Simulation Is All You Need

A Unifying algorithm for Network Revenue Management (NRM) and Dynamic Spatial
Matching (DSM)
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» Network Revenue Management: Online Allocation with Resource Constraints
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» Dynamic Spatial Matching (DSM): Motivation

Ridehailing: spatial matching in two dimensions
Matching platforms

Lodging e.g. Airbnb: supply and demand live in a multi-dimensional space
(location, size, amenities, price, etc.)
Labor e.g. Upwork: (expertise dimensions, price, duration, etc.)

Network revenue management with a large number of demand types
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» DSM: Setting and Research Questions

Supply and demand which live in d dimensional space.
Cost of match distance between the matched pair.
T supply units are present beforehand.

Demand arrives sequentially. Needs to be matched immediately with a
supply unit.
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» DSM: Setting and Research Questions

Supply and demand which live in d dimensional space.
Cost of match distance between the matched pair.
T supply units are present beforehand.

Demand arrives sequentially. Needs to be matched immediately with a
supply unit.

How to match demand and supply to minimize spatial costs of matching
under dynamic arrivals?

How large are the costs arising from spatial heterogeneity and uncertainty
about the future in dynamic matching
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» Summary of findings and talk outline

DSM with identical supply and demand distributions [K.]

Greedy matching suffices

Match distance ~ Nearest-neighbor-distance achievable, except one case
DSM with different supply and demand distributions [Chen, Akshit Kumar, K.,
Zhang]

Greedy fails

Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
Multisecretary problem with lumpy value distribution (a 1d DSM problem)
[Besbes, Akshit Kumar, K.]

The Certainty Equivalent policy and SOAR with one sample path fail

RAMS with multiple sample paths achieves optimal regret scaling

RAMS works also for d > 2, and across NRM settings.
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» Talk outline

DSM with identical supply and demand distributions

Greedy matching suffices

Match distance ~ Nearest-neighbor-distance achievable, except one case
DSM with different supply and demand distributions

Greedy fails

Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
Multisecretary problem with lumpy value distribution (a 1d DSM problem)
[O. Besbes, Akshit Kumar & K. '22]

SOAR with one sample path fails
RAMS with multiple sample paths achieves optimal regret scaling
Works also for d > 2, and across NRM settings.
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» Multi-secretary Problem

Problem Statement

Given a sequence of T secretaries and a hiring budget B, a decision
maker (DM) wants to hire the top B secretaries in terms of their
ability.
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» Multi-secretary Problem

Problem Statement

Given a sequence of T secretaries and a hiring budget B, a decision
maker (DM) wants to hire the top B secretaries in terms of their
ability.

The secretaries arrive in an online fashion.
The DM makes irrevocable hire or reject decisions.

The abilities (types) of the secretaries are drawn independently
from a common and known distribution F over [0, 1].

Note: This is a 1d DSM problem, with an atomic “supply” distribution with B units
at 1 and T — B units at 0.
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» Gotta catchem alt some
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» Hindsight-based regret

Multisecretary is a 1d DSM problem, with an atomic “supply” distribution with B
units at 1 and T — B units at 0. ©(+/T) optimal regret wrt fluid benchmark, which
can be achieved by a trivial static policy.

Gap between fluid and hindsight benchmarks is already Q(+/T).
As in the recent NRM literature, we adopt the tighter hindsight benchmark.

VALG VDP VHS VFluid

| | | |
T T T T

Regret(ALG) Q(/T)
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» Multi-secretary Problem: What's known and research question?

N/, D,

Continuous Distributions
“Many Types”

(S S

Regret = O(log T)
[Leuker'98, Bray'22]
Need density to be bounded below
Do not admit distributions with gaps

Discrete Distributions
“Few types”

lun, L0,

Regret = ©(1)
[Arlotto and Gurvich'19]
Regret can scale with # of types

How to interpolate between these distribution classes?
How to deal with gaps? What are the possible regret scalings?
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» Punchline for the Multi-secretary Problem

Drivers of Regret
CE: Q(V/T)

f(6) f(0) f(0)
Gaps L & N
0

Conservativeness wrt gaps

. . hardness increases
O(lgT)  ©(T%) o(Ts)

f(6) f(6) (0)
No Gaps K/ { ,
6 0 0

B=0 =~ B=1 B=2

Rarity of types / Shape of the density (3)

Distribution shape is a
fundamental driver of
regret.

