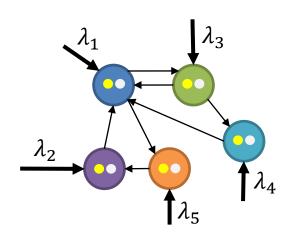
Greedy Algorithm for Multiway Matching with Bounded Regret

Varun Gupta

Motivation: Kidney Exchange



Online (Poisson) arrivals of (donor, recipient) pairs

Directed edge = donor of source pair compatible with the recipient of destination pair

State = queue lengths $(Q_1, Q_2, ..., Q_n)$ of unmatched pairs

Decision = which match (directed cycle) to execute now

Goal = maximize match quality, keep queues small

A high dimensional MDP!

Results of (Kerimov, Ashlagi, Gurvich. 2021)

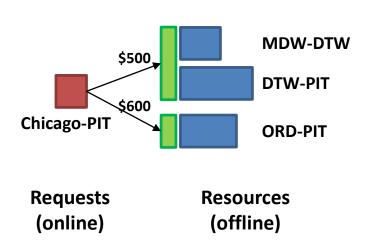
- A periodic max weight matching policy keeps queues bounded
- If all feasible matches are of size 2, then a simple "Greedy" policy keeps queues bounded. "Greedy" fails for matches of size > 2

This paper: A different "Greedy" policy (greedy commitment) works; no tuning parameters

Main Contributions

- 1. A unified framework for many online resource allocation problems, e.g.,
 - Organ transplant matching
 - Assemble-to-Order systems
 - Network revenue management
 - Multiclass-multiserver queueing systems
 - Stochastic bin packing
 - Assortment under dynamic inventory
- 2. A universal greedy algorithm with small $(O(1) \text{ or } O(\log T))$ regret under a mild robustness of basis condition
- 3. Technique: Combination of Lypaunov Drift with Amortized Analysis to handle non-stationarity

Airline Network Revenue Management (NRM)



Finite horizon T

Offline Resources = capacities on legs

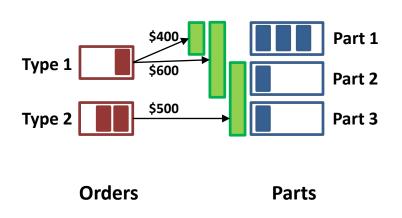
Online arrivals (i.i.d.) = origin-dest. pairs

Decision = a feasible origin-dest. route

Goal = maximize total revenue

Extension: offer a (route, price)

Assemble-to-Order (ATO) Systems



Online arrivals (i.i.d.) of orders, can be queued or discarded on arrival

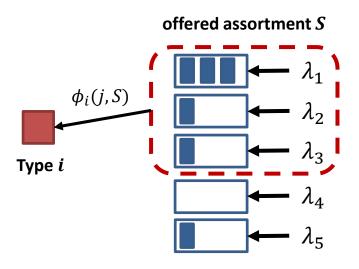
Parts/Components used to assemble orders

Decisions

- 1. Replenishment: when/how to purchase parts (assume *i.i.d.* exogenous arrivals)
- 2. Assembly: if/when/how to fulfill orders

Goal = maximize total revenue, keeping queues small

Assortments under Dynamic Inventory



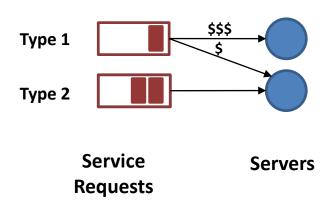
Online replenishment of products and arrivals of users

