
Stable solutions for kidney exchanges
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Kidney exchange programme (KEP)

Patients with end-stage renal kidney disease exchange their willing,
but immunologically incompatible donors with each other...

pairwise, three-way exchanges, altruistic chains

KEPs are operating in South Korea (1991-), USA (2004-), Canada
(2009-), Australia (2007-) and in many European countries...



UK KEP: a pairwise kidney exchange from 2007



UK KEP: solutions in early years

————————————————
▶ P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to

kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.



2016-2021: COST Action on Kidney Exchanges



Kidney exchange programmes in Europe

————————————————
▶ P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of

exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.



Kidney exchange programmes in Europe
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Details of the European KEPs

————————————————
▶ P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of

exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.



Optimisation in Europe: size vs quality
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max size of solution 1 1 1 1 1 1 1 2

min lengths of the cycles - - 4 - - - - -

max # cycles selected - 2 - - - 2 - 3

max # back-arcs - - - - - 3 - 4

max # 2-cycles and 3-cycles with embedded 2-cycles - - - - - - - 1

min# desensitisations - w - - - - 3 -

max HLA-matching - w - w - - - w

max DR-antigen matching in particular - w - - - - - -

min age-differences between the donors and patients 5 - - w - w - -

priority for paediatric patient - - - - - w - -

priority for patients not yet on dialyses 4 - - w - - - -

priority for highly sensitive patients - - - w - 4 - w

priority for O patients - - - w - - - -

priority for hard-to-match patients 3 - 3 w w w 2 -

priority for waiting time in KEP - - 6 - - w - w

priority for waiting time on the deceased WL - - - - - - - -

priority for time on dialyses 4 - - - w w - -

priority for same blood-group transplants 2 - 2 - w w - -

priority for O-to-O transplants - - - - - - - -

priority for pairs with AB-donors - - - - - w - -

max # of transplant centres in (long) cycles - - 5 - - - - -

priority for donor-patients in the same region - - - - - w - -

min the donor-donor age differences - - - w w - - w

————————————————
▶ P. Biró, J. van de Klundert, D. Manlove, and et al.: Modelling and optimisation in European Kidney

Exchange Programmes. European Journal of Operational Research, 291:447-456, 2021



NKR (US): quality incentives for compatible pairs



NKR (US): quality incentives for compatible pairs



Quality factors: acceptability thresholds in the UK

Significant differences in expected graft survival times based on:

▶ age of living donor

▶ HLA-matching between donor and patient

▶ whether patient needs desensitisation for ABOi transplants

UK practice: acceptability thresholds can be set for each of the
above parameters by the individual patients/doctors!



Online stochastic matching in KEP with patients’ decisions

Choices of patients with end-stage kidney disease:

1. stay on dialysis

2. register for the deceased kidney waiting list, and wait 2-10
years∗ for a deceased kidney

3. find a compatible willing donor and get a direct living
transplant

4. find a half-compatible (ABOi) donor, and get a direct living
transplant after desensitisation treatment (UK: 3%, France:
18%, Germany: 25%, one treatment costs 100k EUR)

5. find some willing donor(s) and register for a KEP and wait
3-36 months∗∗ to get an exchange living donor

∗ depending on the country, age, sensitivity (PRA)
∗∗ depending on the characteristics of donor(s), recipients (blood
types, ages, sensitivity of the recipient), their acceptability
thresholds, and the richness of the KEP pool!



UK: expected waiting times in deceased WL vs KEP



UK: expected waiting times in deceased WL vs KEP



Online stochastic matching in KEP with patients’ decisions

The design of the KEP policy also matters!

▶ legal/design constrains (e.g. France: pairwise exchanges only,
no altruistic donation, no multiple registered donors, no
compatible donors)

▶ optimisation criteria used in matching runs

▶ allowing patients/doctors to express their quality thresholds

Number of living transplants in five Western European countries:

2022 UK Spain Netherlands France Germany

total living 848 350 516 514 535

# in KEP 216 24 30 4 -

# direct ABOi 24 40 39 95 119

The performance of national/international KEP should be analysed
by agent-based simulations, and besides the optimisation policies,
the decisions of the patients should also be taken into account!



