» Gotta catch'em all some

	Problem Introduction			

» Gotta catch'em all some

	Problem Introduction			

» Gotta catch'em all some

	Problem Introduction			

» Gotta catch'em all some

0	DSM Part II	Problem Introduction ○●○○	Literature Review	Gaps in distribution	Failure of CE	CwG 0000	Beyond Multi-secretary ○	Take Aways
	» Gotta cato	ch'em all some						
		~	×	V	×	×		
		0.7	0.5	0.9	0.8	0.3		
		6						

DM

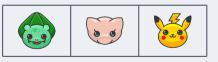
	Problem Introduction			
» Gotta cato	:h'em all some			

	Problem Introduction			
» Gotta cato	hem all some			

	Problem Introduction			
» Gotta cato	hem all some			

	Problem Introduction ○●○○				Take Aways
» Gotta ca	ntch'em all some)			

	Problem Introduction			Take Aways
» Gotta cato	ch'em all some			



Online Policy

	Problem Introduction			Take Aways
» Gotta cate	ch'em all some			

Hindsight Optimal

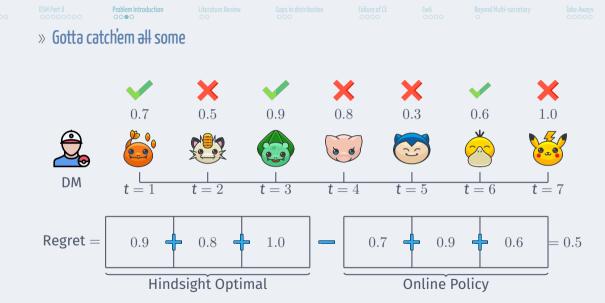
Online Policy

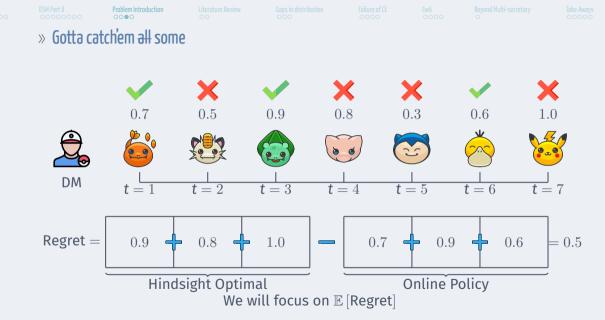
0	DSM Part II	Problem Introduction	Literature Review	Gaps in distribution	n Failure of (0000	E (wG 0000	Beyond Multi-se		Fake Aways
	» Gotta cat	ch'em all some)						
		~	×	~	×	×	~	×	
		0.7	0.5	0.9	0.8	0.3	0.6	1.0	

6

t=4

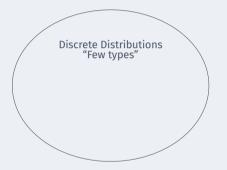
25


t=5

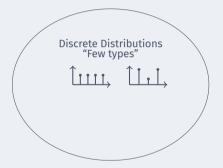

t=6

t=7

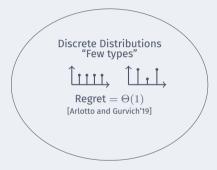
Multisecretary is a 1d DSM problem, with an atomic "supply" distribution with *B* units at 1 and T - B units at 0. $\Theta(\sqrt{T})$ optimal regret wrt fluid benchmark, which can be achieved by a trivial static policy.

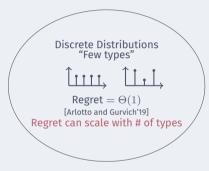

Gap between fluid and hindsight benchmarks is already $\Omega(\sqrt{T})$.

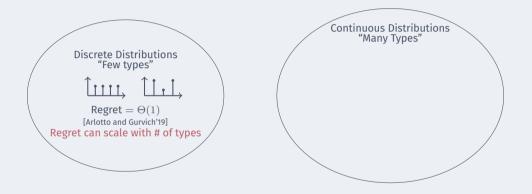
As in the recent NRM literature, we adopt the tighter hindsight benchmark.

