Greedy Algorithm for Multiway Matching with Bounded Regret

Varun Gupta

Motivation: Kidney Exchange

Online (Poisson) arrivals of (donor, recipient) pairs

Directed edge = donor of source pair compatible with the recipient of destination pair

State = queue lengths $(Q_1, Q_2, ..., Q_n)$ of unmatched pairs

Decision = which match (directed cycle) to execute now

Goal = maximize match quality, keep queues small

A high dimensional MDP!

Results of (Kerimov, Ashlagi, Gurvich. 2021)

- A periodic max weight matching policy keeps queues bounded
- If all feasible matches are of size 2, then a simple "Greedy" policy keeps queues bounded. "Greedy" fails for matches of size > 2

2 **This paper:** A different "Greedy" policy (greedy commitment) works; no tuning parameters

Main Contributions

- 1. A unified framework for many online resource allocation problems, e.g.,
	- Organ transplant matching
	- Assemble-to-Order systems
	- Network revenue management
	- Multiclass-multiserver queueing systems
	- Stochastic bin packing
	- Assortment under dynamic inventory
- 2. A universal greedy algorithm with small $(O(1)$ or $O(\log T))$ regret under a mild robustness of basis condition
- 3. Technique: Combination of Lypaunov Drift with Amortized Analysis to handle non-stationarity

Airline Network Revenue Management (NRM)

Finite horizon T

Offline Resources = capacities on legs Online arrivals (*i.i.d.*) = origin-dest. pairs Decision = a feasible origin-dest. route Goal = maximize total revenue

Extension: offer a *(route, price)*

Assemble-to-Order (ATO) Systems

Online arrivals (*i.i.d.*) of orders, can be queued or discarded on arrival

Parts/Components used to assemble orders

Decisions

- 1. Replenishment: when/how to purchase parts (assume *i.i.d.* exogenous arrivals)
- 2. Assembly: if/when/how to fulfill orders

Goal = maximize total revenue, keeping queues small

Assortments under Dynamic Inventory

User Products

Online replenishment of products and arrivals of users

Decisions: which assortment to offer subject to current inventory

Goal = maximize revenue

Multiclass-Multiserver Queueing Systems

Online arrivals of service requests

Service requests can be queued or discarded on arrival

Decision = which request to serve when a server idles

Goal = maximize match quality, keep queues small

Stochastic (static) Bin Packing

Bins Items

Infinite collection of bins of integer size B

Online arrivals $(i.i.d.)$ = items with size $\leq B$

Decision = irrevocably assign items on arrival to a feasible bin

Goal = minimize number of bins used

(online)

Outline

- **A** unified framework for online multiway matching
- Special case : online-queueable resources, *i.i.d.* arrivals
	- Definitions and Result
	- Algorithm
	- Analysis ideas
- General case : offline and nonqueueable resources, non-stationary arrivals
	- Definitions and Results
	- Algorithm

Online (queueable)

Matching

- Horizon T
- Resource/Item types $\mathcal{I} = \mathcal{I}^{\text{off}} \cup \mathcal{I}^{\text{on}-\text{q}} \cup \mathcal{I}^{\text{on}-\text{nq}} = \{1, ..., n\}$
- Matching configurations $\mathcal{M} = \{1, ..., d\}$, matrix $M \in \mathbb{R}_+^{n \times d}$
	- M_{im} = average number of type *i* resources consumed by m
	- reward r_m
	- \mathcal{M} includes singletons to model discarding of resources
- Known stationary demand distribution λ
- Offline resources: inventory $L_i = \lambda_i T$ for $i \in \mathcal{I}^{off}$
- Online resources: at each time $t \in [T]$ item i ∈ $\mathcal{I}^{\text{on}-q} \cup \mathcal{I}^{\text{on}-nq}$ arrives w. prob. λ_i
- $\sim J^{\text{on}-\text{nq}}$ are lost if not matched on arrival; $J^{\text{on}-\text{q}}$ can be queued indefinitely
- **Goal:** Minimize anytime regret

max t $\mathbb{E}[($ Reward of $OPT^t)$ – (Reward of $ALG^t)$

Outline

- A unified framework for online multiway matching
- Special case : online-queueable resources, *i.i.d.* arrivals
	- Definitions and Result
	- Algorithm
	- Analysis ideas
- Assemble-to-Order with exogenous replenishments
- Kidney exchange
- General case : offline and nonqueueable resources, non-stationary arrivals
	- Definitions and Results
	- Algorithm

Definitions: Static Planning Problem (SPP), General Position Gap (GPG)

Definition (GPG_{ϵ}) **:** Let \mathcal{M}_{+} be an optimal basis for $(SPP(\lambda))$ with optimal solution x^* .