Dealing with gaps is an
algorithmic challenge.
Novel Principle:
Conservativeness wrt
gaps (CwG)
Simulation-based
approach automatically
pursues CwG
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» Towards unification of the multi-secretary problem
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» Towards unification of the multi-secretary problem

(B,e0)-clustered distributions

ontinuous Distributions
“Many Types”

= e, N

Regret = ©(logT)
[Bray’22, Leuker'98]
Need density to be bounded below
Do not admit distributions with gaps

Discrete Distributions
“Few types”

Lun, Tl

Regret = O(1)
[Arlotto and Gurvich'19]
Regret can scale with # of type
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» Fundamental Limits

For every 3 € [0, ), there exists a distribution Fz such that

{Q(|OgT), B =0,

p B, [ResrtOP)] = 1 (rimi) 50

BE(T]
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» Fundamental Limits

For every 3 € [0, ), there exists a distribution Fz such that

Q(logT), 5 = (0,
Q(ﬁ*m%ﬁ, 8> 0.

sup Er, [Regret(DP)] =
BE(T]

Q(logT) Q(T) Q(TH)

f(6) () (6)
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» Certainty Equivalent Control For (3, 1)-clustered distributions

0) e

Let B; be the remaining budget at time t B

Compute the budget ratio =t
br. — Remaining Budget _ B; 0
~  Remaining Time ~— T—t

Define a quantile threshold p¢¢ = 1 — br; 1(6) ce
Define a ability threshold 7 = F~1(pce) X 4
hire < 0; > ~f¢

| e
>

[17/61]



» Certainty Equivalent Control

G

For Bi-modal Uniform Distribution

Let B; be the remaining budget at time t
. Remaining Budget B
BUdget Ratio = Remaining Time ﬁ

CE Quantile Threshold =1 — pge

Decision: hire < 0; > F~1(p®)
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Failure of CE
000

» Failure of Certainty Equivalent Control Regret Lower Bound

Insufficiency of Certainty Equivalent Control

Assume that F = Unif([0, 1] U [2,1]), for B = T/2, we have

E [Regret(CE)] = Q (\Fl’)

[19/61]



Failure of CE
000

» Failure of Certainty Equivalent Control Regret Lower Bound

Insufficiency of Certainty Equivalent Control
Assume that F = Unif([0, 1] U [3,1]), for B = T/2, we have

E [Regret(CE)] =  (VT)

+ Same scaling is achievable under a static threshold policy.
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» Why does CE fail?

S o (O

1 0

This is Q(1/+/7) expected compensation

Conservativeness wrt gaps
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» Why does CE fail? What if?

B/T=73+¢ B/T=73+e

=

colossoosls s=
IR ]

1 o 0 1 0

This is O(1/7) expected compensation
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» Good in theory but practically infeasible

What is the conservativeness parameter | should use?
How to find where these gaps are? What happens if gaps shift?
E.g., no chance of deploying for Amazon’s fulfillment problem

[22/61]
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» (onservativeness with respect to gaps

Algorithmic Idea: Simulate into the future

B/r=1/4 f6) B/r=1/2+¢
1(9) . 0) .
x 00 %57
B T | ;
0 i 1 0 T ! 1

If far from a gap, use the CE threshold If close to gap, use the gap as threshold
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» (onservativeness with respect to gaps Punchline

If Fis a (3,e0)-clustered distribution, then

o ((os7?). 50

E [Regret(RAMS)] = L
Reg ] {(’) <poly(log T)T5_2<1+5>> : B >0

If Fis a discrete distribution, E [Regret (RAMS)] = O(1 /()
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» (onservativeness with respect to gaps Punchline

If Fis a (3,e0)-clustered distribution, then

o ((os7?). 50

E [Regret(RAMS)] = L
Reg } {0(poly(ogr)rm<1+m), B> 0

If Fis a discrete distribution, E [Regret (RAMS)] = O(1 /()

RemarRk
F = Unif([0, ] U [2,1]), RAMS (O((log T)?)) outperforms CE
Q).

Matches the universal lower bound upto polylog factors =
RAMS is near-optimal.