Decisions: which assortment to offer subject to current inventory

Goal = maximize revenue

User Products

Multiclass-Multiserver Queueing Systems



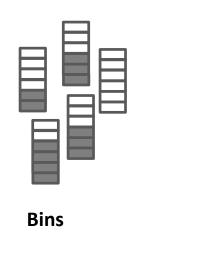
Online arrivals of service requests

Service requests can be queued or discarded on arrival

Decision = which request to serve when a server idles

Goal = maximize match quality, keep queues small

Stochastic (static) Bin Packing



Items (online) Infinite collection of bins of integer size *B*

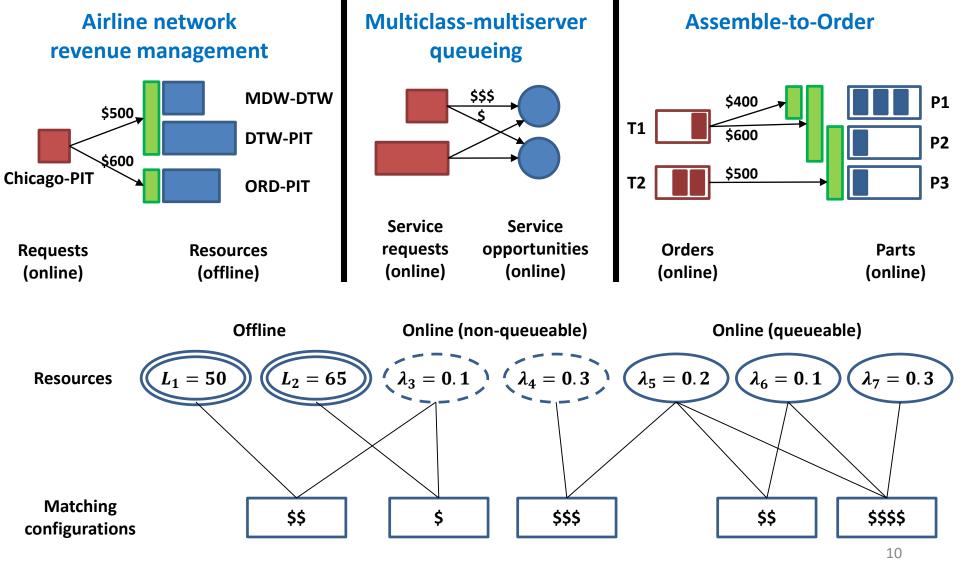
Online arrivals (i.i.d.) = items with size $\leq B$

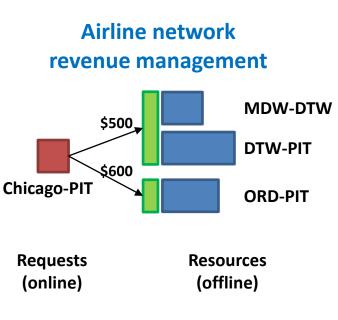
Decision = irrevocably assign items on arrival to a feasible bin

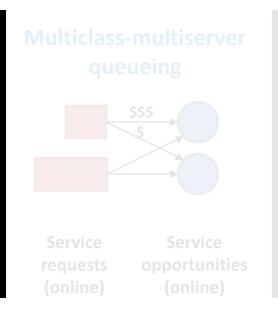
Goal = minimize number of bins used

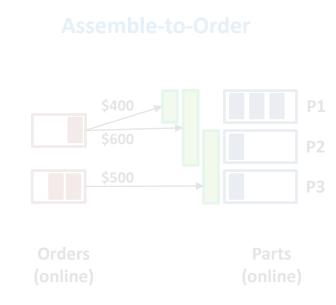
Outline

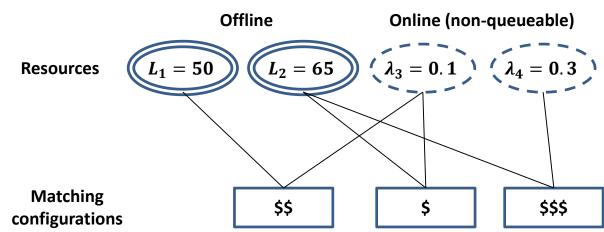
- A unified framework for online multiway matching
- Special case : online-queueable resources, i.i.d. arrivals
 - Definitions and Result
 - Algorithm
 - Analysis ideas
- General case : offline and nonqueueable resources, non-stationary arrivals
 - Definitions and Results
 - Algorithm