Individual fairness vs social welfare (#transplants)
Patients needing transplant exchange their incompatible donors

1 2 3 4 5

1’ 2’ 3’ 4’ 5’

Qualities of transplants are determined by age and HLA-matching
∼ expected lifetime gains ∼ graph survival times

set of 2-way exchanges ⇐⇒ matching in an undirected graph

quality transplants for some vs kidneys for more patients

stable exchange (= core solution): no blocking cycle
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Complexity of exchange problems

exchanges
pairwise

2-3-way

maximum does exist? yes

yes

size/weight hard to find?

P NP-hard

stable does exist?

may not may not

hard to find?

P NPc

Edmonds (1967): Polynomial time algorithms for maximum size
/ maximum weight matching problem.

stable pairwise exchange = stable roommates

A

B

C

D
2

3
1

21

3

23

1

Gale and Shapley (1962):
Stable matching may not exist!

Irving (1985): A stable matching can be found
in linear time, if one exists.

Abraham-Biró-Manlove (2006): The problem of minimising the
number of blocking pairs is NP-hard.

Biró-Manlove-Rizzi (2009): Finding a maximum size/weight

2-3-way exchange is NP-hard, but there is a O(2
m
2 )-time exact

algorithm. This was implemented for NHS Blood and Transplant
in 2007 and used to compute optimal solutions subsequently.

Biró-McDermid (2010): Stable 2-3-way exchange may not exist,
and the related problem is NP-complete, even for tripartite graphs.

————————————————
▶ P. Biró, D.F. Manlove and Romeo Rizzi. Maximum weight cycle packing in directed graphs, with

application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications, 1 (4) :
499-517, 2009.

▶ P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica, 58: 5-18,
2010. (COMSOC 2008)
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▶ P. Biró, D.F. Manlove and Romeo Rizzi. Maximum weight cycle packing in directed graphs, with

application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications, 1 (4) :
499-517, 2009.
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Complexity of exchange problems: unbounded case

exchanges
pairwise 2-3-way unbounded

maximum does exist? yes yes yes
size/weight hard to find? P NPc

P

stable does exist? may not may not

yes

hard to find? P NPc

P

Graph Theory folklore: The problem of finding a maximum
size/weight (unbounded) exchange is P-time solvable.

Shapley-Scarf (1972): Stable exchange always exists, one can be
found by the Top Trading Cycle algorithm of Gale.
This was the original model in the seminal paper on Kidney
exchange by Roth-Sönmez-Ünver (QJE 2005)!
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Overviews on European KEPs by the ENCKEP COST Action

▶ P. Biró, Bernadette Haase, and et al.: Building kidney exchange
programmes in Europe – an overview of exchange practice and activities.
Transplantation, 103 (7): 1514-1522, 2019.

▶ P. Biró, J. van de Klundert, D. Manlove, and et al.: Modelling and
optimisation in European Kidney Exchange Programmes. EJOR, 2021.

Stable exchanges: individual fairness, respecting improvement property

▶ Klimentova-Biró-Costa-Viana-Pedroso: Novel IP formulations for the
stable kidney exchange problem. EJOR 2022

▶ Biró-Klijn-Klimentova-Viana: Shapley-Scarf Housing Markets: Respecting
Improvement, Integer Programming, and Kidney Exchange. MOR 2023

▶ Schlotter-Biró-Fleiner: The core of housing markets from an agent’s
perspective: Is it worth sprucing up your home? MOR 2024

Compensation schemes for international KEPs: fairness for countries

▶ Biró-Kern-Paulusma-Pálvölgyi: Generalized Matching Games for
International Kidney Exchange. AAMAS-2019

▶ Benedek-Biró-Kern-Paulusma: Computing Balanced Solutions for Large
International Kidney Exchange Schemes. AAMAS-2022