[24/61]
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» Multi-secretary with general distributions Brief Summary

(B,e0)-clustered distributions
Q(logT), B=0,

E [Regret(DP)] = {Q <T%*z<171m) B>0

ontinuous Distributions
“Many Types”

= e D

Regret = O(logT)

Discrete Distributions
“Few types”

Lo, U,

Regret = ©(1)
(2

o ((en?),

E [Regret(RAMS)] = 11
O ( poly(logT)T2  2(1+5) ) |
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» One Policy to solve them all? Beyond Multi-secretary

The multi-secretary problem is special but RAMS is general: in each period,
simulate several futures and choose the action which minimizes the
expected “compensation” in hindsight. Compensation = How to much we
need to pay an agent who knows the future to take a particular action, for a
given future.

Can be applied to NRM and stochastic online matching problems to recover
almost all known guarantees in the literature.
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» One Policy to solve them all? Beyond Multi-secretary

Proposition (RAMS is as good as any algorithm)

Given an NRM setting P, consider any algorithm A for P, such that
with 7 periods remaining, uniformly over the state, the expected
compensation under A is bounded above by §,(A). Then RAMS
achieves an expected compensation bounded uniformly by

5; +1/711. As a result the regret of RAMS is bounded above by a
constant plus the regret guarantee for algorithm A,

.
Regret(RAMS) < Constant + > 4. (A).

=l
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» What to take away from this talk?

Simple and practical simulation-based policy SOAR is broadly applicable:

RAMS (Repeatedly Act based on Multiple Sims) recovers the guarantees for
almost all settings in the NRM literature (e.g., constant regret for finite
types, log? T for semi-infinite types)

Establishes novel guarantees for dynamic spatial matching problems

[27/61]
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass
£(0)

mass cluster = interval with positive mass

B = 0 (mass accumulation around gaps)

0
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1 r 1
1 ) 1
1 gap +Q(0) .
1 A ) 1
+ ] £ + )
0 mass clusters mass clusters 1

|F(m + 6) — F(m)| > 6 on the same mass cluster
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass

f(0)
mass cluster = interval with positive mass
B = 0 (mass accumulation around gaps)
)

) r ) |F(m + 6) — F(m)| > 6 on the same mass cluster

1 I 1

1 gap +Q(0) '

) A ) 1

% ] £ ] p(mass clusters) > eo
0 mass clusters mass clusters1

For discrete distrbutions, 8 = 0,0 = min; p;
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass
£(0)
mass cluster = interval with positive mass

B = 1 (mass accumulation around gaps)

|F(m + &) — F(m)| > 62 on the same mass cluster

]
U J

1§ T
0 mass clusters mass clusters

1
1
1
1
1
|
1
4 wu(mass clusters) > o
1
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» Feature Based Dynamic Matching

a N D am-a/zl'loon"?e services

+ Platform has a pool of T service providers, who live in d dimensional feature
space.
« e.g., Y = (price, rating)
« T customers arrive online and have i.i.d. preferences, i.e., weights over the
features.
« e.g., X; = —(sensitivity to price, sensitivity to rating)
« Match value is given as (X;, Y)
+ Both service provider and customer leave upon matching.
+ Supply and demand distributions are known and possibly different.
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» Performance metric: regret with respect to fluid benchmark

We aim to maximize the expected average match value %Z,-Tﬂ(x,-, Y

Fluid benchmark is the value of the optimal transport between the demand
distribution and the supply distribution

We aim to minimize the additive regret wrt the fluid benchmark. We want
o(1) regret.

Problem is equivalent to minimizing %Z,T:l 1Xi = Yy I?

[33/61]
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» 1-dimensional example of maximizing (X;, Y i))

Demand X; distribution

1
Optimal transport?

Supply Y; distribution

0 0.5 1
+ Optimal transport has value per match 0.208

+ Greedy fails: produces a random matching, expected value per match is only
0.188
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» SOAR: a simple future-aware algorithm

We introduce a simple forward-looking algorithm dubbed SOAR
Simulate

Optimize

Assign

Repeat

SOAR calculates each matching decision based on a simulation of the future, and
hindsight optimization on that future.
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» SOAR: One simulation to optimize them, One simulation to assign them and with

repetition, solve them

[} e TT-e
[ ] ° [ J e '\.
Y ® \\ ° °
[ ] ® o
(] (] e--0 [ ] )
Simulate Optimize Assign Repeat
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» SOAR is provably near optimal

P,Q Regular P, Q Arbitrary

Lower Bound Q(T-GMD) (T (672))
SOAR

5z is @ lower bound on the regret.
For d = 1, the matching constraint leads to a tighter lower bound.