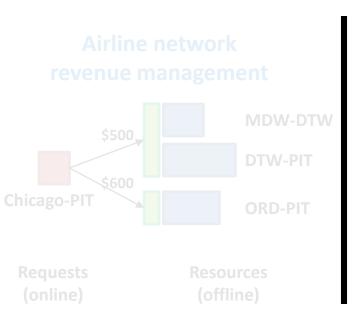


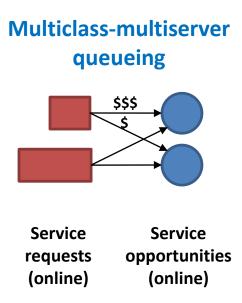


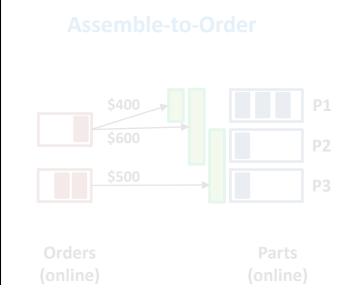






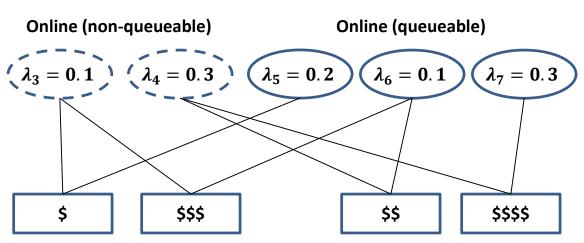


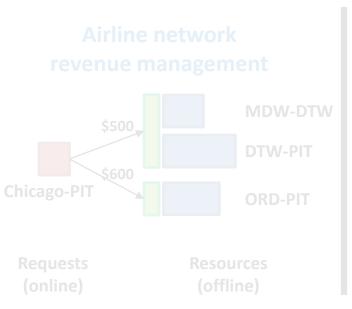


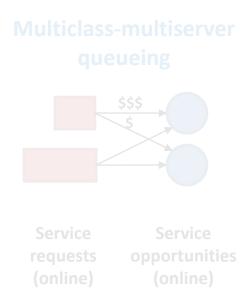


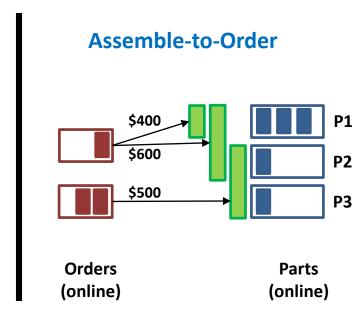
Resources

Matching configurations





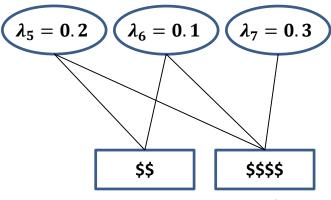




Resources

Matching configurations

Online (queueable)



- Horizon *T*
- Resource/Item types $\mathcal{I} = \mathcal{I}^{\text{off}} \cup \mathcal{I}^{\text{on-q}} \cup \mathcal{I}^{\text{on-nq}} = \{1, ..., n\}$
- Matching configurations $\mathcal{M} = \{1, ..., d\}$, matrix $M \in \mathbb{R}^{n \times d}_+$
 - M_{im} = average number of type i resources consumed by m
 - reward r_m
 - \mathcal{M} includes singletons to model discarding of resources
- Known stationary demand distribution *→*
- Offline resources: inventory $L_i = \lambda_i T$ for $i \in \mathcal{I}^{\text{off}}$
- Online resources: at each time $t \in [T]$ item $i \in \mathcal{I}^{on-q} \cup \mathcal{I}^{on-nq}$ arrives w. prob. λ_i
- $J^{\text{on-nq}}$ are lost if not matched on arrival; $J^{\text{on-q}}$ can be queued indefinitely
- Goal: Minimize anytime regret $\max_t \mathbb{E}[(\mathsf{Reward} \ \mathsf{of} \ \mathit{OPT}^t) (\mathsf{Reward} \ \mathsf{of} \ \mathit{ALG}^t)]$

