Stable solutions for kidney exchanges

Péter Biró Institute of Economics, CERS, and Corvinus University of Budapest peter.biro@krtk.mta.hu joint work with Flip Klijn, Xenia Klimentova, Tamás Fleiner, Ildikó Schlotter, Ana Viana

> Workshop on Online Stochastic Matching Toulouse 24 September 2024

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kidney exchange programme (KEP)

Patients with end-stage renal kidney disease exchange their willing, but immunologically incompatible donors with each other...

pairwise, three-way exchanges, altruistic chains

KEPs are operating in South Korea (1991-), USA (2004-), Canada (2009-), Australia (2007-) and in many European countries...

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

UK KEP: a pairwise kidney exchange from 2007

UK KEP: solutions in early years

Matching run			2008			2009			
		Apr	Jul	Oct	Jan	Apr	Jul	Oct	
# pairs		76	85	123	126	122	95	97	
# possible donations		287	235	704	576	760	1212	866	
Total #	2-cycles	5	2	14	16	20	54	4	
	3 cycles	5	0	109	65	68	164	4	
Pairwise	#2-cycles	2	1	6	5	5	10	2	
exchanges	size	4	2	12	10	10	20	4	
	weight	91	6	499	264	388	739	222	
≤ 3-way exchanges	#2-cycles	2	1	2	1	2	2	0	
	#3-cycles	4	0	7	5	5	9	2	
	size	16	2	25	17	19	31	6	
	weight	620	6	1122	633	757	1300	300	
the exact	size of S	5	0	18	13	14	25	3	
algorithm	$\#Y \subseteq S$	24	0	3480	588	1440	67824	6	
Running time (sec)		0.3	0.0	66.0	7.5	19.2	1494.3	2.0	
Unbounded	size	22	2	33	28	28	40	6	
exchanges	weight	857	6	1546	1134	1275	1894	300	
-	longest c.	20	2	27	19	23	28	3	
Chosen	#2-cycles	2	1	6	5	5	4	1	
solution	#3-cycles	4	0	3	1	2	7	1	
(NHSBT)	size	16	2	21	13	16	29	5	
	weight	620	6	930	422	618	1168	288	

Table 1. Results arising from matching runs from April 2008 to October 2009.

P. Biró, D.F. Manlove and R. Rizzi. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications 1(4), pp:499-517, 2009.

2016-2021: COST Action on Kidney Exchanges

Kidney exchange programmes in Europe

P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.

Kidney exchange programmes in Europe

P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.

Details of the European KEPs

	Austria	Belgium	Czech Republic	France	Italy	Netherlands	Poland	Portugal	Spain	ň	Sweden	Switzerland
First exchange in KEP: 20XX	13	14	11	14	07	04	15	13	09	07		
Altruistic donor chains possible?	~	×	~	×	~	✓	×	~	~	~	×	×
Compatible pairs/ couples participate?	×	×	~	×	~	√	~	×	~	~	1	1
Multiple donors register for one patient?	~	×	~	×	1	×	1	1	~	~	1	1
Incompatible transplants allowed within KEP?	~	×	~	×	×	×	×	×	~	~	~	1
Single lab carries out cross matching after virtual matching?	~	~	1	×	×	~	×	×	×	×	×	×
Simultaneous surgery required for an exchange in KEP?	~	~	×	1	~	V	×	~	~	~	~	~
Organs usually travel (O) or donors (D)?	D	0		0	0	D	0	0	0	0	0	D
Matching process every x months (NR=not regular)	NR	NR	3	3	NR	3	1	3	4	3	na	3
Longest exchange already conducted	3	3	7	2	2	4	3	3	3	3	na	na
Longest chain already conducted	na	na	6	na	6	2	na	na	6	3	na	na

P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.