We say that λ satisfies GPG_{ϵ} if for any $\hat{\lambda} \in \mathcal{B}_{\epsilon, TV}(\lambda)$, there exists an optimal solution to $SPP(\hat{\lambda})$ with basis \mathcal{M}_+

Definitions (contd.)

Definition' (GPG_{ϵ}): λ satisfies GPG_{ϵ} if

- 1. the solution α^* to the dual of $SPP(\lambda)$ is unique
- 2. α^* is the solution to dual of $SPP(\hat{\lambda})$ for any $\hat{\lambda} \in \mathcal{B}_{\epsilon, TV}(\lambda)$

Dual Static Planning Problem ($DSPP(\lambda)$ **):** $\min_{\{\alpha_i\}} \sum_{i \in \mathcal{I}} \lambda_i \cdot \alpha_i$ ∈ℐ

subject to

$$
\forall m \in \mathcal{M} \colon \sum_{i \in \mathcal{I}} M_{im} \cdot \alpha_i \ge r_m
$$

Theorem 1: Under GPG_{ϵ} , Greedy algorithm gets anytime regret Regret $\leq O\binom{n^3}{\epsilon}$.

1. Solve for x^* and an optimal basis \mathcal{M}_+

1. Solve for x^* and an optimal basis \mathcal{M}_+

1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in$ \mathcal{M}_+ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in$ \mathcal{M}_+ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type *i* items committed to m

1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in$ \mathcal{M}_+ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type *i* items committed to m

3. Cyclic SS potential function for config. *m*:
\n
$$
\Phi_m(Q_m)
$$
\n
$$
= \left(\frac{Q_{i_1m}}{M_{i_1m}} - \frac{Q_{i_2m}}{M_{i_2m}}\right)^2 + \left(\frac{Q_{i_2m}}{M_{i_2m}} - \frac{Q_{i_3m}}{M_{i_3m}}\right)^2 + \cdots
$$
\n
$$
+ \left(\frac{Q_{i_mm}}{M_{i_mm}} - \frac{Q_{i_1m}}{M_{i_1m}}\right)^2
$$

1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in$ \mathcal{M}_+ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type *i* items committed to m

3. Cyclic SS potential function for config. *m*:
\n
$$
\Phi_m(\boldsymbol{Q}_m)
$$
\n
$$
= \left(\frac{Q_{i_1m}}{M_{i_1m}} - \frac{Q_{i_2m}}{M_{i_2m}}\right)^2 + \left(\frac{Q_{i_2m}}{M_{i_2m}} - \frac{Q_{i_3m}}{M_{i_3m}}\right)^2 + \cdots
$$
\n
$$
+ \left(\frac{Q_{i_mm}}{M_{i_mm}} - \frac{Q_{i_1m}}{M_{i_1m}}\right)^2
$$

4. Commit item to minimize $\sum_m \Phi_m(Q_m)$

Results

Example from Kerimov et al. (2021)

Analysis Ideas

1. expected change in Ψ^t is large and negative when *i* arrives

2. expected change in Ψ^t is $\mathcal{O}(1)$ due to $\lambda - \epsilon \cdot e_i$

$$
\Psi^t \text{ large } \Longrightarrow \text{ expected drift} \leq -\frac{\epsilon}{4n^2}
$$

Random walk bound: Upper bound Ψ^t in increasing convex order by a random walk with *i.i.d.* increments of size $\pm\sqrt{2}$ and bias $\left(-\frac{\epsilon}{2}\right)$ $4n^2$

Outline

- A unified framework for online multiway matching
- Special case : online-queueable resources, *i.i.d.* arrivals
	- Definitions and Result
	- Algorithm
	- Analysis ideas
- General case : offline and nonqueueable resources, non-stationary arrivals
	- Definitions and Results
	- Algorithm

What changes?

