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Multi-Agent Systems

System of no-regret learners:

e Selfish behaviour + learning ability

o
a4

* Different agents may follow different learning algorithms

Question: Can we gain any benefits from playing against these no-regret learners?

Part 1:
* Topic 1: Better regret bounds against no-regret learners
* Topic 2: Last-iterate convergence with generic no-regret learners

Part 2:

* Topic 3: Exploiting no-regret learners with (minimal) payoff manipulation
(setting: coopetitive games)
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1. Better regret bounds in repeated games



Problem setting

Repeated 2-player zero-sum game: agent, adversary

* At each t ={1,..T}: agent chooses strategy (action) f: € F C [0, 1]"
 Adversary simultaneously chooses strategy : € X C [0,1]"
* Agent observes loss (f:,z:) and z; (full information feedback)

* Adversary is a no-(external)-regret learner:

- max (<ft7x>_<ftaxt>)_>07 T — o0
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Regret minimization notions

T
The agent’s objective:  min , X
g j ;, min ;«ft t))
- —
Dynamic regret: DR, = Z(<ft’ 2) — min (g¢, )
1 gtEF

(sub-linear dynamic regret: only if {z;};_, can be estimated efficiently)

T

External regret: RT—Jchng (fesxe) — (f,24))
t=1

Forward regret (Saha et al., 2012):

FRy = Z({ft,x» ~ (ge %)), where g, = argmin Gr.1(g) = (g, sz +xpp) + —
t=1 gesf g=1
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Regret minimization notions

T
The agent’s objective:  min , X
g j ;, min ;«ft t))
- —
Dynamic regret: DR, = Z(<ft’ 2) — min (g¢, )
1 gtEF

(sub-linear dynamic regret: only if {z;};_, can be estimated efficiently)

T

External regret: RT—Jchng (fesxe) — (f,24))
t=1

Forward regret (Saha et al., 2012):

FRt = Z (<ft> . <gt, x)), where gr+1 = argmin Gt+1(9) <9 sz + Xp41) + ——
t=1 geFr s=1

Claim: R < FRr
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Achieving sub-linear forward regret

Algorithm 1: Accurate Follow the Regularized Leader (AFTRL)

Input: learning rate n > 0, exploiting rate o > 1,

fi =argming & R(f).
Output: next strategy update

ft+1 = argmlnFm(f) = <f sz +ax;) +

feF
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Achieving sub-linear forward regret

Algorithm 1: Accurate Follow the Regularized Leader (AFTRL)

Input: learning rate n > 0, exploiting rate o > 1,

fi =argming & R(f).
Output: next strategy update

R(f)
fi+1 = argmin F;1 (f) = (f, sz +ax;) + —— f
feF ]
Theorem: If /, X are compact convex sets, p,qg > 0: — + & = 1, Ris strongly convex in p-norm

min R(f) = 0 and adversary is a no-(external)-regret learner:

fer
RT(AFTRL) € O(1)
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Achieving sub-linear forward regret

Algorithm 1: Accurate Follow the Regularized Leader (AFTRL)

Input: learning rate n > 0, exploiting rate o > 1,

fi =argming & R(f).
Output: next strategy update

R(f)
fr+1 = argmin Fryy (f) = (f, sz +ax;) + —— f
feF ]
Theorem: If /, X are compact convex sets, p,q > 0: — + — =1, Ris strongly convex in p-norm

q
min R(f) = 0 and adversary is a no-(external)-regret learner:

fer
RT(AFTRL) € O(1)

b
VT

Key steps: We show that ||z;11 — x¢||q € O ( ) -> use X to predict Ti41
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Achieving sub-linear forward regret

Algorithm 1: Accurate Follow the Regularized Leader (AFTRL)

Input: learning rate n > 0, exploiting rate o > 1,

fi =argming & R(f).
Output: next strategy update

R(f)
fr+1 = argmin Fryy (f) = (f, sz +ax;) + —— f
feF ]
Theorem: If /, X are compact convex sets, p,q > 0: — + — =1, Ris strongly convex in p-norm

q
min R(f) = 0 and adversary is a no-(external)-regret learner:

fer
RT+(AFTRL) € O(1)
1
Key steps: We show that ||z;11 — x¢||q € O (ﬁ) -> use ¢ to predict Ti4+1

Next: extend results for predictable sequences, eg., Rakhlin & Shridharan (2013)
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Achieving sub-linear dynamic regret