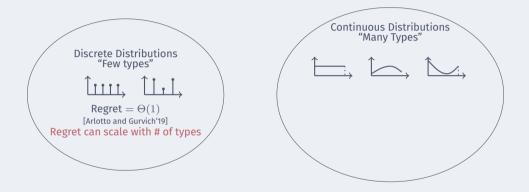


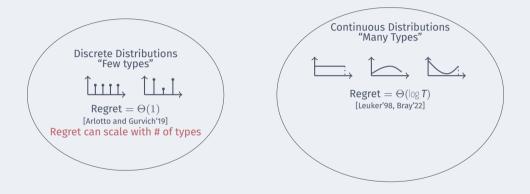
	Literature Review			
	•0			

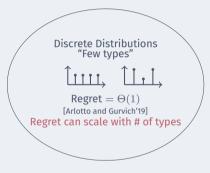


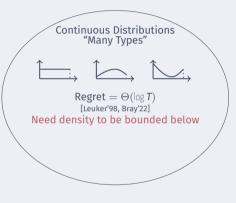


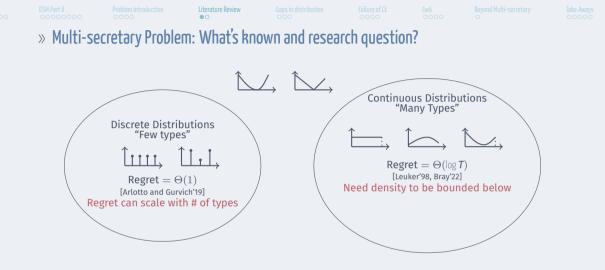


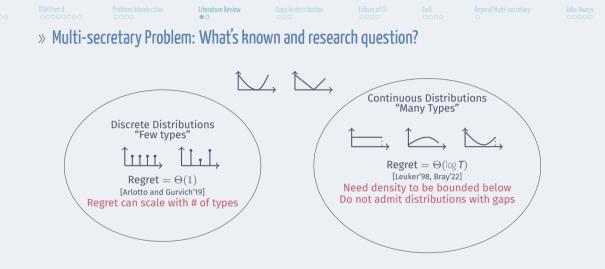


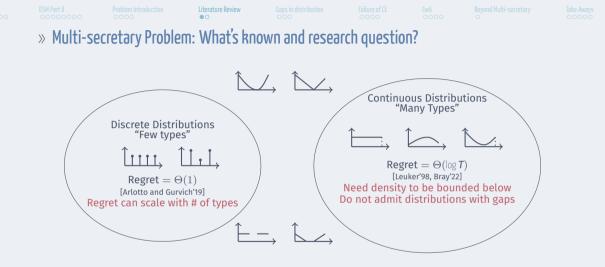


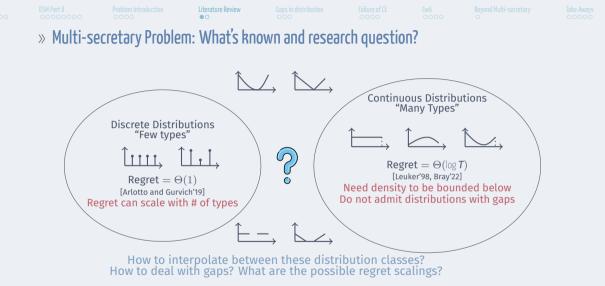








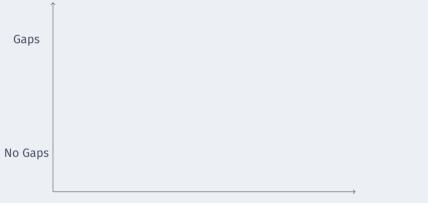

- DSM Part II Problem Introduction Literature Review Gaps in distribution Failure of CE CwG Beyond Multi-secretary
 - » Multi-secretary Problem: What's known and research question?