Optimisation in Europe: size vs quality

	Belgium	Czech Republic	Netherlands	Poland	Portugal	Spain	Sweden	United Kingdom
max size of solution	1	1	1	1	1	1	1	2
min lengths of the cycles	-	-	4	-	-	-	-	-
max # cycles selected	-	2	-	-	-	2	-	3
max # back-arcs	-	-	-	-	-	3	-	4
max # 2-cycles and 3-cycles with embedded 2-cycles	-	-	-	-	-	-	-	1
min# desensitisations	-	w	-	-	-	-	3	-
max HLA-matching	-	w	-	w	-	-	-	w
max DR-antigen matching in particular	-	w	-	-	-	-	-	-
min age-differences between the donors and patients	5	-	-	w	-	w	-	-
priority for paediatric patient	-	-	-	-	-	w	-	-
priority for patients not yet on dialyses	4	-	-	w	-	-	-	-
priority for highly sensitive patients	-	-	-	w	-	4	-	w
priority for O patients	-	-	-	w	-	-	-	-
priority for hard-to-match patients	3	-	3	w	w	w	2	-
priority for waiting time in KEP	-	-	6	-	-	w	-	w
priority for waiting time on the deceased WL	-	-	-	-	-	-	-	-
priority for time on dialyses	4	-	-	-	w	w	-	-
priority for same blood-group transplants	2	-	2	-	w	w	-	-
priority for O-to-O transplants	-	-	-	-	-	-	-	-
priority for pairs with AB-donors	-	-	-	-	-	w	-	-
max # of transplant centres in (long) cycles	-	-	5	-	-	-	-	-
priority for donor-patients in the same region	-	-	-	-	-	w	-	-
min the donor-donor age differences	-	-	-	w	w	-	-	w

3

P. Biró, J. van de Klundert, D. Manlove, and et al.: Modelling and optimisation in European Kidney Exchange Programmes. European Journal of Operational Research, 291:447-456, 2021

NKR (US): quality incentives for compatible pairs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

NKR (US): quality incentives for compatible pairs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Quality factors: acceptability thresholds in the UK

Significant differences in expected graft survival times based on:

- age of living donor
- HLA-matching between donor and patient
- whether patient needs desensitisation for ABOi transplants

UK practice: acceptability thresholds can be set for each of the above parameters by the individual patients/doctors!

э

Online stochastic matching in KEP with patients' decisions

Choices of patients with end-stage kidney disease:

- 1. stay on dialysis
- register for the deceased kidney waiting list, and wait 2-10 years* for a deceased kidney
- 3. find a compatible willing donor and get a direct living transplant
- find a half-compatible (ABOi) donor, and get a direct living transplant after desensitisation treatment (UK: 3%, France: 18%, Germany: 25%, one treatment costs 100k EUR)
- find some willing donor(s) and register for a KEP and wait 3-36 months^{**} to get an exchange living donor

* depending on the country, age, sensitivity (PRA)
 ** depending on the characteristics of donor(s), recipients (blood types, ages, sensitivity of the recipient), their acceptability
 thresholds, and the richness of the KEP pool!

・ロト・日本・日本・日本・日本

UK: expected waiting times in deceased WL vs KEP

	A	В	C D	E	F	G	н	1	J.
1	Incompatible Pairs L	iving Donor K	idney A	pplicati	ion				
2	· · · · · · · · · · · · · · · · · · ·] -							
3	Variable	Select						NHS	
4	Recipient Blood Group	A 💌				Pland	and Tra	nenlant	
5	Calculated Reaction Frequency	85-94 💌	Biood and Transplant						
6	Donor Blood Group	0 🗸							
7	ABOi TX with willing Donor†	Select 👻			Estimated Chang	e of Transplant			
8	HLAi TX with willing Donor†	Select 👻			Deceased Donor	NLDKSS	ABOi	HLAi	
9	Recipient Age	51-60 💌		6 Months	<10%	41-50%	-	-	
10		Reset	1	1 Year	11-20%	71-80%	-	-	
11	-	neset		3 Years	41-50%	>90%	-	-	
12				-					
13									
14					T	- I Data			
15					Transplant Survi	val Rates			
16					Deceased Donor	NLDKSS	ABOI	HLAi	
17				6 Months	93%	97%	-		
18				1 Year	91%	96%	-	-	
19				3 Years	85%	93%	-	-	
20									

i i alispialit sui vivai nate:

	Deceased Donor	NLDKSS	ABOi	HLAi
6 Months	93%	97%		
1 Year	91%	96%	-	-
3 Years	85%	93%	-	-