▶ Benedek-Biró-Csáji-Johnson-Paulusma-Ye: Computing Balanced
Solutions for Large International Kidney Exchange Schemes When Cycle
Length Is Unbounded. AAMAS-2024



New publications on stable exchanges

▶ Klimentova-Biró-Costa-Viana-Pedroso: Novel IP formulations
for the stable kidney exchange problem (2022-EJOR)

-Computation of bounded length stable exchanges by IP techniques
-Measuring size vs stability tradeoffs

▶ Biró-Klijn-Klimentova-Viana: Shapley-Scarf Housing Markets:
Respecting Improvement, Integer Programming, and Kidney
Exchange (2021, 2023-MOR)

-Respecting improvement property for strong core: if a patient
brings a better donor (e.g., younger or with a better blood type:
0 > A,B > AB), or an additional donor, then in the TTC solution
she must receive an exchange donor at least as good as before.

▶ Schlotter-Biró-Fleiner: The core of housing markets from an
agent’s perspective: Is it worth sprucing up your home?
(2021-WINE, 2024-MOR)

-Follow-up results for the core solutions under partial orders



Main results of Biró-Klijn-Klimentova-Viana (2023 MOR)

1. Proving the respecting improvement property for strong core
and CE for unbounded exchanges, and examples for violations

2. New IP models for computing the strong core, CE, core

3. Simulations for measuring the price of fairness and the
amount of respecting improvement violations for kidney
exchange instances



Shapley-Scarf 1974 housing market model

A housing market (N,R) consists of
set of agents N = {1, . . . , n} with one house each, where
each agent i ∈ N has complete and transitive (weak) preferences
Ri over the houses, where Pi denotes the strict relation.

An allocation x is a one-to-one re-assignment of the houses to
agents, where xi is the allotment of i .

A coalition S ⊆ N blocks x if there is an allocation z s.t.
(1) {zi : i ∈ S} = S and
(2) for each i ∈ S , ziPixi .
x is in the core of the market if there is no blocking coalition.

A coalition S ⊆ N weakly blocks x if there is an allocation z s.t.
(1) {zi : i ∈ S} = S ,
(2) for each i ∈ S , ziRixi , and
(3) for some j ∈ S , zjPjxj .
x is in the strong core of the market if there is no weakly blocking
coalition.

For price-vector p let pi denote the price of object i . A competitive
equilibrium is a pair (x , p) s.t.
(1) for each agent i ∈ N, object xi is affordable, i.e., pxi ≤ pi and
(2) for each agent i ∈ N, each object she prefers to xi is not
affordable, i.e., jPixi implies pj > pi .
An allocation is a competitive allocation if it is part of some
competitive equilibrium.

Wako (1999) showed that a competitive allocation can be
characterised by the lack of antisymmetrically weakly blocking
coalitions, that is a coalition S ⊆ N s.t.
(1) {zi : i ∈ S} = S ,
(2) for each i ∈ S , either zi = xi or zjPjxj , and
(3) for some j ∈ S , zjPjxj .
We also call the set of competitive allocation as Wako-core.
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Ri over the houses, where Pi denotes the strict relation.

An allocation x is a one-to-one re-assignment of the houses to
agents, where xi is the allotment of i .

A coalition S ⊆ N blocks x if there is an allocation z s.t.
(1) {zi : i ∈ S} = S and
(2) for each i ∈ S , ziPixi .
x is in the core of the market if there is no blocking coalition.

A coalition S ⊆ N weakly blocks x if there is an allocation z s.t.
(1) {zi : i ∈ S} = S ,
(2) for each i ∈ S , ziRixi , and
(3) for some j ∈ S , zjPjxj .
x is in the strong core of the market if there is no weakly blocking
coalition.

For price-vector p let pi denote the price of object i . A competitive
equilibrium is a pair (x , p) s.t.
(1) for each agent i ∈ N, object xi is affordable, i.e., pxi ≤ pi and
(2) for each agent i ∈ N, each object she prefers to xi is not
affordable, i.e., jPixi implies pj > pi .
An allocation is a competitive allocation if it is part of some
competitive equilibrium.