Problem Introduction

Liter

Gaps in dis

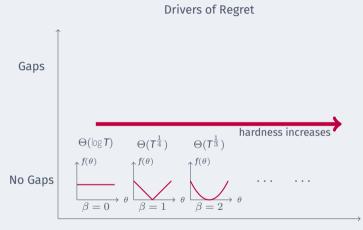

Failure of (

Beyond Multi-secr

Take Aways

» Punchline for the Multi-secretary Problem

Problem Introduction Literature R


Gaps in distrib

Failure of CE

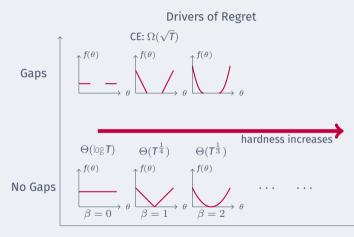
Beyond Multi-secret

Take Aways

» Punchline for the Multi-secretary Problem

Problem Introduction

tion Liter


Gaps in

Failure of

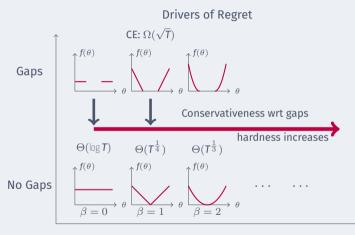
Beyond Multi-se

Take Aways

» Punchline for the Multi-secretary Problem

Problem Introduction

tion Liter


Gaps in

Failure of

Beyond Multi-secre

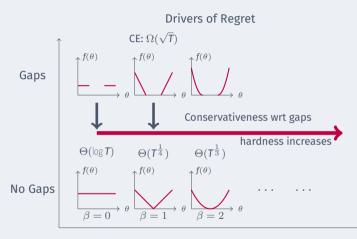
Take Aways

» Punchline for the Multi-secretary Problem

SM Part II Problem

Juction

Gaps in


Failure of

0

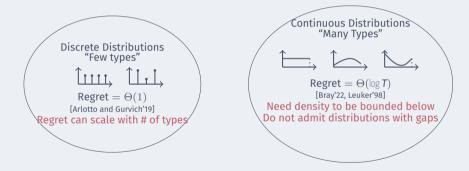
Beyond Multi-secreta

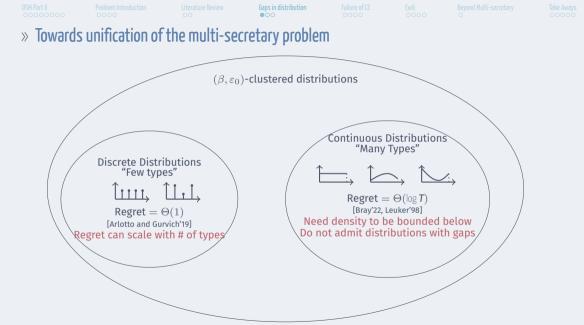
Take Aways

» Punchline for the Multi-secretary Problem

0.

- * Distribution shape is a **fundamental** driver of regret.
- Dealing with gaps is an algorithmic challenge.
- Novel Principle: Conservativeness wrt gaps (CwG)
- multi-sim SOAR variant automatically pursues CwG


USM Part II Provem introduction Literature Review Gaps in distribution


of CE

Beyond Multi-se

Take Aways

» Towards unification of the multi-secretary problem

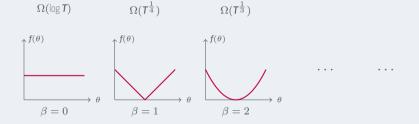
		Gaps in distribution ○●○		

» Fundamental Limits

Universal Lower Bound

For every $\beta \in [0,\infty)$, there exists a distribution F_{eta} such that

$$\sup_{B \in [T]} \mathbb{E}_{F_{\beta}} \left[\mathsf{Regret}(\mathsf{DP}) \right] = \begin{cases} \Omega \left(\log T \right), & \beta = 0, \\ \Omega \left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$