Outline

- A unified framework for online multiway matching
- Special case : online-queueable resources, i.i.d. arrivals
 - Definitions and Result
 - Algorithm
 - Analysis ideas

- Assemble-to-Order with exogenous replenishments
- Kidney exchange
- General case : offline and nonqueueable resources, non-stationary arrivals
 - Definitions and Results
 - Algorithm

Definitions: Static Planning Problem (SPP), General Position Gap (GPG)

Static Planning Problem ($SPP(\lambda)$):

$$\max_{\{x_m\} \ge \mathbf{0}} \sum_m r_m \cdot x_m$$

subject to

$$\forall i \in \mathcal{I}: \sum_{m} M_{im} \cdot x_{m} = \lambda_{i}$$

Definition (GPG_{ϵ}): Let \mathcal{M}_{+} be an optimal basis for ($SPP(\lambda)$) with optimal solution x^{*} .

We say that λ satisfies GPG_{ϵ} if for any $\hat{\lambda} \in \mathcal{B}_{\epsilon,TV}(\lambda)$, there exists an optimal solution to $SPP(\hat{\lambda})$ with basis \mathcal{M}_{+}

Definitions (contd.)

Definition' (GPG_{ϵ}): λ satisfies GPG_{ϵ} if

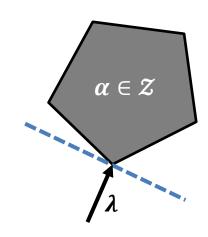
- 1. the solution α^* to the dual of $SPP(\lambda)$ is unique
- **2.** α^* is the solution to dual of $SPP(\hat{\lambda})$ for any $\hat{\lambda} \in \mathcal{B}_{\epsilon,TV}(\lambda)$

Dual Static Planning Problem ($DSPP(\lambda)$ **):**

$$\min_{\{\alpha_i\}} \sum_{i \in \mathcal{I}} \lambda_i \cdot \alpha_i$$

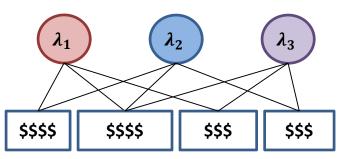
subject to

$$\forall m \in \mathcal{M} \colon \sum_{i \in \mathcal{I}} M_{im} \cdot \alpha_i \ge r_m$$

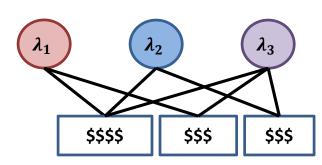


Theorem 1: Under GPG_{ϵ} , Greedy algorithm gets anytime regret Regret $\leq O(n^3/\epsilon)$.

1. Solve for x^* and an optimal basis \mathcal{M}_+



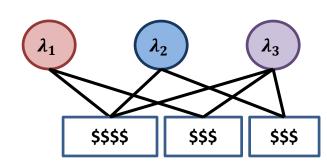
1. Solve for x^* and an optimal basis \mathcal{M}_+



1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in \mathcal{M}_+$ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

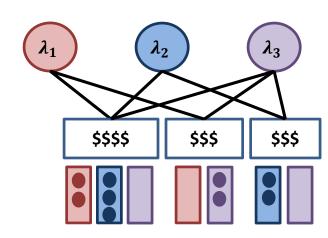


1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in \mathcal{M}_+$ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type i items committed to m



