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No regret-algorithms appear in game dynamics, prediction of
sequences and convex optimization.
We will describe the basic framework, the main tools and the
fundamental results.

Part I deals with the initial discrete (in space) and random
procedures.

Part II is concerned with continuous deterministic algorithms.



Part I
A. On-line algorithms and regret
1. No-regret properties
2. Approachability theory
3. Existence
4. Calibration.
5. Extensions
B) Application to finite games.
1. Unilateral procedures.
2. External regret and Hannan set.
3. Internal regret and correlated equilibria
4. Alternative approaches



Part II
1. On-line learning, vector field, convex optimization.
2. Closed field, continuous time
3.GD, MD and DA
4.Advances



The notion of regret appears in Hannan, 1957 [60], Blackwell,
1956 [16] in a game theoretical set-up.

Algorithms and properties are studied in this spirit in Foster and
Vohra, 1993 [46], Fudenberg and Levine, 1995 [54], Foster and
Vohra, 1999 [49], Hart and Mas-Colell, 2000 [62], Lehrer, 2003
[91] , Benaim, Hofbauer and Sorin, 2005 [19], Cesa-Bianchi
and Lugosi, 2006 [36] ... among others.



This topic is analyzed in the following books:

Fudenberg and Levine (1998) The Theory of Learning in
Games, MIT Press.
Young (2004) Strategic Learning and Its Limits, Oxford U. P.
Cesa-Bianchi and Lugosi (2006) Prediction, Learning and
Games, Cambridge University Press.
Hart and Mas-Colell (2013) Simple Adaptive Strategies: From
Regret-Matching to Uncoupled Dynamics, World Scientific
Publishing.

and the connection with related notions of approachability and
consistency is well presented in the survey:

Perchet (2014) Approachability, regret and calibration:
implications and equivalences, [122]

Special Issue on Learning in Games in Honor of D. Blackwell
(1999) Games and Economic Behavior, 29.



Similar tools and properties occur in statistics and in the
learning community:

Vvok, 1990 [159], Cover, 1991 [40], Littlestone and Warmuth,
1994 [94], Freund and Shapire, 1999 [53], Auer, Cesa-Bianchi,
Freund and Shapire, 2002 [8], Cesa-Bianchi and Lugosi, 2003
[35], Stoltz and Lugosi, 2005 [150], Kalai and Vempala, 2005
[83], Blum and Mansour, 2007 [23], ...



Part I: No-regret (I)
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A. On-line algorithms and regret

Consider an agent acting in discrete time and facing an
unknown environment.
At each stage n ∈ IN
- choose kn in a finite set K,
- then observe a reward vector Un ∈U = [−1,1]K

- payoff is the kth
n component: ωn = Ukn

n .

Adversarial framework: no assumption on the reward process.
It is, at each stage n a function of the past history
hn−1 = {k1,U1, ...,kn−1,Un−1} ∈ Hn−1.

A strategy of the agent is a map σ from H = ∪+∞

m=0Hm to ∆(K)
(set of probabilities on K).

σ(hn−1) is the "mixed move" at stage n.



1. No-regret properties
External regret
The external regret given k ∈ K and U ∈U ⊂ RK is the vector
R(k,U) ∈ RK defined by:

R(k,U)` = U`−Uk, ` ∈ K.

Evaluation of the procedure σ relies on the sequence of
external regret vectors {Rn} at each stage n with Rn = R(kn,Un)
thus :

R`
n = U`

n−ωn, ` ∈ K.

The average external regret vector at stage n is Rn =
1
n ∑

n
m=1 Rm,

thus :
R`

n = U`
n−ωn, ` ∈ K.

This compares the realized average payoff to the average
payoff corresponding to the choice of a constant component.
See Hannan, 1957 [60], Fudenberg and Levine, 1995 [54],
Foster and Vohra, 1999 [49], ...