		Gaps in distribution ○●○		

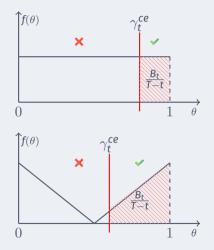
» Fundamental Limits

Universal Lower Bound

For every $eta\in[0,\infty)$, there exists a distribution F_eta such that

$$\sup_{\boldsymbol{B}\in[\boldsymbol{T}]} \mathbb{E}_{\boldsymbol{F}_{\beta}} \left[\mathsf{Regret}(\mathsf{DP}) \right] = \begin{cases} \Omega \left(\log \boldsymbol{T} \right), & \beta = 0, \\ \Omega \left(\boldsymbol{T}^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$

DSM Part II


on Lite

Gaps in distribution

Beyond I

Take Aways

For $(m{eta}, \mathbf{1})$ -clustered distributions

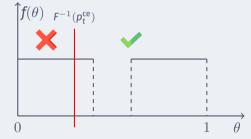
- Let B_t be the remaining budget at time t
- * Compute the budget ratio

» Certainty Equivalent Control

- $br_t = rac{\text{Remaining Budget}}{\text{Remaining Time}} = rac{B_t}{T-t}$
- $\ast~$ Define a quantile threshold $p_t^{ce}=1-br_t$
- * Define a ability threshold $\gamma_t^{ce} = \mathit{F}^{-1}(\mathit{p}_t^{ce})$
- * hire $\iff \theta_t \geq \gamma_t^{ce}$

» Certainty Equivalent Control

For Bi-modal Uniform Distribution


Let B_t be the remaining budget at time t

$$\mathsf{Budget}\ \mathsf{Ratio} = rac{\mathsf{Remaining}\ \mathsf{Budget}}{\mathsf{Remaining}\ \mathsf{Time}} = rac{B_t}{T-t}$$

0000

CE Quantile Threshold
$$= 1 - \frac{B_t}{T-t} \triangleq p_t^{ce}$$

Decision: hire $\iff \theta_t \ge F^{-1}(p_t^{ce})$

DSM Parl

Problem Introduct

tion

Gaps in distr

Failure of CE

secretary

Take Aways

Regret Lower Bound

» Failure of Certainty Equivalent Control

Insufficiency of Certainty Equivalent Control

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

DSM Part II

lem Introduction

Review

Failure of

(wG

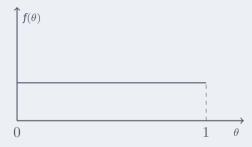
Beyond Multi-secreta

Take Aways

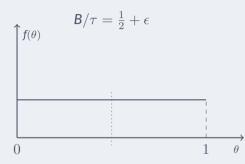
Regret Lower Bound

» Failure of Certainty Equivalent Control

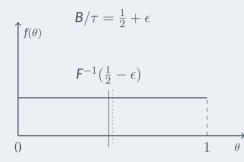
Insufficiency of Certainty Equivalent Control

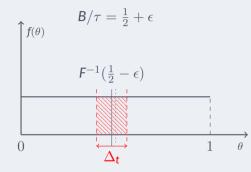

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

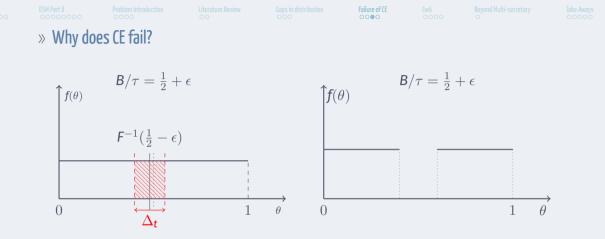
 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

