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What is game connectivity?

Connectivity property of a game’s best-response graph.
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Example above: ◦ One sink, no sources
◦ Some cycles (front, top)
◦ From each vertex there is a path to the sink



Looking ahead to our main result

• We classify games according to the connectivity properties of
their best-response graphs.

• We quantify the relative sizes of the game classes.

Theorem
Almost every game that

is generic (i.e. no ties)
has a pure Nash equilibrium
has a large number of players

has a best-response graph that is connected.
i.e. every action profile that is not a pure Nash equilibrium can reach
every pure Nash equilibrium profile via best-response paths.



The possible and the impossible in adaptive dynamics

• The behaviors of many game dynamics are determined by the
connectivity properties of a game’s best-response graph.

• Connectedness is conducive to convergent dynamics.

Theorem ([Hart and Mas-Colell, 2003],[2006] )
There is no simple adaptive dynamic that leads to a pure Nash equi-
librium in every game that has one.

Theorem
There is a simple adaptive dynamic that leads to a pure Nash equi-
librium in almost every large generic game that has one.



Games: standard notions

• A game consists of

A set of players [n] := {1, ..., n}
A set of actions [ki] := {1, ..., ki} for each player i ∈ [n]
A preference relation ≿i over the set of action profiles
A := ×i∈[n][ki] for each i ∈ [n]

• ai is a best-response to a−i if (ai, a−i) ≿i (x, a−i) for each x ∈ [ki]

• a ∈ A is a pure Nash equilibrium if ai is a best-response to a−i for
each i ∈ [n]

• The best-response graph of a game is the directed graph (A,→)
where for a, b ∈ A, there is a→ b iff there exists i ∈ [n] such that

a−i = b−i, b ≻i a, and bi is a best-response to a−i



Notions of connectivity

• A game is acyclic if its best-response graph has no cycles.

Potential games [Monderer and Shapley, 1996] are acyclic

• A game isweakly acyclic if its best-response graph has the
property that every vertex can reach a sink.

[Young, 1993] and many others

We introduce the following notions

• A game is connected if its best-response graph has at least one
sink and the property that every non-sink can reach every sink.

• A game is super-connected if its best-response graph has at least
one sink and the property that every non-sink can reach every
non-source.



Notions of connectivity: picture
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G(n, k)

• A game is generic if for each i, each a−i, and all distinct actions ai
and a ′

i , either (ai, a−i) ≻i (a ′
i , a−i) or (a ′

i , a−i) ≻i (ai, a−i).

• For n ⩾ 2 and k = (k1, . . . , kn) ∈ {2, 3, ...}n,

let G(n, k) denote the set of all generic games

with player set [n] in which each player i ∈ [n] has action set [ki].



Main result 1: Connectedness

Theorem (connectedness)
There exists c > 0 such that for all n ⩾ 2 and all k ∈ {2, 3, . . . }n,
if n is sufficiently large relative to maxi ki then

|{g ∈ G(n, k) : g is connected}|
|{g ∈ G(n, k) : g has a pure Nash equilibrium}|

⩾ 1 − e−cn

‘Sufficiently large’ means

max
i
ki ⩽ δ

√
n/ log n

for a suitable constant δ > 0.

NB. Actions can grow too, provided the above continues to hold.



Main result 2: Acyclicity

Proposition (acyclicity)
There exists c > 0 such that for all n ⩾ 2 and all k ∈ {2, 3, . . . }n,

|{g ∈ G(n, k) : g is acyclic}|
|{g ∈ G(n, k) : g has a pure Nash equilibrium}|

⩽ e−cn2n



Main result 3: Super-connectedness

Proposition (super-connectedness)
For k = 2 or k = 3 there exists c > 0 such that for all integers n ⩾ 2,

|{g ∈ G(n, k) : g is super-connected}|
|{g ∈ G(n, k) : g has a pure Nash equilibrium}|

⩾ 1 − e−cn

However, for each k ⩾ 4, the fraction above tends to 0 as n→ ∞.

NB. Properties for small k doesn’t necessarily extend to large k.



Next slides: further implications for connectivity in games

I. Connectivity of better-response graphs
II. Non-zero measure classes of games

III. Existing work: [Amiet et al., 2021]



I. Better-response graphs

• ai is a better-response to a−i than a ′
i if (ai, a−i) ≻i (a ′

i , a−i)

• The better-response graph of a game is the directed graph (A,→)
where for a, b ∈ A, there is a→ b iff there exists i ∈ [n] such that

a−i = b−i and b ≻i a

• For each connectivity property

P ∈ {acyclic, weakly acyclic, connected}

we say that the game is globally P if the property holds for its
better-response graph.



I. Better-response graphs: picture



II. Non-zero measure

• Consider any set of games

X(n, k) ⊆ {g ∈ G(n, k) : g has a pure Nash equilibrium}

that has non-zero measure. i.e there is p ∈ (0, 1] such that

lim
n→∞ |X(n, k)|

|{g ∈ G(n, k) : g has a pure Nash equilibrium |
= p

Corollary
For n large enough, almost every game in X(n, k) is connected.



II. Non-zero measure: example

• [Rinott and Scarsini, 2000] show that for z ⩾ 0,

lim
n→∞ |{g ∈ G(n, k) : g has exaclty z pure Nash equilibria}|

|G(n, k)|
=
e−1

z!