Algorithm 2: Prod-Best Response algorithm (Prod-BR) — based on (A,B)-Prod (Sani et al., 2014)

Input: learning rate n > 0, n; € (0, 1], initial weight wy g, wy Br, regularizer function R(.).
. R .
fi+1 = arg mmfethH(f) = (f, 25:1 xs) + %§ BR;y1 = arg mlnf€¢<f, Xt )

Output: next strategy update g;;; and next weight w; :

WtR W1.BR
gi+1 = ft+1 I
Wt R + W1 BR Wi FTRL + W1.BR

BRiy1; WisR = Wt,R(l + 1N1(BRs41 — ft+1, Xt41))-
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Achieving sub-linear dynamic regret

Algorithm 2: Prod-Best Response algorithm (Prod-BR) — based on (A,B)-Prod (Sani et al., 2014)

Input: learning rate n > 0, n; € (0, 1], initial weight wy g, wy Br, regularizer function R(.).
. R :
fi+1 = arg mlnfengtH(f) = (f, 22:1 xs) + %; BR;y1 = arg mlnfg}'(f, Xt )

Output: next strategy update g;,; and next weight w1 :

WtR W1.BR
gt+1 = ft+1 9
Wt R + W1 BR Wi FTRL + W1.BR

BRiy1; WisR = Wt,R(l + 1N1(BRs41 — ft+1, Xt41))-

THEOREM 5.2. Let the agent follows Prod-BR Algorithm 2 withn = n/N2T, n; = 1/2.4/1og(T)/T
and wygr = 1—wy g = 1—n1. Then it achieves O(\/T log(T)) external regret against general adversary

while maintaining O(NT) dynamic regret against no-external regret adversary.
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2. Last-iterate convergence in repeated games



Current state of the art

Repeated Matching Pennies after 2500 iterations:

* No-regret learning alg: Multiplicative Weight Update

e Blueline: MWU vs MWU

« System dynamics: outward spiral -> no convergence t@il. tail head,tail tail, tail head, tail
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Current state of the art

Repeated Matching Pennies after 2500 iterations:

* No-regret learning alg: Multiplicative Weight Update

e Blue line: MWU vs MWU

e System dynamics: outward spiral -> no convergence tail: tail head,tail tail, tail head,tail

Known since Mertikopoulos, Papadimitriou & Piliouras (2018): no last-iterate convergence in general
case. Other notable work: Bailey and Piliouras (2018), Cheung and Piliouras (2019)

Existence of last-iterate convergence — some special cases:

* Daskalakis and Panageas (2018): Optimistic MWU + unique minimax equilibrium
* Bu, Ratliff & Mesbahi (2019): Differential games (linear-quadratic) + gradient ascent/descent
 Goktas & Greenwald (2022): Exploitability-minimising strategy profiles

03/07/2024 21



Last-iterate convergence with asymmetric knowledge

.. . U=0.5
2-player zero-sum + asymmetric information: ﬂ
* Column player (agent) can estimate her (approximate) 1
minimax strategy M
 Row player (adversary) is a no-external-regret learner
tail, tail head,tail tail, tail head, tail
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Last-iterate convergence with asymmetric knowledge

2-player zero-sum + asymmetric information:

* Column player (agent) can estimate her (approximate)
minimax strategy

 Row player (adversary) is a no-external-regret learner

At each time step t: tail, tail head,tail tail, tail head, tail
 Agent chooses mix strategy y: € |0,1]" and adversary chooses z: € [0, 1]"

 Payoff matrix A € [0, 1]n><m : yrgi}fn wrglArL ' Ay = afrEHAIL yrgi}; ' Ay =

e Epsilon-Nash (z*,y*) : |(z*)! Ay* —v| < ¢
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Last-iterate convergence with asymmetric knowledge

2-player zero-sum + asymmetric information:

* Column player (agent) can estimate her (approximate)
minimax strategy

 Row player (adversary) is a no-external-regret learner

At each time step t: tail, tail head,tail tail, tail head, tail

 Agent chooses mix strategy ¥y: € 0,1]™ and adversary chooses T+ € 0,1)"

* Payoff matrix A € [0, 1] : Jnax min ' Ay = min max r'Ay = v

e Epsilon-Nash (z*,y*) : |(z*)! Ay* —v| < ¢

Goal of the agent: achieve last-iterate convergence to (z*,y") AND no-external-regret