Definition
A strategy σ satisfies external consistency (or exhibits no
external regret) if, for every process {Um} ∈U :

max
k∈K

[Rk
n]
+ −→ 0 a.s., as n→+∞

or, equivalently ∑
n
m=1(U

k
m−ωm)≤ o(n), ∀k ∈ K.

The average payoff on the path is asymptotically greater than
on any horizontal line.



Internal regret
The internal regret given (k,U) is the K×K matrix S(k,U) with
components:

Sj`(k,U) = (U`−Uj) I{j=k}.

The evaluation at stage n is Sn = S(kn,Un) hence defined by:

Sk`
n =

{
U`

n−Uk
n for k = kn

0 otherwise.

Average internal regret matrix:

Sk`
n =

1
n

n

∑
m=1,km=k

(U`
m−Uk

m)

Comparison for each component k, of the average payoff
obtained on the dates where k was played, to the average
payoff for an alternative choice ` at these dates.
See Foster and Vohra (1999) [49], Fudenberg and Levine
(1999) [56].





Definition
A strategy σ satisfies internal consistency (or exhibits no
internal regret) if, for every process {Um} ∈U and every couple
k, `:

[Sk`
n ]+ −→ 0 a.s., as n→+∞

Comparison with horizontal lines on each section of the
trajectory.



There are several proofs of existence of such strategies.
See Section B) 4.

We will use here approachability theory.



2. Approachability theory

All the results are due to Blackwell (1954) [21], (1956) [16].

Consider a two person game defined by A, a I× J-matrix with
entries in RK : Aij ∈ RK is the outcome if Player 1 plays i ∈ I
and player 2 plays j ∈ J.
The game is played in discrete time for infinitely many stages:
- at each stage n = 1,2, ..., after having observed the past
history of vector payoffs {gm = Aimjm} denoted
hn−1 = (g1, ...,gn−1) ∈Hn−1 = (RK)n−1,
Player 1 chooses xn ∈ X = ∆(I) (probabilities on I) and player 2
chooses yn ∈ Y = ∆(J).
- then a couple (in, jn) ∈ I× J is selected according to the
product probability xn⊗ yn, and the game goes to stage n+1
with the history hn = (g1, ....,gn) ∈Hn.



A strategy σ of Player 1 in the repeated game is a sequence
σ = (s1, ...,sn, ...) with sn : Hn−1→ ∆(I) for each n.
(Similarly for a strategy τ of player 2).

A couple (σ ,τ) naturally defines a probability distribution Pσ ,τ

over the set of plays H∞=(I× J)∞, endowed with the product
σ -algebra, and Eσ ,τ is the associated expectation.

gn =
1
n [∑

n
m=1gm] is the average payoff up to stage n included.

‖A‖= maxi∈I,j∈J,k∈K |Ak
ij|.



Definition
A set C in RK is approachable by Player 1 if for any ε > 0 there
exists a strategy σ and N such that, for any strategy τ of Player
2 and any n≥ N:

Eσ ,τ(dn)≤ ε

and dn→ 0, where dn is the euclidean distance d(gn,C).

A set C in RK is excludable by Player 1 if for some δ > 0, the set
Cc

δ
= {z;d(z,C)≥ δ} is approachable by her.

From the definitions it is enough to consider closed sets C and
even their intersection with the closed ball of radius ‖A‖.

Given x in X = ∆(I), define the set

[xA] = co {∑i xiAij; j∈J} ⊂ RK .

If Player 1 uses x, the expected outcome will be in [xA],
whatever being the move of player 2.



B-sets and sufficient condition
The first result is a sufficient condition for approachability based
on the following notion:

Definition
A closed set C in RK is a B-set for Player 1 if:
for any z/∈C, there exists a closest point w = w(z) in C to z and a
mixed move x = x(z) in X, such that the hyperplane trough w
orthogonal to the segment [wz] separates z from [xA]. Explicitly:

〈z−w,u−w〉 ≤ 0,∀u ∈ [xA].