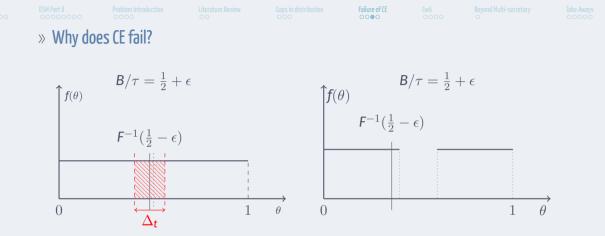

Remark

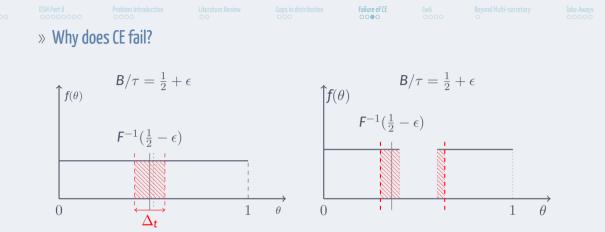
* Same scaling is achievable under a static threshold policy.

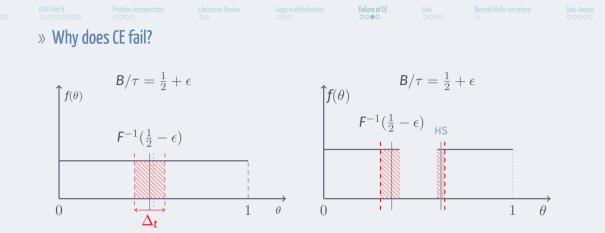

1411				
		Failure of CE		

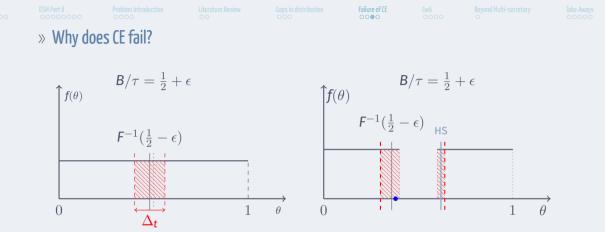

		Failure of CE ○○●○		

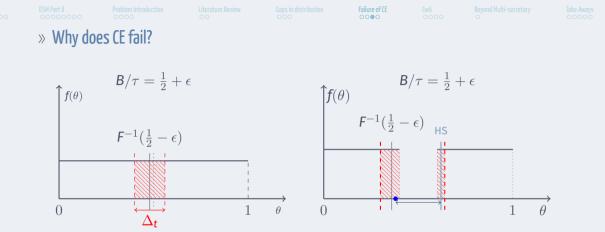


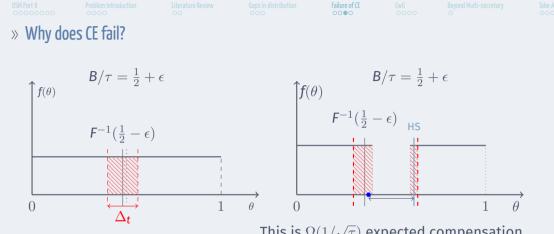

		Failure of CE	
		0000	

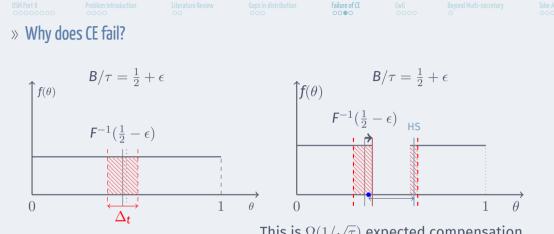


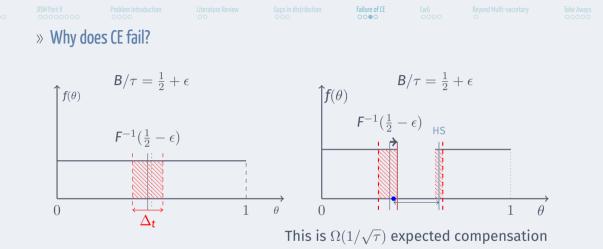

		Failure of CE
		0000



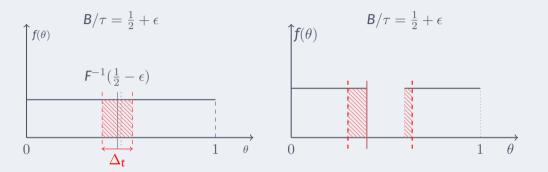




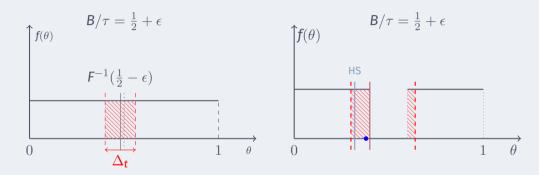




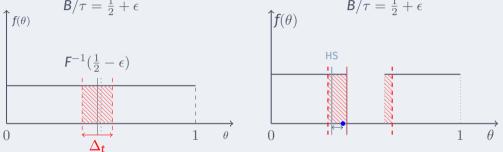
This is $\Omega(1/\sqrt{\tau})$ expected compensation



This is $\Omega(1/\sqrt{\tau})$ expected compensation



Conservativeness wrt gaps



This is $\tilde{\mathcal{O}}(1/\tau)$ expected compensation

am Pat tii Problem introduction Literature Kevie

Gaps in distribut