03/07/2024 24



The LRCA algorithm

Algorithm 1: L[ast Round Convergence in Asymmetric algorithm

(LRCA)
Input: Current iteration t, past feedback xtT_lA of the row player
: mn player
if t=2k—1, ke Nth . .
l| Ve=y* S o > 0dd time step: play the (approx.) minimax strategy
if('t = 2k, k € N then N
et ‘= argMaXecfe; o). ..em} x| (Ae;  f(xe_1) :== maxyea, X, 1Ay Even time step:
o, — fe=1)=v > play an adaptive
e - strategy
Vika (1 —ar)y™ + arer Y
end

25
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The LRCA algorithm

Algorithm 1: L[ast Round Convergence in Asymmetric algorithm

(LRCA)

Input: Current iteration t, past feedback xtT_lA of the row player

if t =2k -1, k € N then

mn player

| *

r=3¥

if 't = 2k. k € N then
€t 1= argMaXec (e, e,...em} x) Ae;
f(xt—1)—v

~N

f(Xe—1) := Maxyea,, X, 1Ay

»
»

(@ p— =
max (7,2
\.)’t e (1 = Gt)y* — Xt et )
ena
Notes:

> 0dd time step: play the (approx.) minimax strategy

Even time step:
play an adaptive
strategy

* Playing the approximate Nash repeatedly doesn’t achieve no-external-regret
* Playing it up to a constant number of times doesn’t help last-iterate convergence

03/07/2024
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Main result

Theorem:
* If the adversary is a no-external-regret learner, then LRCA achieves O (\/log(n)TB/‘l) dynamic
regret + convergence to (z*,y")

n
* |f adversary uses a constant learning rate ¢ , the dynamic regret is O (—Tl/z)

NG



Main result

Theorem:

* If the adversary is a no-external-regret learner, then LRCA achieves O (\/log(n)TS/‘l) dynamic
regret + convergence to (z*,y")

n
 |If adversary uses a constant learning rate u , the dynamic regret is O (TTl/Q)
n
Key step:
e Similarly to Topic 1, we want to show that the adversary’s behaviour is predictable
e This is more difficult due to the alternating behaviour of the agent

Definition 2 (Kullback and Leibler (1951)) The relative entropy or K-L divergence between two

vectors 1 and xo in A, is defined as RE(x1||x2) = > -, x1(i) log (:;8;) :

28
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Main result

Theorem:

* If the adversary is a no-external-regret learner, then LRCA achieves O ( log(n)T3/4> dynamic
regret + convergence to (z*,y")

n
 |If adversary uses a constant learning rate u , the dynamic regret is O (TTl/Q)
n
Key step:
e Similarly to Topic 1, we want to show that the adversary’s behaviour is predictable
e This is more difficult due to the alternating behaviour of the agent

Definition 2 (Kullback and Leibler (1951)) The relative entropy or K-L divergence between two
vectors 1 and xo in A, is defined as RE(x1||x2) = > -, x1(i) log (mlm) :

o (z)

* b S 1
Claim: RE (z7|@or—1) — RE (" |®2041) = Spzkaor(f(zon-1) —v) VEEN: 2k >
03/07/2024



3. Exploiting no-external-regret learners via (minimal) payoff
manipulation



Payoff manipulation

* Data poisoning attacks against bandit and RL agents
e Last-iterate convergence to a given mix strategy profile

* Learning to win coopetitive games

03/07/2024
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What’s coopetitive game?

* In order to win/perform well, one must cooperate with their opponents
e But they also need to know when to stop cooperating to become the winner/achieve their goal

* That is, they need to cooperate and compete at the same time (Nalebuff & Brandenburger, 1996)

https://cruciformstuff.com/2023/07/30/betrayal/

03/07/2024 32



Example 1:

03/07/2024

Blue-Ray vs. DVD
DVD Blu-ray

Capacity: e Capacity: |
Single Layer4.7 GB Single Layeri2d GB

Dual Laer 8.5GB Dual Laer 50 GB

Resolution: 720x480 Resolution: 1920x1080

https://fr.tipard.com/resource/blu-ray-vs-dvd.html

33



Example 2:

03/07/2024

our de France

https://www.ef.fr/blog/language/les-principaux-termes-de-cyclisme-connaitre-pour-regarder-le-tour-de-france/
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Recent interests from the Al Community

Google Deepmind + Cooperative Al Foundation’s Melting Pot Challenge (hosted at NeurlPS 2023)

https://www.aicrowd.com/challenges/meltingpot-challenge-2023

NeurlPS 2023

Melting Pot Challenge

Multi-Agent Dynamics & Mixed-Motive Cooperation

£2 $10,000 Cash + $50,000 Compute
Prize Pool Budget

By g Alcrowd & . Cooperative Al Foundation ® 19.4k L 577 2110 # 383 ¥ 35 Share
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Research questions

In Al, we consider a multi-agent sequential decision-making version of coopetitive games:
* Who to cooperate with?
* How to signal/incentivise others to collaborate

e When to switch side?