For irregular distributions, a simple example tells us 1/+/T is a lower bound.
1/+/T>> 1/NND? for d < 3.
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» SOAR is provably near optimal

P,Q Regular P, Q Arbitrary
Dy o))
D) o)

Lower Bound ~ Q(T~ ("
SOAR o(rT—(@n

mw &\

NND2 is a lower bound on the regret.

For d = 1, the matching constraint leads to a tighter lower bound.

For irregular distributions, a simple example tells us 1/+/T is a lower bound.
1/v/T > 1/NND? for d < 3.

SOAR achieves the optimal regret scaling in all cases.

Proof idea: Expected regret incurred by SOAR’s match when t periods remain is
the same as the regret for offline matching of t pairs (which is larger than 1/t).
Sum over t and divide by T. Result ~ regret for offline matching of T pairs.
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» Numerical evaluation of SOAR's performance

Figure:d = 1, demand ~ Unif(0, 1/2), supply ~ Unif(0, 1)

—_—

107t -

Reg;(7) (per match)

10-2 | —+— 7 = Greedy
[ —— 7 =S.0AR
Ll L L

10! 102 103

No. of Service Providers T
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» Talk outline

DSM with identical supply and demand distributions

Greedy matching suffices

Match distance ~ Nearest-neighbor-distance achievable, except one case
DSM with different supply and demand distributions

Greedy fails

Simulate-Optimize-Assign-Repeat (SOAR) is near optimal
Multisecretary problem with lumpy value distribution (a 1d DSM problem)
[O. Besbes, Akshit Kumar & K. '22]

SOAR with one sample path fails
RAMS with multiple sample paths achieves optimal regret scaling
Works also for d > 2, and across NRM settings.
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» Multi-secretary Problem

Problem Statement

Given a sequence of T secretaries and a hiring budget B, a decision
maker (DM) wants to hire the top B secretaries in terms of their
ability.
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» Multi-secretary Problem

Problem Statement

Given a sequence of T secretaries and a hiring budget B, a decision
maker (DM) wants to hire the top B secretaries in terms of their
ability.

The secretaries arrive in an online fashion.
The DM makes irrevocable hire or reject decisions.

The abilities (types) of the secretaries are drawn independently
from a common and known distribution F over [0, 1].

Note: This is a 1d DSM problem, with an atomic “supply” distribution with B units
at 1and T—B units at 0. ©(+/T) optimal regret wrt fluid benchmark, which is trivial

to achieve. We'll adopt a tighter benchmark to obtain algorithmic insights. o
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» Gotta catchem alt some

Regret =

4 08 = 1.0 |=| 07

+ 00 +

Hindsight Optimal
We will focus on E [Regret]

Online Policy
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» Hindsight-based regret

Multisecretary is a 1d DSM problem, with an atomic “supply” distribution with B
units at 1 and T — B units at 0. ©(+/T) optimal regret wrt fluid benchmark, which
can be achieved by a trivial static policy.

Gap between fluid and hindsight benchmarks is already Q(+/T).
As in the recent NRM literature, we adopt the tighter hindsight benchmark.

VALG VDP VHS VFluid

| | | |
T T T T

Regret(ALG) Q(/T)
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Literature Review

» Multi-secretary Problem: What's known and research question?

N/, D,

Continuous Distributions
“Many Types”

(S S

Regret = O(log T)
[Leuker'98, Bray'22]
Need density to be bounded below
Do not admit distributions with gaps

Discrete Distributions
“Few types”

lun, L0,

Regret = ©(1)
[Arlotto and Gurvich'19]
Regret can scale with # of types

How to interpolate between these distribution classes?
How to deal with gaps? What are the possible regret scalings?
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» Punchline for the Multi-secretary Problem

Drivers of Regret
CE: Q(V/T)

f(6) f(0) f(0)
Gaps L & N
0

Conservativeness wrt gaps

. . hardness increases
O(lgT)  ©(T%) o(Ts)

f(6) f(6) (0)
No Gaps K/ { ,
6 0 0

B=0 =~ B=1 B=2

Rarity of types / Shape of the density (3)

Distribution shape is a
fundamental driver of
regret.