Obstacle 1 (Algorithm): Dealing with offline resources **Solution:** Treat them like online resources by simulating an arrival process (need knowledge of T), i.e., the item arriving at time t is

- either an J^{off} item with probability 1
- or, an $\mathcal{I}^{\text{on}-q} \cup \mathcal{I}^{\text{on}-nq}$ item sampled from λ

Obstacle 2 (Analysis): This gives a non-stationary arrival process **Solution:**

- Relax GPG_{ϵ} to smoothed $GPG_{\delta,\tau}$
- combine amortized analysis with Lyapunov drift analysis

Smoothed $\boldsymbol{GPG}_{\delta,\tau}$ **condition**

 $(\lambda_1, \lambda_2, ..., \lambda_T)$: a *previsible* stochastic process w.r.t the filtration of arrivals

There exists a process $\widehat{\lambda}^t$ that is :

- (i) Close to $\bar{\lambda}$: $\hat{\lambda}^t \in \mathcal{B}_{\epsilon-\delta,\text{TV}}(\bar{\lambda})$
- (ii) Tracks λ^t : $\sum_{s=1}^{t-2\tau} \hat{\lambda}^s \leq \sum_{s=\tau+1}^{t} \lambda^s \leq \sum_{s=1}^{t} \hat{\lambda}^s$

Smoothed $GPG_{\delta, \tau} \approx$ **the avg. distribution in any** τ **window is** $\epsilon - \delta$ **close to** $\bar{\lambda}$

Results

Theorem 2: If no configurations in \mathcal{M}_+ have items from both $\mathcal{I}^{\mathsf{on}-\mathsf{q}}, \mathcal{I}^{\mathsf{on}-\mathsf{n}\mathsf{q}}$ then under $GPG_{\delta,\tau}$

Regret $\leq O\left(\frac{n^3\tau^2}{\delta}\right)$.

Theorem 3: If some configuration in \mathcal{M}_+ has items from both $\mathcal{I}^{\mathsf{on}-\mathsf{q}}, \mathcal{I}^{\mathsf{on}-\mathsf{n}\mathsf{q}}$ then under $GPG_{\delta,\tau}$

$$
Regret \le O\left(\frac{n^3 \tau^4 \log t}{\delta}\right).
$$

1. Solve for x^* and an optimal basis \mathcal{M}_+

1. Solve for x^* and an optimal basis \mathcal{M}_+

2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

1. Solve for x^* and an optimal basis \mathcal{M}_+

2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

 \tilde{Q}_{im} = virtual queue length for (i, m)

3. Commit item to minimize $\sum_m \Phi_m(\tilde{\bm{Q}}_m)$

1. Solve for x^* and an optimal basis \mathcal{M}_+

2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

- 3. Commit item to minimize $\sum_m \Phi_m(\tilde{\bm{Q}}_{\bm{m}})$
- 4. **Virtual match:** executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $$

- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{\bm{Q}}_{\bm{m}})$
- 4. **Virtual match:** executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $$
- **Physical match:** executed if
- virtual match happens, and
- on-q available locally in Q , and
- offline available globally (possibly outside Q) $\qquad \qquad$ 34

- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{\bm{Q}}_{\bm{m}})$
- 4. **Virtual match:** executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $$
- **Physical match:** executed if
- virtual match happens, and
- on-q available locally in Q , and
- offline available globally (possibly outside Q)

- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

 \tilde{Q}_{im} = virtual queue length for (i, m)

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{\bm{Q}}_{\bm{m}})$
- 4. **Virtual match:** executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $$

Physical match: executed if

- virtual match happens, and
- on-q available locally in Q , and
- offline available globally (possibly outside Q)

- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{\bm{Q}}_{\bm{m}})$
- 4. **Virtual match:** executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $$
- **Physical match:** executed if
- virtual match happens, and
- on-q available locally in Q , and
- offline available globally (possibly outside Q)

Results

Next steps

- **Replenishment decisions for Assemble-to-Order systems**
- Reusable resources

e.g., loss networks (Iyengar and Sigman, 2004)

- **Extension to non-stationary demand**
- **Incorporating noisy forecasts**

e.g., Gaussian process demand (Ciocan and Farias, 2012)

■ Waiting costs / abandonments