Our focus

Aim: Proof of Concept

Simplified setting

3 players

Repeated games

Polymatrix games

Signaling: payoff manipulation



Payoff manipulation explained

* In our setting no explicit communication between agents is allowed

 Instead, we allow one agent to modify another agent’s payoff by:

 Sacrificing from their own payoffs (e.g., gift, bribery, etc) -> increasing the other’s payoff
* Enforce some penalties -> decreasing opponent’s payoff

 Examples: multiplayer video games, nature, etc.



Problem formulation

3 players: P1, P2, P3 (we are P1) — repeated game (each round they play the same game)

Polymatrix game:
 Game can be decomposed to sum or pairwise 2-player games
« Payoff = sum of pairwise payoffs defined by pairwise payoff matrices A(*7)

Payoff manipulation: P1 can modify A>!) and 4GV

Payoff of P1:
2T A2y 4 T A3, |0 — A o — [|MGD — A(B,UHOO

Payoff of P2 & P3:

yTM(z,l)m X yTA(2’3)z

MG 4 T AG2),



Winning policies

Objective: P1 will have higher total/average payoff than P2 and P3

Idea: We are interested in a certain type of behaviour (policy) that can lead to winning the game
* Suppose P1 plays i* action for all the rounds

e Suppose P2 has a strictly dominant strategy j* against i*, similarly P3 has a strictly dominant
strategy k* against i*

e Also, suppose u1(i*,j*, k™) > max{uz(i*,j*,k*),u;g(i*,j*,k*)}

* Then by consistently playing i*, P1 would eventually win the game
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Winning policies

Objective: P1 will have higher total/average payoff than P2 and P3

Idea: We are interested in a certain type of behaviour (policy) that can lead to winning the game
* Suppose P1 plays i* action for all the rounds

e Suppose P2 has a strictly dominant strategy j* against i*, similarly P3 has a strictly dominant
strategy k* against i*

* Also, suppose u1 (i, 7", k™) > maX{Uz(i*,j*,k*),U3(i*,j*7/€*)}
* Then by consistently playing i*, P1 would eventually win the game

Issue: such situation does not always exist ®

Solution: create such solution via (minimal) payoff matrix manipulation!!! ©



Existence of dominant solvable games

Goal: Design a game via (optimally) manipulating M@ and M3V sych that P2 has a strictly
dominant strategy j* against i*, similarly P3 has a strictly dominant strategy k* against i* (for
some i* action of P1)
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Goal: Design a game via (optimally) manipulating M@ and M3V sych that P2 has a strictly

dominant strategy j* against i*, similarly P3 has a strictly dominant strategy k* against i* (for
some i* action of P1)

Result 1: such dominant solvable game exists for any original 3-player polymatrix games

Even more, if we fix i*, j*, and k* in advance -> there exists a dominant solvable game for
(i*,)%,k*)



Existence of dominant solvable games

Goal: Design a game via (optimally) manipulating M@ and M3V sych that P2 has a strictly

dominant strategy j* against i*, similarly P3 has a strictly dominant strategy k* against i* (for
some i* action of P1)

Result 1: such dominant solvable game exists for any original 3-player polymatrix games

Even more, if we fix i*, j*, and k* in advance -> there exists a dominant solvable game for
(i*,)%,k*)

Issue 1: How to achieve u1 (", 7%, k™) > max {ug(i*,j*, k*),us(i*, 5%, k*)}
Issue 2: What happens if P2 and P3 are learning agents?



Consistent agents

Definition 1. (Consistent Agent) Suppose that for an agent there exists an

action a* that is the unique best response for her for every round of the game.