Theorem
Let C be a B-set for Player 1.
Then C is approachable by that player.
A strategy satisfying σ(hn) = x(gn), whenever gn /∈C, gives:

Eστ(dn) ≤
2‖A‖√

n
, ∀τ

and dn converges Pστ a.s. to 0, more precisely:

P(∃n≥ N;d2
n ≥ ε)≤ 8‖A‖2

εN
.



Proof
Let Player 1 use a strategy σ as above.
Denote wn = w(gn) and d2

n = ‖gn−wn‖2.

d2
n+1 ≤ ‖gn+1−wn‖2 (1)

implies:

d2
n+1 ≤ ‖gn+1−gn‖2 +‖gn−wn‖2 +2〈gn+1−gn,gn−wn〉. (2)

Decompose:

〈gn+1−gn,gn−wn〉 = (
1

n+1
)〈gn+1−gn,gn−wn〉

= (
1

n+1
)(〈gn+1−wn,gn−wn〉−‖gn−wn‖2)

The property of x(gn) implies that:

〈E(gn+1|hn)−wn,gn−wn〉)≤ 0

since E(gn+1|hn) belongs to [x(gn)A].



Taking conditional expectation with respect to the history hn

gives:

E(d2
n+1|hn)≤ (1− 2

n+1
) d2

n +(
1

n+1
)2E(‖gn+1−gn‖2|hn). (3)

Since ‖gn+1−gn‖2 ≤ 2‖gn+1‖2 +2‖gn‖2 ≤ 4‖A‖2, we obtain:

E(d2
n+1)≤ (

n−1
n+1

) E(d2
n)+(

1
n+1

)2 4‖A‖2

and by induction:

E(d2
n)≤

4‖A‖2

n
.

This gives in particular the convergence in probability of dn to 0.



Introduce the random variable:
Wn = d2

n +‖A‖2
∑

∞
m=n+1(

1
m2 E(‖gm−gm‖2|hn).

(3) implies:
E(Wn+1|hn)≤Wn

thus Wn is a positive supermartingale hence converges Pστ a.s.
to 0.
More precisely Doob’s maximal inequality, see e.g. Neveu,
1972 [116], gives :

P(∃n≥ N;d2
n ≥ ε)≤ E(WN)

ε
≤ 8‖A‖2

εN
.



In particular one obtains:

Corollary
For any x in S, [xA] is approachable by Player 1, with the
constant strategy x.

It follows that a necessary condition for a set C to be
approachable by Player 1 is that for any y in Y, [Ay] ∩C 6= /0,
otherwise C would be excludable by Player 2.

In fact this condition is also sufficient for convex sets.



Convex case

Theorem
Assume C closed and convex in RK .
C is a B-set for Player 1 iff

(∗) [Ay] ∩ C 6= /0, ∀y ∈ Y.

In particular a set is approachable iff it is a B-set.
Proof
By the previous Corollary, it is enough to prove that (∗) implies
that C is a B-set.
The idea is to reduce by projection the problem to the
one-dimentional case and to use the minmax theorem.





In fact, let z /∈ C, w = ΠC(z) the (orthogonal) projection on C,
and consider the 2 person zero-sum game with real payoff
matrix B = 〈w− z,A〉. Since [Ay] ∩ C 6= /0 for all y ∈ Y, this implies
that its value is at least minc∈C 〈w− z,c〉= 〈w− z,w〉. Hence
there exists an optimal strategy x ∈ X of player 1 such that
〈w− z,∑i xiAij〉 ≥ 〈w− z,w〉 for any j ∈ J, which shows that xA is
on the opposite side of the hyperplane to z, and the result
follows.

Remarks
The first property is quite general: bounded random payoffs
such that condition B makes sense.

For the convex case, only the existence of val〈α,A〉 for any α

in RK is needed.