Failure of CE

CwG ●○○○ Beyond Multi-secretary

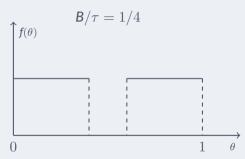
Take Aways

» Good in theory but practically infeasible

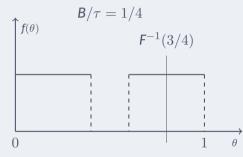
- * What is the conservativeness parameter I should use?
- * How to find where these gaps are? What happens if gaps shift?
- * E.g., no chance of deploying for Amazon's fulfillment problem

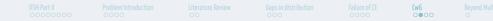
Beyond Multi-secretar

Take Aways

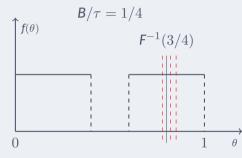

» Conservativeness with respect to gaps

Algorithmic Idea: Simulate into the future



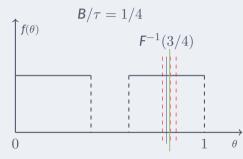

CwG

Algorithmic Idea: Simulate into the future

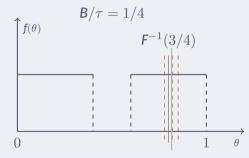


i-secretary

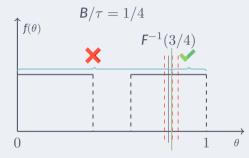
lake Aways


» Conservativeness with respect to gaps

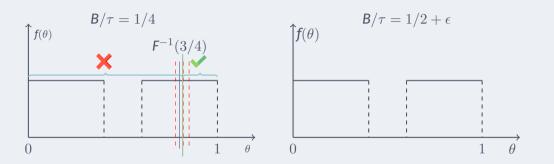
Algorithmic Idea: Simulate into the future