Wako (1999) showed that a competitive allocation can be
characterised by the lack of antisymmetrically weakly blocking
coalitions, that is a coalition S ⊆ N s.t.
(1) {zi : i ∈ S} = S ,
(2) for each i ∈ S , either zi = xi or zjPjxj , and
(3) for some j ∈ S , zjPjxj .
We also call the set of competitive allocation as Wako-core.
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Shapley-Scarf (1974): housing market

Gale’s Top Trading Cycles algorithm (TTC)

▶ Everybody points to the best house in the market (or one of
the best houses if we have ties), we get at least one TTC

▶ Agents in a TTC exchange and then they leave the market

▶ We repeat the process in the remaining market...
see an example at http://www.matchu.ai/

▶ The resulting solution is a competitive allocation.

Proof: We set the prices of the houses decreasingly according
to their removal order in the TTC...

An allocation is competitive ⇐⇒ it can be obtained by TTC
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Further theoretical results

Roth-Postlewaite (1977): For strict preferences, the TTC
algorithm returns the unique competitive allocation, which is also
the unique strong core allocation.

Roth (1982): For strict preferences, the TTC algorithm is
strategy-proof.

Ma (1994): For strict preferences, the TTC algorithm is the
unique mechanism which is individually rational, Pareto-efficient
and strategy-proof.

Quint-Wako (2004): For weak preferences, it is possible to find a
strong core allocation efficiently, if there exists one.

An example for empty strong core:

21 3



An example for core, CE, and strong core

Acceptability graph:

1

2

3

4

5

6

Preferences:
1 2 3 4 5 6

2,3 1 2 3 2 1
5 3 4 2 6

Allocations:
xa = {(1, 3, 2)}
xb = {(1, 2), (3, 4)}
xc = {(1, 5, 2), (3, 4)}
xd = {(1, 3, 4, 2)}
xe = {(1, 5, 6), (2, 3, 4)}

Solution sets:
strong core: {xa}
CE/Wako-core: {xa, xb}
core: {xa, xb, xc , xd}
max size allocations: {xe}

By definition strong core ⊆ CE/Wako-core ⊆ core



New results on the respecting improvement property

Biro-Klijn-Klimentova-Viana (2021-WP, 2023-MOR):
Suppose that the house of an agent i becomes better to another
agent j , then

▶ for strict preferences, then the TTC solution in the new
market can only be better for i than the TTC solution in the
old market (RI-property)

▶ for weak preferences, if strong core solutions exist for both the
old and new markets then the above respecting improvement
property holds (conditional RI-property)

▶ for weak preferences, the best/worst competitive allocation
can only get better for the improving agent
(RI-best/worst property), moreover, for TTC with uniform
random tie-breakings the new probabilistic allocation for i
stochastically dominates the old one

Schlotter-Biro-Fleiner (2021-WINE, 2024-MOR): the RI-best
property holds for core allocations even for partial orders, but the
RI-worst property is violated even for strict preferences



Sketch proof for respecting improvement property of TTC

▶ Case I: agent i has left the market earlier - no effect

▶ Case II: they left the market at the same time - TTC cycle
may get shorter, but i gets the same house

▶ Case III: j left the market earlier - j will be involved in a TTC
earlier, she may get a better house



An example for stochastic dominance for CE

1

2

3

7

4

6

5

Preferences:
1 2 3 4 5 6 7

2,3 1 1 3 4 2 4
6 4,7 5 7 5
7 6

Competitive allocations:

1/2

xa = {(1, 3), (2, 6), (4, 5)}

1/4

xc = {(1, 2), (3, 4), (5, 7)}

1/4

xd = {(1, 2), (3, 7, 4)}

TTC probabilities!