Dealing with gaps is an
algorithmic challenge.
Novel Principle:
Conservativeness wrt
gaps (CwG)

multi-sim SOAR variant
automatically pursues
CwG
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» Towards unification of the multi-secretary problem

ontinuous Distributions
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= e, N

Regret = ©(logT)
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Do not admit distributions with gaps
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» Fundamental Limits

For every 3 € [0, ), there exists a distribution Fz such that

Q(logT), 5 = (0,
Q(ﬁ*m%ﬁ, 8> 0.

sup Er, [Regret(DP)] =
BE(T]

Q(logT) Q(T) Q(TH)

f(6) () (6)
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» Certainty Equivalent Control For (3, 1)-clustered distributions

0) e

Let B; be the remaining budget at time t B

Compute the budget ratio =t
br. — Remaining Budget _ B; 0
~  Remaining Time ~— T—t

Define a quantile threshold p¢¢ = 1 — br; 1(6) ce
Define a ability threshold 7 = F~1(pce) X 4
hire < 0; > ~f¢

| e
>
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» Certainty Equivalent Control

G

For Bi-modal Uniform Distribution

Let B; be the remaining budget at time t
. Remaining Budget B
BUdget Ratio = Remaining Time ﬁ

CE Quantile Threshold =1 — pge

Decision: hire < 0; > F~1(p®)

[49/61]



Failure of CE
0®00

» Failure of Certainty Equivalent Control Regret Lower Bound

Insufficiency of Certainty Equivalent Control

Assume that F = Unif([0, 1] U [2,1]), for B = T/2, we have

E [Regret(CE)] = Q (\Fl’)

[50/61]



Failure of CE
0®00

» Failure of Certainty Equivalent Control Regret Lower Bound

Insufficiency of Certainty Equivalent Control
Assume that F = Unif([0, 1] U [3,1]), for B = T/2, we have

E [Regret(CE)] =  (VT)

+ Same scaling is achievable under a static threshold policy.

[50/61]



» Why does CE fail?




» Why does CE fail?

B/T = % + €
£(6)




» Why does CE fail?

B/T = % + €
£(6)

F1(i —¢)

— N




» Why does CE fail?

1
§+6

B/T =




» Why does CE fail?

1
§+6

B/ =

1
§+6

B/T =




» Why does CE fail?

1
§+6

B/T =




» Why does CE fail?

w
l_l
—|eN =
I
T —
/ w
a4] _
—|eN
~  _
—
|
L
—
N
=
w
+ v
—| |
I oy
~
= —
~ |
[ L
S
=




» Why does CE fail?

w
4
il o o|baaaaall
T
Il
T —
/ v
B _ ~~~~~~~~~~~~
Y TS
= |
—
|
L
~—
=
Y o
S
\\\\\ —
w
+ o
—|N _ il PPy H
| Beagerece T o
Il D P HA_
T — P S
~ |
[a) L
<
=




» Why does CE fail?

w
4
il o o|baaaaall
T
Il
T —
/ v
B _ ~~~~~~~~~~~~
Y TS
= |
—
|
L
~—
=
Y o
S
\\\\\ —
w
+ o
—|N _ il PPy H
| Beagerece T o
Il D P HA_
T — P S
~ |
[a) L
<
=




» Why does CE fail?

>
—
w
4
— | V) =l ———
T
Il
T —
/ v
B _ ~~~~~~~~~~~~
Y TS
= |
—
|
L
~—
=
Y o
S
\\\\\ —
w
+ o
—| | =|pésecoood H
| Beagerece 1 o
Il I e HA_
T — P S
~ |
om L
<
=




» Why does CE fail?

S o (O

1 6
This is Q(1/+/7) expected compensation




» Why does CE fail?

S o (O

1 6
This is Q(1/+/7) expected compensation




» Why does CE fail?