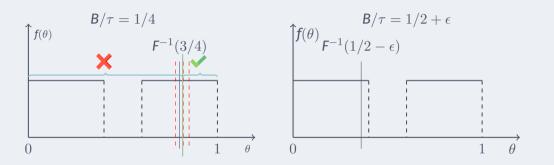


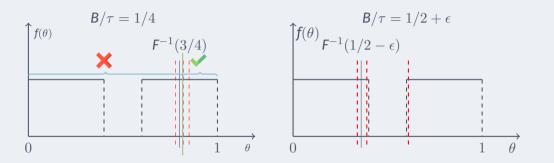

Algorithmic Idea: Simulate into the future

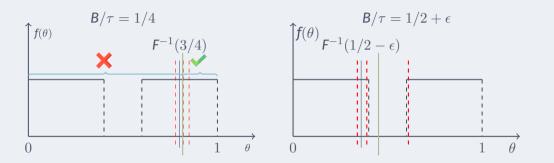


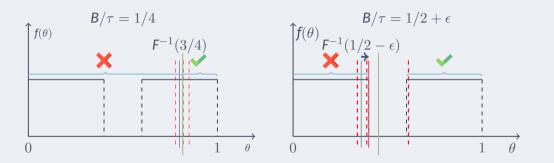
Algorithmic Idea: Simulate into the future




Algorithmic Idea: Simulate into the future







If far from a gap, use the CE threshold If close to gap, use the gap as threshold

Gaps in distr

Failure of CE

CwG

Beyond Multi-secretar

Take Aways

Punchline

» Conservativeness with respect to gaps

Regret of RAMS Policy

If F is a $(\beta,\varepsilon_0)\text{-clustered}$ distribution, then

$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{RAMS})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$

If F is a discrete distribution, $\mathbb{E}\left[\mathsf{Regret}\left(\mathsf{RAMS}\right)\right] = \mathcal{O}(1/\varepsilon_0)$

D.

Liter

Gaps in dist

Failure of CE

CwG

Beyond Multi-secretar

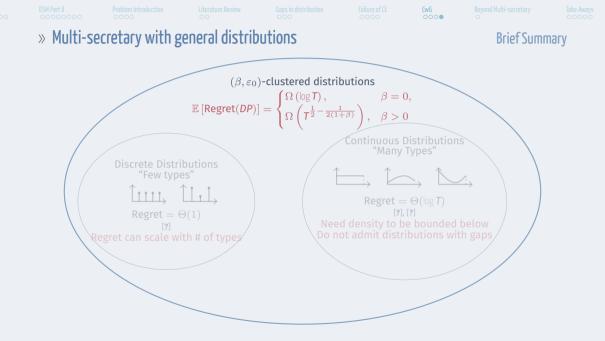
Take Aways

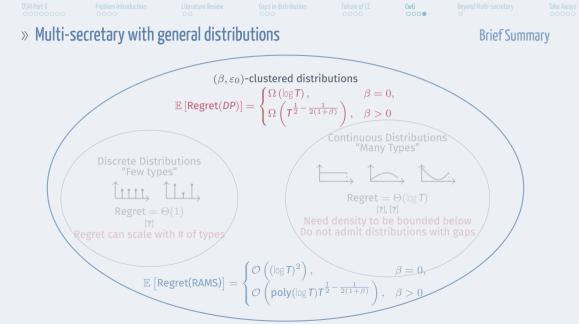
Punchline

» Conservativeness with respect to gaps

Regret of RAMS Policy

If F is a $(\beta,\varepsilon_0)\text{-clustered}$ distribution, then


$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{RAMS})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$


If F is a discrete distribution, $\mathbb{E}\left[\mathsf{Regret}\left(\mathsf{RAMS}\right)\right] = \mathcal{O}(1/\varepsilon_0)$

Remark

- * $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, RAMS ($\mathcal{O}((\log T)^2)$) outperforms CE ($\Omega(\sqrt{T})$).
- $\ast\,$ Matches the universal lower bound upto polylog factors $\,\Rightarrow\,$ RAMS is near-optimal.

- * The multi-secretary problem is special but RAMS is general: in each period, simulate several futures and choose the action which minimizes the expected "compensation" in hindsight. Compensation ≡ How to much we need to pay an agent who knows the future to take a particular action, for a given future.
- * Can be applied to NRM and stochastic online matching problems to recover almost all known guarantees in the literature.