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

UK: expected waiting times in deceased WL vs KEP

	A	В	C D) E	F	G	Н	1		
1	Incompatible Pairs I	iving Donor I	Kidney /	Applicati	on					
2	•	1	•	••						
з	Variable	Select						NAS		
4	Recipient Blood Group	o 💌]			Pland	and Tra	nenlant		
5	Calculated Reaction Frequency	85-94 💌	1	вюби апи ттапъртани						
6	Donor Blood Group	A 👻	1							
7	ABOi TX with willing Donor†	Select 💌	i		Estimated Chan	ce of Transplan	t			
8	HLAi TX with willing Donor ⁺	Select 💌			Deceased Donor	NLDKSS	ABOi	HLAi		
9	Recipient Age	51-60 💌		6 Months	<10%	<10%	-	-		
10		Bocot		1 Year	11-20%	11-20%	-	-		
11	-	Keset		3 Years	41-50%	31-40%	-	-		
12				-						
13										
14					Taxa and and Council	und Datas				
15					Transplant Survi	val Rates				
16					Deceased Donor	NLDKSS	ABOi	HLAi		
17				6 Months	93%	97%	-	-		
18				1 Year	91%	96%	-	-		
19				3 Years	85%	93%	-	-		
20										

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Online stochastic matching in KEP with patients' decisions

The design of the KEP policy also matters!

- legal/design constrains (e.g. France: pairwise exchanges only, no altruistic donation, no multiple registered donors, no compatible donors)
- optimisation criteria used in matching runs
- allowing patients/doctors to express their quality thresholds

Number of living transplants in five Western European countries:

2022	UK	Spain	Netherlands	France	Germany
total living	848	350	516	514	535
# in KEP	216	24	30	4	-
# direct ABOi	24	40	39	95	119

The performance of national/international KEP should be analysed by agent-based simulations, and besides the optimisation policies, the decisions of the patients should also be taken into account!

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

set of 2-way exchanges \iff matching in an undirected graph

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

quality transplants for some vs kidneys for more patients

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

Patients needing transplant exchange their incompatible donors

Qualities of transplants are determined by age and HLA-matching \sim expected lifetime gains \sim graph survival times

		exchanges		
		pairwise		
maximum	does exist?	yes		
size/weight	hard to find?			
stable	does exist?			
	hard to find?			

		exchanges		
		pairwise		
maximum	does exist?	yes		
size/weight	hard to find?	Р		
stable	does exist?			
	hard to find?			

Edmonds (1967): Polynomial time algorithms for maximum size / maximum weight matching problem.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

		exchanges				
		pairwise				
maximum	does exist?	yes				
size/weight	hard to find?	Р				
stable	does exist?	may not				
	hard to find?					

stable pairwise exchange = stable roommates

Gale and Shapley (1962):

Stable matching may not exist!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

		exchanges		
		pairwise		
maximum	does exist?	yes		
size/weight	hard to find?	Р		
stable	does exist?	may not		
	hard to find?	Р		

stable pairwise exchange = stable roommates

Gale and Shapley (1962):

Stable matching may not exist!

Irving (1985): A stable matching can be found in linear time, if one exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

		exchanges		
		pairwise		
maximum	does exist?	yes		
size/weight	hard to find?	Р		
stable	does exist?	may not		
	hard to find?	Р		

stable pairwise exchange = stable roommates

Gale and Shapley (1962):

Stable matching may not exist! Irving (1985): A stable matching can be found in linear time, if one exists.

Abraham-Biró-Manlove (2006): The problem of minimising the number of blocking pairs is NP-hard.

			exchanges	
		pairwise	2-3-way	
maximum	does exist?	yes	yes	
size/weight	hard to find?	Р		
stable	does exist?	may not		
	hard to find?	Р		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

			exchanges	
		pairwise	2-3-way	
maximum	does exist?	yes	yes	
size/weight	hard to find?	Р	NP-hard	
stable	does exist?	may not		
	hard to find?	Р		

Biró-Manlove-Rizzi (2009): Finding a maximum size/weight 2-3-way exchange is NP-hard, but there is a $O(2^{\frac{m}{2}})$ -time exact algorithm. This was implemented for NHS Blood and Transplant in 2007 and used to compute optimal solutions subsequently.

P. Biró, D.F. Manlove and Romeo Rizzi. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications, 1 (4): 499-517, 2009.

P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica, 58: 5-18, 2010. (COMSOC 2008)

			exchanges	
		pairwise	2-3-way	
maximum	does exist?	yes	yes	
size/weight	hard to find?	Р	NP-hard	
stable	does exist?	may not	may not	
	hard to find?	Р	NPc	

Biró-Manlove-Rizzi (2009): Finding a maximum size/weight 2-3-way exchange is NP-hard, but there is a $O(2^{\frac{m}{2}})$ -time exact algorithm. This was implemented for NHS Blood and Transplant in 2007 and used to compute optimal solutions subsequently.