Suppose that within T rounds of the game, the number of rounds the agent plays
action a™ 1s T". If]P’(limT_mO TT = 1) = 1 then the agent is ’consistent’.
Consistent agent:
* There is a same fixed best action for that agent in every round
e Event: the fraction of number of times the agent plays this best action tends to 1

* Probability of this event =1

03/07/2024
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Persistent agents

Definition 4. (Persistent Agent) Suppose that the action k* is the best action
wn hindsight for player 3 eventually, with probability 1. That is,

P(ek* — arg max Us(x, y,, 2)1_, eventually) =1l

z€/\;
Let T™ denote the number of rounds within T' rounds, that player 3 plays action
ks IfIP’(limT_mo TT = 1) = 1 then player 3 is 'persistent’.

Persistent agent:
* There is a same fixed best action for that agent from some round (i.e., eventually)

 Event: the fraction of number of times the agent plays this best acfion tends to 1

* Probability of this event =1
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Persistent agents

Definition 4. (Persistent Agent) Suppose that the action k* is the best action
wn hindsight for player 3 eventually, with probability 1. That is,

P(ek* — arg max Us(x, y,, 2)1_, eventually) =1l

z€/\;
Let T™ denote the number of rounds within T' rounds, that player 3 plays action
ks IfIP’(limT_mo TT = 1) = 1 then player 3 is 'persistent’.

Persistent agent:
* There is a same fixed best action for that agent from some round (i.e., eventually)

 Event: the fraction of number of times the agent plays this best acfion tends to 1

* Probability of this event =1

Proposition 2. All persistent players are consistent. Further, all no-regret play-
ers are persistent.

03/07/2024
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Main results

Winning dominance solvable policies:
- 1 ar(2,1) 50(3,1)
e Each action of P1=(a;, M;™"", M;™"")

 Makes P1 is the winner of the resulting dominant solvable game



Main results

Winning dominance solvable policies:
- 1 ar(2,1) 50(3,1)
e Each action of P1=(a;, M;™"", M;™"")

 Makes P1 is the winner of the resulting dominant solvable game

Theorem 1: If P2 and P3 are consistent agents then there exists a winning dominance
solvable policy for P1

Theorem 2: If P2 is consistent and P3 is persistent, then there exists a winning dominance
solvable policy for P1

Theorem 3: These winning dominance solvable policies, if exist, can be calculated in
polynomial running time



Additional objectives

* Winning by largest margin
* Winning by lowest inefficiency ratio

* Maximising the egalitarian social welfare



Winning by largest margin
Margin of P1:
min {]E Ut (e, 4y, 26) 521 — U (e, Uy, 2) 521 | L E (U (e, s 26) 521 — Us (@, s 26) 521

 How much better the (expected) average payoff of P1 is compared to the others’



Winning by largest margin
Margin of P1:
min {]E Ut (e, 4y, 26) 521 — U (e, Uy, 2) 521 | L E (U (e, s 26) 521 — Us (@, s 26) 521

 How much better the (expected) average payoff of P1 is compared to the others’

Theorem 6: If winning dominance solvable policies exist, then there exists an algorithm that can find
the largest margin dominance solvable policy, with running time that is polynomial in the number
of actions of the players.



Winning by lowest inefficiency ratio

Inefficiency ratio: the ratio between the cost for modifying the payoff matrices and the expected
increase in long run payoffs from the worst-case payoff.

iy o0 & 30 3 pep 1457 — A5 o
iy 230, (xF Ay, + %7 ATV 2,)] - K

where K = min; ; ;, (AY2 (4, 5) + AL (4, k)) is the minimum revenue for player
i



Winning by lowest inefficiency ratio

Inefficiency ratio: the ratio between the cost for modifying the payoff matrices and the expected
increase in long run payoffs from the worst-case payoff.

limy oo & Yoy Yanep A5 — A5 oo
iy 230, (xF Ay, + %7 ATV 2,)] - K

where K = min; ; ;, (AY2 (4, 5) + AL (4, k)) is the minimum revenue for player
i

Theorem: If winning dominance solvable policies exist, then there exists an algorithm that can find
the winning dominance solvable policy with the lowest inefficiency ratio, with running time that
is polynomial in the number of actions of the players.



Maximising egalitarian social welfare

Egalitarian social welfare: The lowest payoff among the players’

Definition 9. The Egalitarian Social Welfare of a strategy profile (x,y, z) is
defined to be

8(33, Y, Z) := min {Ul (fL’, Y, Z), UQ(wa Y, Z), U3(w7 Y, Z)}



Maximising egalitarian social welfare

Egalitarian social welfare: The lowest payoff among the players’

Definition 9. The Egalitarian Social Welfare of a strategy profile (x,y, z) is
defined to be

8(33, Y, Z) := min {Ul(wa Y, Z), UQ(wa Y, Z), U3(a;7 Y, Z)}
Theorem: There exists an algorithm that can find the dominance solvable policy that maximizes

egalitarian social welfare with running time that is polynomial in the number of actions of the
players.