1. Solve for x^* and an optimal basis \mathcal{M}_+

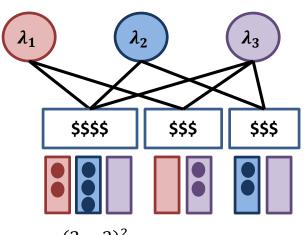
Idea: commit an arrival to some configuration $m \in \mathcal{M}_+$ greedily

2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type i items committed to m

3. Cyclic SS potential function for config. m:

$$\begin{split} & \Phi_m(\boldsymbol{Q_m}) \\ & = \left(\frac{Q_{i_1m}}{M_{i_1m}} - \frac{Q_{i_2m}}{M_{i_2m}}\right)^2 + \left(\frac{Q_{i_2m}}{M_{i_2m}} - \frac{Q_{i_3m}}{M_{i_3m}}\right)^2 + \cdots \\ & + \left(\frac{Q_{i_mm}}{M_{i_mm}} - \frac{Q_{i_1m}}{M_{i_1m}}\right)^2 \end{split}$$



$$\Phi_m = +(3-0)^2 + (0-2)^2$$

1. Solve for x^* and an optimal basis \mathcal{M}_+

Idea: commit an arrival to some configuration $m \in \mathcal{M}_+$ greedily

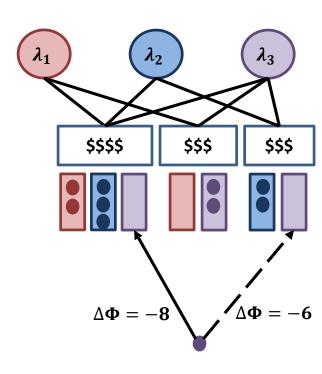
2. Maintain queues for each $m \in \mathcal{M}_+$ and $i \in m$

 Q_{im} = number of unmatched type i items committed to m

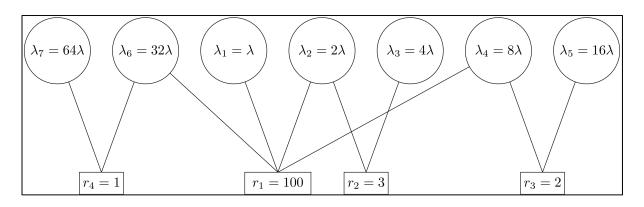
3. Cyclic SS potential function for config. m:

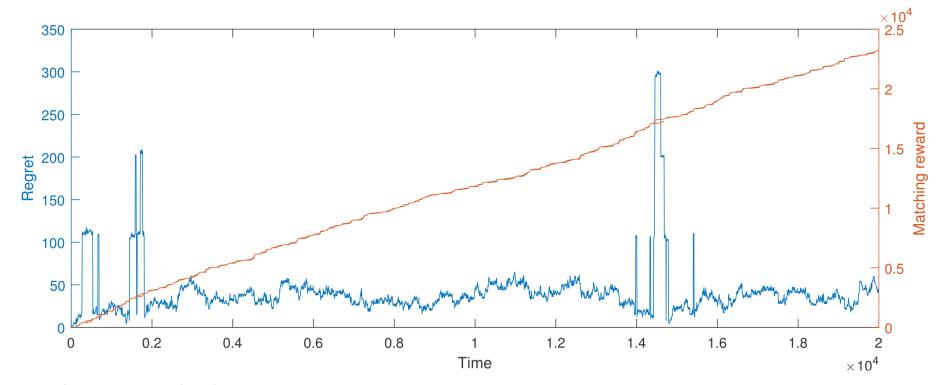
$$\begin{split} & \Phi_m(\boldsymbol{Q_m}) \\ & = \left(\frac{Q_{i_1m}}{M_{i_1m}} - \frac{Q_{i_2m}}{M_{i_2m}}\right)^2 + \left(\frac{Q_{i_2m}}{M_{i_2m}} - \frac{Q_{i_3m}}{M_{i_3m}}\right)^2 + \cdots \\ & + \left(\frac{Q_{i_mm}}{M_{i_mm}} - \frac{Q_{i_1m}}{M_{i_1m}}\right)^2 \end{split}$$