Biró-McDermid (2010): Stable 2-3-way exchange may not exist, and the related problem is NP-complete, even for tripartite graphs.

P. Biró, D.F. Manlove and Romeo Rizzi. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications, 1 (4) : 499-517, 2009.

P. Biró and E. McDermid. Three-sided stable matchings with cyclic preferences. Algorithmica, 58: 5-18, 2010. (COMSOC 2008)

Complexity of exchange problems: unbounded case

		exchanges			
		pairwise	2-3-way	unbounded	
maximum	does exist?	yes	yes	yes	
size/weight	hard to find?	Р	NPc		
stable	does exist?	may not	may not		
	hard to find?	Р	NPc		

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Complexity of exchange problems: unbounded case

		exchanges			
		pairwise	2-3-way	unbounded	
maximum	does exist?	yes	yes	yes	
size/weight	hard to find?	Р	NPc	Р	
stable	does exist?	may not	may not		
	hard to find?	Р	NPc		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Graph Theory folklore: The problem of finding a maximum size/weight (unbounded) exchange is P-time solvable.

Complexity of exchange problems: unbounded case

		exchanges			
		pairwise	2-3-way	unbounded	
maximum	does exist?	yes	yes	yes	
size/weight	hard to find?	Р	NPc	Р	
stable	does exist?	may not	may not	yes	
	hard to find?	Р	NPc	Р	

Graph Theory folklore: The problem of finding a maximum size/weight (unbounded) exchange is P-time solvable.

Shapley-Scarf (1972): Stable exchange always exists, one can be found by the Top Trading Cycle algorithm of Gale. This was the original model in the seminal paper on Kidney exchange by Roth-Sönmez-Ünver (QJE 2005)!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overviews on European KEPs by the ENCKEP COST Action

- P. Biró, Bernadette Haase, and et al.: Building kidney exchange programmes in Europe – an overview of exchange practice and activities. Transplantation, 103 (7): 1514-1522, 2019.
- P. Biró, J. van de Klundert, D. Manlove, and et al.: Modelling and optimisation in European Kidney Exchange Programmes. EJOR, 2021.

Stable exchanges: individual fairness, respecting improvement property

- Klimentova-Biró-Costa-Viana-Pedroso: Novel IP formulations for the stable kidney exchange problem. EJOR 2022
- Biró-Klijn-Klimentova-Viana: Shapley-Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange. MOR 2023
- Schlotter-Biró-Fleiner: The core of housing markets from an agent's perspective: Is it worth sprucing up your home? MOR 2024

Compensation schemes for international KEPs: fairness for countries

- Biró-Kern-Paulusma-Pálvölgyi: Generalized Matching Games for International Kidney Exchange. AAMAS-2019
- Benedek-Biró-Kern-Paulusma: Computing Balanced Solutions for Large International Kidney Exchange Schemes. AAMAS-2022
- Benedek-Biró-Csáji-Johnson-Paulusma-Ye: Computing Balanced Solutions for Large International Kidney Exchange Schemes When Cycle Length Is Unbounded. AAMAS-2024

New publications on stable exchanges

- Klimentova-Biró-Costa-Viana-Pedroso: Novel IP formulations for the stable kidney exchange problem (2022-EJOR)
- -Computation of bounded length stable exchanges by IP techniques -Measuring size vs stability tradeoffs
 - Biró-Klijn-Klimentova-Viana: Shapley-Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange (2021, 2023-MOR)

-Respecting improvement property for strong core: if a patient brings a better donor (e.g., younger or with a better blood type: 0 > A, B > AB), or an additional donor, then in the TTC solution she must receive an exchange donor at least as good as before.

 Schlotter-Biró-Fleiner: The core of housing markets from an agent's perspective: Is it worth sprucing up your home? (2021-WINE, 2024-MOR)

-Follow-up results for the core solutions under partial orders

Main results of Biró-Klijn-Klimentova-Viana (2023 MOR)

1. Proving the respecting improvement property for strong core and CE for unbounded exchanges, and examples for violations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. New IP models for computing the strong core, CE, core
- 3. Simulations for measuring the price of fairness and the amount of respecting improvement violations for kidney exchange instances

A housing market (N, R) consists of set of agents $N = \{1, ..., n\}$ with one house each, where each agent $i \in N$ has complete and transitive (weak) preferences R_i over the houses, where P_i denotes the strict relation.