1

2

3

7

4

6

5

New preferences:

1 2 3 4 5 6 7

2,3 1 1 3 4 2 4
6,7 7 5 7 5

4 6

New competitive allocations:

1/4

xa = {(1, 3), (2, 6), (4, 5)}

1/4

xb = {(1, 3), (2, 7, 6), (4, 5)}

1/2

xd = {(1, 2), (3, 7, 4)}

TTC probabilities!
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Preferences:
1 2 3 4 5 6 7

2,3 1 1 3 4 2 4
6 4,7 5 7 5
7 6

Competitive allocations:

1/2 xa = {(1, 3), (2, 6), (4, 5)}
1/4 xc = {(1, 2), (3, 4), (5, 7)}
1/4 xd = {(1, 2), (3, 7, 4)}

TTC probabilities!

1

2

3

7

4

6

5

New preferences:

1 2 3 4 5 6 7

2,3 1 1 3 4 2 4
6,7 7 5 7 5

4 6

New competitive allocations:

1/4 xa = {(1, 3), (2, 6), (4, 5)}
1/4 xb = {(1, 3), (2, 7, 6), (4, 5)}
1/2 xd = {(1, 2), (3, 7, 4)}

TTC probabilities!



Violations of the respecting improvement property

Example for max size unbounded exchanges:
If house 3 becomes acceptable for agent 4, then 3 receives a worse
house in the max size solution.

1

2

3 4



Violations of the respecting improvement property

Example for max size pairwise exchanges:
If donor 1 becomes acceptable for recipient 3, e.g., because
recipient 1 brings a second donor, then she receives a worse kidney
in the max size/weight solution.

1

2

3

4



Violations of the RI-worst property

Example for (strong) core pairwise exchanges, strict preferences:
If student 1 becomes acceptable for school 3, e.g., because she
improves her score, then she receives a worse school seat in the
school-optimal stable matching.

1

2

3

4

Balinski-Sönmez (1999): The student-optimal stable matching
by the Gale-Shapley algorithm respects improvements for students.

Schlotter-Biro-Fleiner (2021): for strict preferences, the
core/CE/strong core solutions satisfy the RI-best property
(generalisation for the roommates problem)



Violations of the RI-best property

Example for (strong) core pairwise exchanges, weak preferences:
If agent 1 becomes acceptable for possible roommate 4, then she
receives a strictly worse roommate in the unique stable matching.

1 2

3 4



Violations of the RI-best property

Example for (strong) core 3-way exchanges, strict preferences:
If house 1 becomes acceptable for agent 8, then 1 receives a
strictly worse allotment in the best core allocation than before.

2

3

5

6

7

9

10

1

4

8



IP formulations with edge variables

yij =

{
1 if agent i receives object j ;
0 otherwise.

∑
j :(i ,j)∈E

yij = 1 ∀i ∈ N (1)

∑
j :(j ,i)∈E

yji = 1 ∀i ∈ N (2)

yij ∈ {0, 1} ∀(i , j) ∈ E (3)



IP: no blocking constraints for core/Wako/strong core

Quint-Wako (2004): IP formulations for all permutations
re-written for cycles (works for both bounded&unbounded)

core: ∑
(i ,j)∈A(c)

∑
k:kRi j

yik ≥ 1 ∀c ∈ C (4)

CE/Wako-core:

∑
(i ,j)∈A(c)

yij + |c | ·

 ∑
(i ,j)∈A(c)

∑
k:kRi j ,k ̸=j

yik

 ≥ |c | ∀c ∈ C (5)

strong core:

∑
(i ,j)∈A(c)

∑
k:kIi j

yik + |c| ·

 ∑
(i ,j)∈A(c)

∑
k:kPi j

yik

 ≥ |c | ∀c ∈ C (6)



IP: new compact formulations for unbounded case

We introduce prices (corresponding to a topological order):

pi ∈ {1, . . . , n} ∀i ∈ N (7)

core:

pi + 1 ≤ pj + n ·
∑
k:kRi j

yik ∀(i , j) ∈ E (8)

CE/Wako-core: in addition to the above constraints

pi ≤ pj + n · (1− yij) ∀(i , j) ∈ E (9)

strong core: in addition to the above constraints

pi ≤ pj + n ·

 ∑
k:kPi j

yik

 ∀(i , j) ∈ E (10)