4. Commit item to minimize $\sum_m \Phi_m(\boldsymbol{Q_m})$



Results





Analysis Ideas

Regret-
$$Q$$
 lemma: Regret $^t \leq \alpha^* \cdot \mathbb{E}[Q^t]$

Lyapunov function:
$$\Psi^t = \sqrt{\Phi^t}$$

Bounded increment:
$$|\Psi^{t+1} - \Psi^t| \le \sqrt{2}$$
 almost surely

Drift lemma: If Ψ^t is large then there is some item $i \in \mathcal{I}$ such that

- 1. expected change in Ψ^t is large and negative when i arrives
- 2. expected change in Ψ^t is $\mathcal{O}(1)$ due to $\lambda \epsilon \cdot e_i$

$$\Psi^t$$
 large \implies expected drift $\leq -\frac{\epsilon}{4n^2}$

Random walk bound: Upper bound Ψ^t in increasing convex order by a random walk with *i.i.d.* increments of size $\pm \sqrt{2}$ and bias $\left(-\frac{\epsilon}{4n^2}\right)$

Outline

- A unified framework for online multiway matching
- Special case : online-queueable resources, i.i.d. arrivals
 - Definitions and Result
 - Algorithm
 - Analysis ideas
- General case : offline and nonqueueable resources, non-stationary arrivals
 - Definitions and Results
 - Algorithm

What changes?

Obstacle 1 (Algorithm): Dealing with offline resources

Solution: Treat them like online resources by simulating an arrival process (need knowledge of T), i.e., the item arriving at time t is

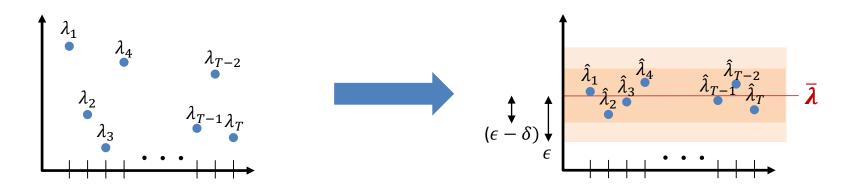
- either an J^{off} item with probability 1
- or, an $\mathcal{I}^{\mathrm{on-q}} \cup \mathcal{I}^{\mathrm{on-nq}}$ item sampled from λ

Obstacle 2 (Analysis): This gives a non-stationary arrival process Solution:

- Relax GPG_{ϵ} to smoothed $GPG_{\delta, au}$
- combine amortized analysis with Lyapunov drift analysis

Smoothed $GPG_{\delta,\tau}$ condition

 $(\lambda_1, \lambda_2, ..., \lambda_T)$: a *previsible* stochastic process w.r.t the filtration of arrivals



There exists a process $\hat{\lambda}^t$ that is :

- (i) Close to $\bar{\lambda}$: $\hat{\lambda}^t \in \mathcal{B}_{\epsilon-\delta,\mathrm{TV}}(\bar{\lambda})$
- (ii) Tracks λ^t : $\sum_{s=1}^{t-2\tau} \hat{\lambda}^s \leq \sum_{s=\tau+1}^t \lambda^s \leq \sum_{s=1}^t \hat{\lambda}^s$

Smoothed $GPG_{\delta,\tau} \approx$ the avg. distribution in any τ window is $\epsilon - \delta$ close to $\overline{\lambda}$

Results

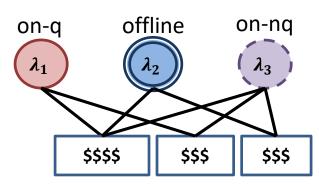
Theorem 2: If no configurations in \mathcal{M}_+ have items from both $\mathcal{I}^{\text{on-q}}$, $\mathcal{I}^{\text{on-nq}}$ then under $GPG_{\delta,\tau}$

Regret
$$\leq O(n^3 \tau^2/\delta)$$
.