An <u>allocation</u> x is a one-to-one re-assignment of the houses to agents, where x_i is the <u>allotment</u> of *i*.

A coalition $S \subseteq N$ <u>blocks</u> x if there is an allocation z s.t. (1) $\{z_i : i \in S\} = S$ and (2) for each $i \in S$, $z_i P_i x_i$.

x is in the core of the market if there is no blocking coalition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A housing market (N, R) consists of set of agents $N = \{1, ..., n\}$ with one house each, where each agent $i \in N$ has complete and transitive (weak) preferences R_i over the houses, where P_i denotes the strict relation.

An <u>allocation</u> x is a one-to-one re-assignment of the houses to agents, where x_i is the <u>allotment</u> of i.

A coalition $S \subseteq N$ weakly blocks x if there is an allocation z s.t. (1) $\{z_i : i \in S\} = \overline{S}$, (2) for each $i \in S$, $z_i R_i x_i$, and (3) for some $j \in S$, $z_j P_j x_j$. x is in the strong core of the market if there is no weakly blocking coalition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A housing market (N, R) consists of set of agents $N = \{1, ..., n\}$ with one house each, where each agent $i \in N$ has complete and transitive (weak) preferences R_i over the houses, where P_i denotes the strict relation.

An <u>allocation</u> x is a one-to-one re-assignment of the houses to agents, where x_i is the <u>allotment</u> of i.

For price-vector p let p_i denote the price of object i. A competitive equilibrium is a pair (x, p) s.t. (1) for each agent $i \in N$, object x_i is affordable, i.e., $p_{x_i} \leq p_i$ and (2) for each agent $i \in N$, each object she prefers to x_i is not affordable, i.e., jP_ix_i implies $p_j > p_i$. An allocation is a competitive allocation if it is part of some competitive equilibrium.

A housing market (N, R) consists of set of agents $N = \{1, ..., n\}$ with one house each, where each agent $i \in N$ has complete and transitive (weak) preferences R_i over the houses, where P_i denotes the strict relation.

An <u>allocation</u> x is a one-to-one re-assignment of the houses to agents, where x_i is the <u>allotment</u> of i.

Wako (1999) showed that a competitive allocation can be characterised by the lack of antisymmetrically weakly blocking coalitions, that is a coalition $S \subseteq N$ s.t. (1) $\{z_i : i \in S\} = S$, (2) for each $i \in S$, either $z_i = x_i$ or $z_j P_j x_j$, and (3) for some $j \in S$, $z_j P_j x_j$. We also call the set of competitive allocation as Wako-core.

(日)((1))

Shapley-Scarf (1974): housing market

Gale's Top Trading Cycles algorithm (TTC)

- Everybody points to the best house in the market (or one of the best houses if we have ties), we get at least one TTC
- Agents in a TTC exchange and then they leave the market

We repeat the process in the remaining market... see an example at http://www.matchu.ai/

Shapley-Scarf (1974): housing market

Gale's Top Trading Cycles algorithm (TTC)

- Everybody points to the best house in the market (or one of the best houses if we have ties), we get at least one TTC
- Agents in a TTC exchange and then they leave the market
- We repeat the process in the remaining market... see an example at http://www.matchu.ai/
- ► The resulting solution is a competitive allocation.

Proof: We set the prices of the houses decreasingly according to their removal order in the TTC...

An allocation is competitive \iff it can be obtained by TTC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Further theoretical results

Roth-Postlewaite (1977): For strict preferences, the TTC algorithm returns the unique competitive allocation, which is also the unique strong core allocation.

Roth (1982): For strict preferences, the TTC algorithm is strategy-proof.

Ma (1994): For strict preferences, the TTC algorithm is the unique mechanism which is individually rational, Pareto-efficient and strategy-proof.

Quint-Wako (2004): For weak preferences, it is possible to find a strong core allocation efficiently, if there exists one.