E.g. the fraction of large generic games that have at least 2 pure
Nash equilibria is 1 − 2/e ≈ 26%.

Corollary
For any z ⩾ 1, almost every large generic game that has at least z
pure Nash equilibria is connected.



III. [Amiet et al., 2021]

• A game is x-connected if its best-response graph has a sink and
the property that if x is a non-sink then it can reach every sink.

NB. A game is connected if it is x-connected for each vertex x.

• A game is x-super-connected if its best-response graph has a sink
and the property that if x is a non-sink then it can reach every
non-source.

NB. A game is super-connected if it is x-super-connected for each
vertex x.



III. [Amiet et al., 2021]

For any game and vertex x we have:

• The arguments of [Amiet et al., 2021] imply that for any vertex x
there is a c > 0 such that for all n ⩾ 2,

|{g ∈ G(n, 2) : g is x-super-connected}|
|{g ∈ G(n, 2) : g has a pure Nash equilibrium}|

⩾ 1 − e−cn



Next slides: Insights for adaptive dynamics in games

I. The possible vs the impossible for adaptive dynamics
II. Extension of existing results for adaptive dynamics

III. Equilibrium selection in large games



Adaptive dynamics: standard notions

• A strategy for a player with action set [k] is a function
f : Ok → ∆([k]) where Ok is the set of all possible observation sets.

• A dynamic on G(n, k) consists of a specification for what
information enters into each player’s observation set at each time,
and a strategy fi with action set [ki] for each player i.

• A dynamic is simple if it is uncoupled, 1-recall and stationary.
i.e. at each time t each player i’s observation set consists of their
own preference relation ≿i and of last period’s play at−1.

• A dynamic on G(n, k) converges almost surely to a pure Nash
equilibrium of a game g ∈ G(n, k) if when g is played according to
the dynamic from any initial action profile, almost surely there
exists T < ∞ and a pure Nash equilibrium a∗ of g such that at = a∗
for all t ⩾ T.



I. Impossibility for adaptive dynamics

Theorem ([Hart and Mas-Colell, 2006, Jaggard et al., 2014])
There is no simple dynamic for which play converges almost surely
to a pure Nash equilibrium in every generic game that has one.



I. Example: this is a generic game with a pure Nash but...
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...any simple dynamic starting in the cycle stays in it forever.
[Hart and Mas-Colell, 2006]



I. Possibility for adaptive dynamics

Theorem ([Young, 2004])
The best-response dynamic with inertia converges almost surely
to a pure Nash equilibrium in every generic weakly acyclic game.

Corollary (Possibility for adaptive dynamics)
There exists c > 0 such that for integers n ⩾ 2 and k ∈ {2, 3, . . . }n,
if n is sufficiently large relative to maxi ki, the fraction of games in

{g ∈ G(n, k) : g has a pure Nash equilibrium}

for which the best-response dynamic with inertia converges almost
surely to a pure Nash equilibrium is at least 1 − e−cn.

There is a simple adaptive dynamic that leads to a pure Nash equi-
librium in almost every large generic game that has one.



II. Extension of existing results

• [Young, 1993] shows that ‘adaptive play’ converges almost surely
to a pure Nash equilibrium in all globally weakly acyclic games.

• [Friedman and Mezzetti, 2001] shows the same for ‘better-reply
dynamics with sampling’.

• [Marden et al., 2007] and [Marden et al., 2009] describe,
respectively, regret-based and payoff-based dynamics that lead to
play that is at a pure Nash equilibrium in every weakly acyclic game
‘most of the time’.

All of these results apply to almost every large generic game that has
a pure Nash equilibrium.



III. Equilibrium selection in large games

• When there are multiple equilibria, it is natural to ask which of
these equilibria will be played.

• One approach is to ask at which states a dynamic spends most of
its time.

• Consider a perturbed version of the best-response dynamic with
inertia in which, at each time, any updating player plays a
best-response with probability 1 − ϵ and, with complementary
probability ϵ > 0, selects an action uniformly at random.

• The stochastically stable states of this dynamic are the action
profiles that are assigned positive probability as ϵ → 0 in the
invariant distribution of the Markov process induced by this
dynamic.



III. Equilibrium selection in large games

• Commonly used methods for determining stochastic stability
include the minimum-cost tree technique and the radius-coradius
technique [Kandori and Rob, 1995, Young, 1993,
Freidlin et al., 2012, Ellison, 2000].

• They require checking global properties: a stochastically stable
state must be ‘hard’ to leave and ‘easy’ to enter.

• [Newton and Sawa, 2024] observe that, in connected games, the
problem reduces to checking a local ‘one-shot’ property.

• [Newton and Sawa, 2024] are able to determine which Nash
equilibria (according to their welfare properties) are selected by
different evolutionary dynamics in large games.

Requires our notion of connectedness.



Open questions

• Many actions case? [in preparation]

• Completely uncoupled dynamics? [Babichenko, 2012]

• Speed of convergence? [Hart and Mansour, 2010]

• Non-generic games? [Amiet et al., 2021]

• Efficiency? [Pradelski and Young, 2012]

• Different types of deviation?
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