DSM Part II 00000000 n Liten

Gaps in distribut

ailure of CE

B

eyond Multi-secretary

Take Aways

Beyond Multi-secretary

» One Policy to solve them all?

Proposition (RAMS is as good as any algorithm)

Given an NRM setting P, consider *any* algorithm A for P, such that with τ periods remaining, uniformly over the state, the expected compensation under A is bounded above by $\delta_{\tau}(A)$. Then RAMS achieves an expected compensation bounded uniformly by $\delta_{\tau} + 1/\tau^{1.1}$. As a result the regret of RAMS is bounded above by a constant plus the regret guarantee for algorithm A,

$$ext{Regret(RAMS)} \leq ext{Constant} + \sum_{ au=1}^{ au} \delta_{ au}(\mathsf{A}) \,.$$

» What to take away from this talk?

Simple and practical simulation-based policy SOAR is broadly applicable:

- * Recovers the guarantees for almost all settings in the NRM literature (e.g., constant regret for finite types, $\log^2 T$ for semi-infinite types)
- * Establishes novel guarantees for dynamic spatial matching problems

Thank you!

DSM Part II Problem Introduction Literature Review Gap

ibution

fCE

Beyond Multi-secreta

Take Aways

APPENDIX on (β, ε_0) -clustered distributions

[59/61]

DSM Part II

oblem Introduction

Literatu 00 Gaps in distribut

ailure of CE

(w6

Beyond Multi-secreta

Take Aways

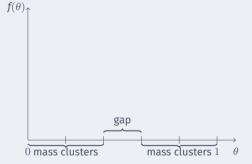
» $(eta,arepsilon_0)$ -clustered distribution

DSM Part II

em Introduction

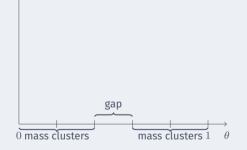
rature Review

ribution


E

Beyond Multi-se

Take Aways


» $(eta,arepsilon_0)$ -clustered distribution

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

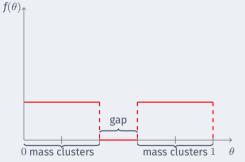
mass cluster \equiv interval with positive mass

 $f(\theta)_{\uparrow}$

» $(oldsymbol{eta},arepsilon_0)$ -clustered distribution

ribution

E

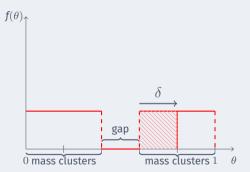

Take Aways

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

» $(eta,arepsilon_0)$ -clustered distribution


re of CE

(wG

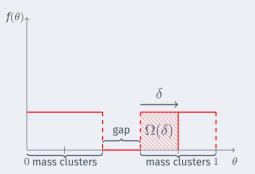
eyond Multi-secretary

Take Aways

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)


» $(eta,arepsilon_0)$ -clustered distribution

ibution

CE

Take Aways

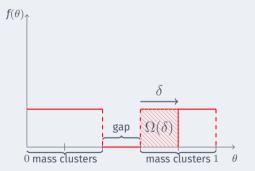
 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

E (

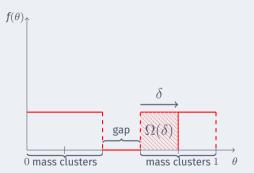

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$


» $(eta,arepsilon_0)$ -clustered distribution

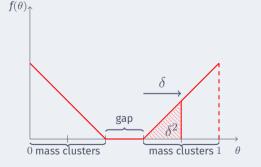
in distribution

of CE

00000

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass


 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$

For discrete distrbutions, $\beta = 0$, $\varepsilon_0 = \min_j p_j$

» (β , ε_0)-clustered distribution

 $Gap \equiv intervals$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 1$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| > \delta^2$ on the same mass cluster

 μ (mass clusters) $\geq \varepsilon_0$

Examples