An example for empty strong core:

An example for core, CE, and strong core

Acceptability graph:

Preferences:							
1	2	3	4	5	6		
2,3	1	2	3	2	1		
5	3	4	2	6			

$\underline{Allocations:} \\ x^{a} = \{(1, 3, 2)\} \\ x^{b} = \{(1, 2), (3, 4)\} \\ x^{c} = \{(1, 5, 2), (3, 4)\} \\ x^{d} = \{(1, 3, 4, 2)\} \\ x^{e} = \{(1, 5, 6), (2, 3, 4)\}$

Solution sets: strong core: $\{x^a\}$ CE/Wako-core: $\{x^a, x^b\}$ core: $\{x^a, x^b, x^c, x^d\}$ max size allocations: $\{x^e\}$

(日) (日) (日) (日) (日) (日) (日) (日)

By definition strong core \subseteq CE/Wako-core \subseteq core

New results on the respecting improvement property

Biro-Klijn-Klimentova-Viana (2021-WP, 2023-MOR):

Suppose that the house of an agent i becomes better to another agent j, then

- for strict preferences, then the TTC solution in the new market can only be better for *i* than the TTC solution in the old market (RI-property)
- for weak preferences, if strong core solutions exist for both the old and new markets then the above respecting improvement property holds (conditional RI-property)
- for weak preferences, the best/worst competitive allocation can only get better for the improving agent (<u>RI-best/worst property</u>), moreover, for TTC with uniform random tie-breakings the new probabilistic allocation for *i* stochastically dominates the old one

Schlotter-Biro-Fleiner (2021-WINE, 2024-MOR): the RI-best property holds for core allocations even for partial orders, but the RI-worst property is violated even for strict preferences

Sketch proof for respecting improvement property of TTC

- Case I: agent i has left the market earlier no effect
- Case II: they left the market at the same time TTC cycle may get shorter, but *i* gets the same house
- Case III: j left the market earlier j will be involved in a TTC earlier, she may get a better house

An example for stochastic dominance for CE

Preferences:

1	2	3	4	5	6	7
2,3	1	1	3	4	2	4
	6	4,7	5	7		5
	7					6

Competitive allocations:

$$x^{a} = \{(1,3), (2,6), (4,5)\}$$

$$x^{c} = \{(1,2), (3,4), (5,7)\}$$

$$x^{d} = \{(1,2), (3,7,4)\}$$

New preferences:

1	2	3	4	5	6	7
2,3	1	1	3	4	2	4
	6,7	7	5	7		5
		4				6

New competitive allocations:

$$x^{a} = \{(1,3), (2,6), (4,5)\}$$

$$x^{b} = \{(1,3), (2,7,6), (4,5)\}$$

$$x^{d} = \{(1,2), (3,7,4)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An example for stochastic dominance for CE

Preferences:

1	2	3	4	5	6	7
2,3	1	1	3	4	2	4
	6	4,7	5	7		5
	7					6

Competitive allocations:

$$1/2 \quad x^{a} = \{(1,3), (2,6), (4,5)\}$$

$$1/4 \quad x^{c} = \{(1,2), (3,4), (5,7)\}$$

$$1/4 \quad x^{d} = \{(1,2), (3,7,4)\}$$
TTC probabilities!

New preferences:

1	2	3	4	5	6	7
2,3	1	1	3	4	2	4
	6,7	7	5	7		5
		4				6

New competitive allocations:

 $\begin{array}{rl} 1/4 & x^a = \{(1,3),(2,6),(4,5)\} \\ 1/4 & x^b = \{(1,3),(2,7,6),(4,5)\} \\ 1/2 & x^d = \{(1,2),(3,7,4)\} \\ \hline TTC \text{ probabilities!} \end{array}$

Violations of the respecting improvement property

Example for max size unbounded exchanges:

If house 3 becomes acceptable for agent 4, then 3 receives a worse house in the max size solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Violations of the respecting improvement property

Example for max size pairwise exchanges:

If donor 1 becomes acceptable for recipient 3, e.g., because recipient 1 brings a second donor, then she receives a worse kidney in the max size/weight solution.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Violations of the RI-worst property

Example for (strong) core pairwise exchanges, strict preferences: If student 1 becomes acceptable for school 3, e.g., because she improves her score, then she receives a worse school seat in the school-optimal stable matching.

Balinski-Sönmez (1999): The student-optimal stable matching by the Gale-Shapley algorithm respects improvements for students.

Schlotter-Biro-Fleiner (2021): for strict preferences, the core/CE/strong core solutions satisfy the RI-best property (generalisation for the roommates problem)

Violations of the RI-best property

Example for (strong) core pairwise exchanges, weak preferences: If agent 1 becomes acceptable for possible roommate 4, then she receives a strictly worse roommate in the unique stable matching.