Computer simulations for bounded/unbounded cases

Testing strong core/Wako-core/core/max size/max weight
solutions on realistic kidney exchange instances

▶ efficiency of IP formulations

▶ price of fairness (i.e., size vs stability)

▶ counting the number of violations of the RI-best property for
difference solution concepts



Optimality vs stability tradeoff (i.e., price of fairness)
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Number of transplants (left) and total weight of transplants (right)
for unbounded length exchanges and weak preferences.



Optimality vs stability tradeoff (i.e., price of fairness)

20 30 40 50 60 70 80 90 100 110 120 130 140 150
|V|          

0

20

40

60

80

100

#t
ra

ns
pl

an
ts

Max #transplants

20 30 40 50 60 70 80 90 100 110 120 130 140 150
     |V|

To
ta

l w
ei

gh
t o

f t
ra

ns
pl

an
ts

Max total weight

Maxk = Maxk = 2 Corek = 2 W.-Corek = 2 S.Corek = 2 Maxk = 3 Corek = 3 W.-Corek = 3 S.Corek = 3

Comparison of the number of transplants (left) and the total
weight of transplants (right) for bounded length exchange cycles

(k = 2, 3) and weak preferences.



Optimality vs stability tradeoff (i.e., price of fairness)
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Violations of the RI-best property
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Summary of the main results

1. Proving the respecting improvement property for strong core
and CE for unbounded exchanges, and examples for violations

2. New IP models for computing the strong core, CE, core

3. Simulations for measuring the price of fairness and the
respecting improvement violations for kidney exchange
instances

+Further plans: simulations on real KEP instances

+Open questions: Characterisation of the TTC mechanism with
the RI-property? What about other settings/mechanisms?
A new paper: Ehlers, L. (2023). Respecting Improvement in
Markets with Indivisible Goods. Available at SSRN 4581876.

+Follow-up paper: Schlotter-Biro-Fleiner (2021-WINE,
2024-MOR) on RI for core under partial orders, and further
complexity results



An example for barter exchange: home-exchange

Besides reciprocal (pairwise) exchanges, now visits for Guest Points
is also allowed, perhaps close to competitive allocations?! See a
new paper by Julius Goedde: Pricing in markets without money:
Theory and evidence from home exchanges



Examples for barter exchange: time banks



Examples for barter exchange: portfolio compression

Schuldenzucker-Seuken (2020):

————————————————
▶ Schuldenzucker, S., and Seuken, S. (2020) Portfolio compression in financial networks: Incentives and

systemic risk. In Proceedings of EC-2020

▶ Veraart, L. A. M. (2020) When does portfolio compression reduce systemic risk? SSRN 3688495



Examples for barter exchange: portfolio compression

coordinated by companies: TriOptima, CLS Group, Markit,
SwapClear, mainly on OTC markets



Examples for barter exchange: portfolio compression

by a Romanian ministry for companies:

————————————————
▶ Gavrila, L. I., and Popa, A. (2021) A novel algorithm for clearing financial obligations between companies –

an application within the Romanian Ministry of Economy. Algorithmic Finance, 9:49-60



New European projects on kidney exchanges

COST Innovators Grant (Nov 2021 - Oct 2022): KEPSOFT

We developed a new software tool, KEPsoft, building on the
ENCKEP prototype and drawing on the European expertise, which
includes clinicians, policy makers, optimisation experts, computer
scientists, mathematicians and economists.

KEPsoft is now available as a common IT-platform to the
European transplantation community, and to National
Transplantation Organisations through a non-profit company
KEPsoft Community established by Glasgow University to support
the national and international KEPs in Europe.

EU4Health Programme (Oct 2024 - Sep 2027): EURO-KEP

Developing a EUROpean Kidney Exchange Program: Further
development of the ENCKEP-simulator and KEPsoft software, and
a new initiative for establishing international collaborations.