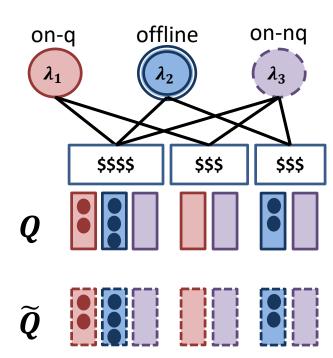
Theorem 3: If some configuration in \mathcal{M}_+ has items from both $\mathcal{I}^{\text{on-q}}$, $\mathcal{I}^{\text{on-nq}}$ then under $GPG_{\delta,\tau}$

Regret
$$\leq O\left(\frac{n^3\tau^4\log t}{\delta}\right)$$
.

1. Solve for x^* and an optimal basis \mathcal{M}_+



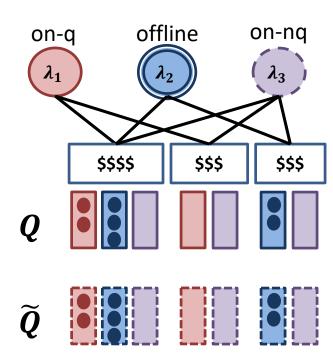
- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$



- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

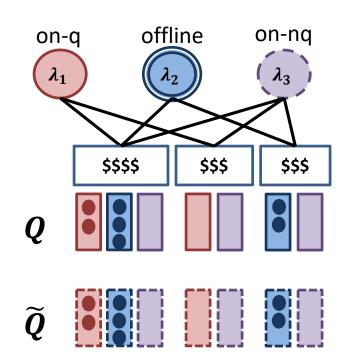
3. Commit item to minimize $\sum_m \Phi_m(\tilde{\boldsymbol{Q}}_m)$



- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

- 3. Commit item to minimize $\sum_m \Phi_m(\tilde{\boldsymbol{Q}}_m)$
- 4. Virtual match: executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $\widetilde{m{Q}}$

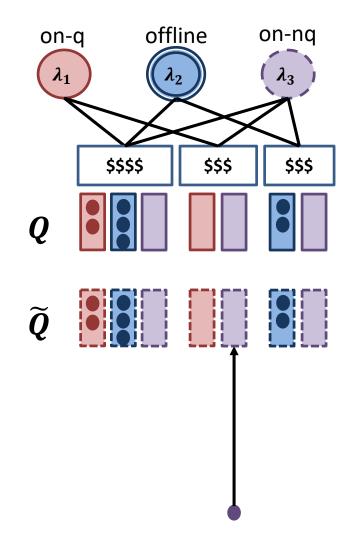


- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{Q}_m)$
- 4. Virtual match: executed if
- arrival is on-ng, or
- arrival is on-q or offline, and sufficient resources locally in $\widetilde{m{Q}}$

- virtual match happens, and
- on-q available locally in $oldsymbol{Q}$, and
- offline available globally (possibly outside $oldsymbol{Q}$)

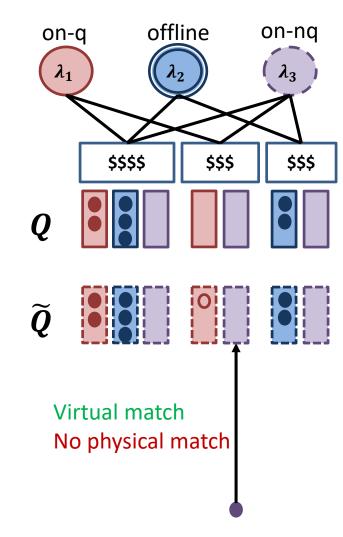


- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{Q}_m)$
- 4. Virtual match: executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $\widetilde{m{Q}}$

- virtual match happens, and
- on-q available locally in Q, and
- offline available globally (possibly outside $oldsymbol{Q}$)