(日) (日) (日) (日) (日) (日) (日) (日)

Violations of the RI-best property

Example for (strong) core 3-way exchanges, strict preferences: If house 1 becomes acceptable for agent 8, then 1 receives a strictly worse allotment in the best core allocation than before.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

IP formulations with edge variables

$$y_{ij} = \begin{cases} 1 & \text{if agent } i \text{ receives object } j; \\ 0 & \text{otherwise.} \end{cases}$$

$$\sum_{\substack{j:(i,j)\in E\\ j:(j,i)\in E}} y_{ij} = 1 \qquad \forall i \in N \qquad (1)$$
$$\sum_{\substack{j:(j,i)\in E\\ y_{ij}\in\{0,1\}}} y_{ji} = 1 \qquad \forall i \in N \qquad (2)$$

IP: no blocking constraints for core/Wako/strong core

Quint-Wako (2004): IP formulations for all permutations re-written for cycles (works for both bounded&unbounded)

core:

$$\sum_{(i,j)\in\mathcal{A}(c)}\sum_{k:kR_ij}y_{ik}\geq 1\qquad\qquad\forall c\in\mathcal{C}\qquad(4)$$

CE/Wako-core:

$$\sum_{(i,j)\in A(c)} y_{ij} + |c| \cdot \left[\sum_{(i,j)\in A(c)} \sum_{k:kR_i,j,k\neq j} y_{ik} \right] \ge |c| \quad \forall c \in \mathcal{C} \quad (5)$$

strong core:

$$\sum_{(i,j)\in A(c)}\sum_{k:kl_{i}j}y_{ik}+|c|\cdot\left[\sum_{(i,j)\in A(c)}\sum_{k:kP_{i}j}y_{ik}\right]\geq |c|\quad\forall c\in\mathcal{C}\quad(6)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

IP: new compact formulations for unbounded case

We introduce prices (corresponding to a topological order):

$$p_i \in \{1, \dots, n\}$$
 $\forall i \in N$ (7)

core:

$$p_i + 1 \le p_j + n \cdot \sum_{k:kR_i j} y_{ik} \qquad \forall (i,j) \in E \qquad (8)$$

CE/Wako-core: in addition to the above constraints

$$p_i \leq p_j + n \cdot (1 - y_{ij}) \qquad \forall (i,j) \in E \qquad (9)$$

strong core: in addition to the above constraints

$$p_i \leq p_j + n \cdot \left(\sum_{k:kP_i j} y_{ik}\right) \qquad \forall (i,j) \in E$$
 (10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computer simulations for bounded/unbounded cases

Testing strong core/Wako-core/core/max size/max weight solutions on realistic kidney exchange instances

- efficiency of IP formulations
- price of fairness (i.e., size vs stability)
- counting the number of violations of the RI-best property for difference solution concepts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimality vs stability tradeoff (i.e., price of fairness)

Number of transplants (left) and total weight of transplants (right) for unbounded length exchanges and weak preferences.

Optimality vs stability tradeoff (i.e., price of fairness)

Comparison of the number of transplants (left) and the total weight of transplants (right) for bounded length exchange cycles (k = 2, 3) and weak preferences.

Optimality vs stability tradeoff (i.e., price of fairness)

Number of weakly blocking cycles of size l = 2 for solutions with maximum number of transplants (left) and maximum total weight of transplants (right), for unbounded exchange cycles and exchange cycles of size up to k = 2 and k = 3 for weak preferences.

Violations of the RI-best property

Number of violations of the RI-best property for instances of sizes 20, 30, weak preferences.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary of the main results

- 1. Proving the respecting improvement property for strong core and CE for unbounded exchanges, and examples for violations
- 2. New IP models for computing the strong core, CE, core
- 3. Simulations for measuring the price of fairness and the respecting improvement violations for kidney exchange instances

+Further plans: simulations on real KEP instances

+Open questions: Characterisation of the TTC mechanism with the RI-property? What about other settings/mechanisms? A new paper: Ehlers, L. (2023). Respecting Improvement in Markets with Indivisible Goods. Available at SSRN 4581876.

+Follow-up paper: Schlotter-Biro-Fleiner (2021-WINE, 2024-MOR) on RI for core under partial orders, and further complexity results

An example for barter exchange: home-exchange

Besides reciprocal (pairwise) exchanges, now visits for Guest Points is also allowed, perhaps close to competitive allocations?! See a new paper by Julius Goedde: Pricing in markets without money: Theory and evidence from home exchanges

Examples for barter exchange: time banks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples for barter exchange: portfolio compression

Schuldenzucker-Seuken (2020):

Figure 1 Financial System where compressing a cycle decreases social welfare. Let $\alpha = \beta = 0.5$.