Application 1: 3-Player iterated prisoner’s dilemma

Action space = {C, D}
Gl |90 s : Goi) 99| s ,
A5 = [51] ifi<j and Ay = [01] it 4 4
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Action space = {C, D}

Gg) (30 ... . Gl 39 .o
Ay —[51J ifi<j and A, —[01] if 4> 74

For P1, a winning strategy would be always playing D (and both P2 and P3 also defect all the time)

e But this one has 0 margin as well

* Can we design a better policy with positive margin, and incentivises cooperation?



Application 1: 3-Player iterated prisoner’s dilemma

Action space = {C, D}

Gg) (30 ... . Gl 39 .o
Ay —[51J ifi<j and A, —[01] if 4> 74

For P1, a winning strategy would be always playing D (and both P2 and P3 also defect all the time)

e But this one has 0 margin as well

* Can we design a better policy with positive margin, and incentivises cooperation?

we set A = 5 >
- 13/24€-1/2

\']

We show that for 0 < ¢ < G

P1 plays D and manipulates opponents’ payoff matrices to A

Theorem: system will converge to (D,C,C) and P1 wins with large (positive) margin



Application 2: social distancing game

)

Inspired by Zinkevic's Lemonade Stand Game
Square 5

) Star 9 (O

Circle 6

O o O

Fig. 1. Example Social Distancing Game
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Theorem 1: P1 can win the game with negligible
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Application 2: social distancing game

o)

Inspired by Zinkevic's Lemonade Stand Game _—
quare

O Star 9 (O

Circle 6

Winning the game: Q o O

Theorem 1: P1 can win the game with negligible

manipulation cost Fig. 1. Example Social Distancing Game

Egalitarian social welfare:



Application 2: social distancing game

)

Inspired by Zinkevic's Lemonade Stand Game
Square 5

) Star 9 (O

Circle 6

Winning the game: Q o O

Theorem 1: P1 can win the game with negligible

manipulation cost Fig. 1. Example Social Distancing Game

d(k, 1) if k£ 12
Ak,) =< d(k,1)—1—2¢ ifk=12andl#5
dk,)) +1—¢ ifk=12andl=5

Egalitarian social welfare:

d(k,1) if k #£ 12
Ak, ) = d(k,l)—1+¢ ifk=12andl#7
dlk,)+1—¢ ifk=12and =7
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Application 2: social distancing game

)

Inspired by Zinkevic's Lemonade Stand Game

Square 5

O Star 9 (O

Circle 6

Winning the game:

O o O
Theorem 1: P1 can win the game with negligible

manipulation cost Fig. 1. Example Social Distancing Game
(
i A welf d(k,1) il k= 12
Egalitarian social welfare: ) Ak, 1) = 4 e —1—9 Hl—12 sad =25
Theorem 2: P1 plays position 12 and use A d(k,1) +1—¢ 5 B — 79 miid [ —5
and A to manipulate the payoff of P2 and P3, ,\
d(k,l) it &= 12

then the egalitarian social welfare is maximised

>

(ksD) =< dlk,])—1+e UHk=12andl+#T7
dlk,)+1—¢ ifk=12and =7
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Summary

No-regret learner’s behaviour is predictable

Better regret bounds against no-regret learners (Topic 1)

Last-iterate convergence under information asymmetry (Topic 2)

* Easy to manipulate their behaviour with minimal manipulation cost (Topic 3)



Open guestions

* Topic 1 (better regret bounds):
* extend to (episodic) RL, online MDPs, stochastic games

* Topic 2 (last-iterate convergence):
* Relax the information asymmetry assumption;
 How frequently we need to play the approximate Nash

e Topic 3 (minimal manipulation cost):
* Optimal manipulation schemes?
* N-player games (N > 3)
* General games (not polymatrix)?



Online version of our papers

* Topic 1: https://arxiv.org/abs/2302.06652

e Topic 2: https://proceedings.mlr.press/v132/dinh21a.html

* Topic 3: https://arxiv.org/abs/2110.13532
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Many thanks for your attention

Nick Bishop Le Cong Dinh Shiva Mahesh
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