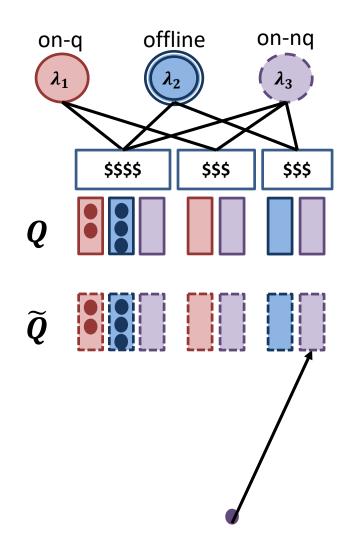


- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{Q}_m)$
- 4. Virtual match: executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $\widetilde{m{Q}}$

- virtual match happens, and
- on-q available locally in Q, and
- offline available globally (possibly outside $oldsymbol{Q}$)

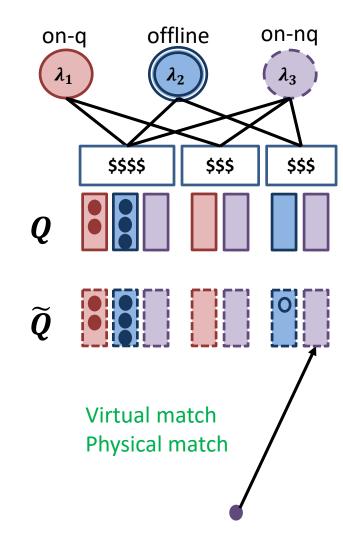


- 1. Solve for x^* and an optimal basis \mathcal{M}_+
- 2. Maintain **physical** and **virtual** queues for each $m \in \mathcal{M}_+$ and $i \in m$

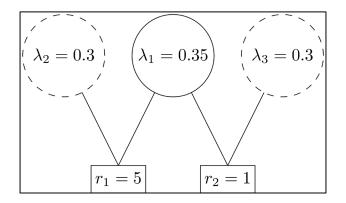
$$\tilde{Q}_{im} = \text{virtual queue length for } (i, m)$$

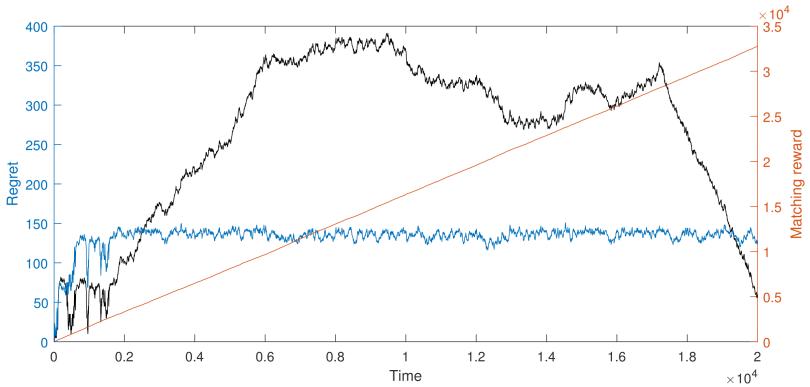
- 3. Commit item to minimize $\sum_m \Phi_m(\widetilde{\boldsymbol{Q}}_m)$
- 4. Virtual match: executed if
- arrival is on-nq, or
- arrival is on-q or offline, and sufficient resources locally in $\widetilde{m{Q}}$

- virtual match happens, and
- on-q available locally in Q, and
- offline available globally (possibly outside $oldsymbol{Q}$)



Results





Next steps

- Replenishment decisions for Assemble-to-Order systems
- Reusable resources
 e.g., loss networks (Iyengar and Sigman, 2004)
- Extension to non-stationary demand
- Incorporating noisy forecasts
 e.g., Gaussian process demand (Ciocan and Farias, 2012)
- Waiting costs / abandonments