(b) Compressed Network

- Schuldenzucker, S., and Seuken, S. (2020) Portfolio compression in financial networks: Incentives and systemic risk. In Proceedings of EC-2020
- Veraart, L. A. M. (2020) When does portfolio compression reduce systemic risk? SSRN 3688495

Examples for barter exchange: portfolio compression

coordinated by companies: TriOptima, CLS Group, Markit, SwapClear, mainly on OTC markets

TRIREDUCE

Multilateral portfolio compression

Reduce operational risk and manage counterparty risk exposure across your cleared and uncleared OTC derivatives portfolios.

Optimize leverage ratios and reduce risk

Reduce operational risk and cost by lowering gross notional and eliminating line items. triReduce leverages multilateral compression opportunities across portfolios, enabling firms to terminate trades with different coupons, end dates and cash flows for optimal results. Compression is available for cleared and uncleared interest rate swaps in 28 currencies, cross currency swaps, credit default swaps. FX forwards, and commodity swaps.

IN GROSS NOTIONAL COMPRESSED

1,855 trillion

CURRENCIES AVAILABLE FOR COMPRESSION

イロト イボト イヨト イヨト 三日

28

SUBSCRIBERS AROUND THE GLOBE

270

Examples for barter exchange: portfolio compression

by a Romanian ministry for companies:

L.-I. Gavrila and A. Popa / A novel algorithm for clearing financial obligations

Year	Number of circuits	Amounts (RON)	Average exchange rate EUR-RON	Amounts (billion euros)	GDP (billion euros)	% of GDP
2000	5,585	2,403,053,727	1.9955	1.2	40.3	2.99
2001	42,652	12,421,327,031	2.6026	4.8	44.9	10.63
2002	47,034	19,911,421,429	3.1255	6.4	48.5	13.14
2003	52,436	22,112,743,029	3.7555	5.9	52.6	11.19
2004	49,863	22,801,524,621	4.0532	5.6	60.8	9.25
2005	33,974	17,779,815,045	3.6234	4.9	79.5	6.17
2006	24,535	14,848,420,479	3.5245	4.2	97.7	4.31
2007	16,250	12,041,806,899	3.3373	3.6	123.7	2.92
2008	14,215	13,869,438,123	3.6827	3.8	139.7	2.70
2009	17,066	15,876,671,658	4.2373	3.7	118.3	3.17
2010	18,432	15,159,786,445	4.2099	3.6	124.1	2.90
2011	18,311	15,715,962,869	4.2379	3.7	131.5	2.82
2012	15,018	15,246,545,476	4.4560	3.4	133.9	2.56
2013	10,643	12,774,006,762	4.4190	2.9	144.7	2.00
2014	8,400	9,929,328,661	4.4446	2.2	150.8	1.48
2015	7,117	8,371,338,603	4.4450	1.9	159	1.18
2016	5,719	6,377,781,136	4.4908	1.4	185.7	0.76
2017	4,218	5,720,174,633	4.5682	1.3	182.1	0.74
	391,468	243,361,146,626		64.6		

NETTING SUMMARIES 2000 - 2017

Fig. 1. Netting amounts - Romanian Institute of Management and Informatics, 2000 - 2017.

Gavrila, L. I., and Popa, A. (2021) A novel algorithm for clearing financial obligations between companies – an application within the Romanian Ministry of Economy. Algorithmic Finance, 9:49-60

New European projects on kidney exchanges

COST Innovators Grant (Nov 2021 - Oct 2022): KEPSOFT

We developed a new software tool, KEPsoft, building on the ENCKEP prototype and drawing on the European expertise, which includes clinicians, policy makers, optimisation experts, computer scientists, mathematicians and economists.

KEPsoft is now available as a common IT-platform to the European transplantation community, and to National Transplantation Organisations through a non-profit company KEPsoft Community established by Glasgow University to support the national and international KEPs in Europe.

EU4Health Programme (Oct 2024 - Sep 2027): EURO-KEP

Developing a EUROpean Kidney Exchange Program: Further development of the ENCKEP-simulator and KEPsoft software, and a new initiative for establishing international collaborations.