S o (O

1 0

This is Q(1/+/7) expected compensation

Conservativeness wrt gaps
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» Good in theory but practically infeasible

What is the conservativeness parameter | should use?
How to find where these gaps are? What happens if gaps shift?
E.g., no chance of deploying for Amazon’s fulfillment problem

[53/61]
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Algorithmic Idea: Simulate into the future

B/r=1/4 f6) B/r=1/2+¢
1(9) . 0) .
x 00 %57
B T | ;
0 i 1 0 T ! 1

If far from a gap, use the CE threshold If close to gap, use the gap as threshold
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» (onservativeness with respect to gaps Punchline

If Fis a (3,e0)-clustered distribution, then

o ((os7?). 50

E [Regret(RAMS)] = L
Reg ] {(’) <poly(log T)T5_2<1+5>> : B >0

If Fis a discrete distribution, E [Regret (RAMS)] = O(1 /()
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» (onservativeness with respect to gaps Punchline

If Fis a (3,e0)-clustered distribution, then

o ((os7?). 50

E [Regret(RAMS)] = L
Reg } {0(poly(ogr)rm<1+m), B> 0

If Fis a discrete distribution, E [Regret (RAMS)] = O(1 /()

RemarRk
F = Unif([0, ] U [2,1]), RAMS (O((log T)?)) outperforms CE
Q).

Matches the universal lower bound upto polylog factors =
RAMS is near-optimal.

[55/61]



we
000e

» Multi-secretary with general distributions Brief Summary

(B, e0)-clustered distributions

ontinuous Distributions
“Many Types”

= e D

Regret = O(logT)
121, [2]

Discrete Distributions
“Few types”

Lo, U,

Regret = ©(1)
(2




we
oooe

» Multi-secretary with general distributions Brief Summary

(B,e0)-clustered distributions
Q(logT), B=0,

E [Regret(DP)] = {Q <T%*z<171m) B>0

ontinuous Distributions
“Many Types”

= e D

Regret = O(logT)
121, [2]

Discrete Distributions
“Few types”

Lo, U,

Regret = ©(1)
(2




we
oooe
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(B,e0)-clustered distributions
Q(logT), B=0,

E [Regret(DP)] = {Q <T%*z<171m) B>0

ontinuous Distributions
“Many Types”

= e D

Regret = O(logT)

Discrete Distributions
“Few types”

Lo, U,

Regret = ©(1)
(2

o ((en?),

E [Regret(RAMS)] = 11
O ( poly(logT)T2  2(1+5) ) |
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» One Policy to solve them all? Beyond Multi-secretary

The multi-secretary problem is special but RAMS is general: in each period,
simulate several futures and choose the action which minimizes the
expected “compensation” in hindsight. Compensation = How to much we
need to pay an agent who knows the future to take a particular action, for a
given future.

Can be applied to NRM and stochastic online matching problems to recover
almost all known guarantees in the literature.

[57/61]



» One Policy to solve them all? Beyond Multi-secretary

Proposition (RAMS is as good as any algorithm)

Given an NRM setting P, consider any algorithm A for P, such that
with 7 periods remaining, uniformly over the state, the expected
compensation under A is bounded above by §,(A). Then RAMS
achieves an expected compensation bounded uniformly by

5; +1/711. As a result the regret of RAMS is bounded above by a
constant plus the regret guarantee for algorithm A,

.
Regret(RAMS) < Constant + > 4. (A).

=l
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» What to take away from this talk?

Simple and practical simulation-based policy SOAR is broadly applicable:

Recovers the guarantees for almost all settings in the NRM literature (e.g.,
constant regret for finite types, log T for semi-infinite types)

Establishes novel guarantees for dynamic spatial matching problems

[58/61]



Thank you!



APPENDIX on (8, gg)-clustered distributions
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass
£(0)

mass cluster = interval with positive mass

B = 0 (mass accumulation around gaps)
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|F(m + 6) — F(m)| > 6 on the same mass cluster
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass

f(0)
mass cluster = interval with positive mass
B = 0 (mass accumulation around gaps)
)

) r ) |F(m + 6) — F(m)| > 6 on the same mass cluster

1 I 1

1 gap +Q(0) '

) A ) 1

% ] £ ] p(mass clusters) > eo
0 mass clusters mass clusters1

For discrete distrbutions, 8 = 0,0 = min; p;
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» (8, €0)-clustered distribution Examples

Gap = intervals of positive length with zero mass
£(0)
mass cluster = interval with positive mass

B = 1 (mass accumulation around gaps)

|F(m + &) — F(m)| > 62 on the same mass cluster

]
U J

1§ T
0 mass clusters mass clusters

1
1
1
1
1
|
1
4 wu(mass clusters) > o
1
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