Extensions
1. In dimension 1, any set is either approachable or excludable. There exist sets that are neither approachable nor
excludable.
Extension to random payoffs, uniformly bounded in L2 (Blackwell, 1956).
2. Any set is either weakly approachable or weakly excludable (strategy adapted to the duration) [first link with
differential games] (Vieille, 1992).
3. Any approachable set contains a B-set (Spinat, 2002).
4. Extension to infinite dimension (Lehrer, 2002).
5. General active states (Lehrer, 2003).
6. Idea of a potential (convex case)
Write

〈xn+1−ΠC(x̄n), x̄n−ΠC(x̄n)〉 ≤ 0, (4)

as
〈xn+1− x̄n ,∇PC(x̄n)〉 ≤ −2 PC(x̄n), (5)

with PC(x) = ‖x−ΠC(x)‖2 and ∇PC(x) = 2[x−ΠC(x)]
7. Geometric condition and proximal normal (dual approach) (As Soulaimani, Quincampoix and Sorin, 2009)
8. Approachability and viability [second link with differential games] (As Soulaimani, Quincampoix and Sorin, 2009)



3. Existence
Existence External Consistency
We prove the existence of a strategy satisfying EC by showing
that the negative orthant D = RK

− is approachable by the
sequence of regrets {Rn} in the game on K×U with payoff
R(k,U).

Average property 1

Lemma
∀x ∈ ∆(K),∀U ∈U :

〈x,Ex[R(.,U)]〉= 0.

Proof
One has:

Ex[R(.,U)] = ∑
k∈K

xk R(k,U) = ∑
k∈K

xk(U−Uk1) = U−〈x,U〉1

(1 is the K-vector of ones), thus 〈x,Ex[R(.,U)]〉= 0.



Let Z ∈ RK and define if Z+ 6= 0, x(Z) to be proportional to this
vector.
Then the B-set condition is satisfied, in fact:

〈Z−ΠD(Z),G−ΠD(Z)〉= 0, ∀Z ∈ RK (6)

where G is the expected outcome, given x(Z).
Recall that ΠD(Z) = Z−, Z = Z++Z− and 〈Z−,Z+〉= 0, ∀Z ∈ RK .
Now 〈ΠD(Z), Z−ΠD(Z)〉= 0 and using the previous Lemma:

〈G, Z−ΠD(Z)〉 = 〈G, Z+〉
÷ 〈G, σ(Z)〉
= 〈Ex[R(.,U)], x〉, for x = x(Z)
= 0

Hence D is approachable so that d(R̄n,RK
−) goes to 0.



Existence IC

Given a K×K real matrix A with nonnegative coefficients, let
Inv[A] be the non-empty set of invariant measures for A, namely
vectors µ ∈ ∆(K) satisfying:

∑
k∈K

µ
kAk` = µ

`
∑
k∈K

A`k ∀` ∈ K.

(The existence follows from the existence of an invariant
measure for a finite Markov chain - which is itself a
consequence of the minmax theorem).



Average property 2

Lemma
Given A ∈ RK2

+ , let µ ∈ Inv[A] then:

〈A,Eµ(S(.,U))〉= 0, ∀U ∈U .

Proof
〈A,Eµ(S(.,U))〉= ∑

k,`
Ak`

µ
k(U`−Uk)

and the coefficient of each U` is

∑
k∈K

µ
kAk`−µ

`
∑
k∈K

A`k = 0



To prove the existence of a strategy satisfying internal
consistency, we show that ∆ = RK×K

− is approachable by the
sequence of internal regret {Sn} in the game on K×U with
payoff S(k,U).
Given B ∈ ∆, define, if B+ 6= 0, x(B) to be an invariant measure
of B+.
One has, M being the expected regret matrix:

〈M−Π∆(B), B−Π∆(B)〉= 0

since again 〈Π∆(B), B−Π∆(B)〉= 0 and using the Lemma
above:

〈M, B−Π∆(B)〉 = 〈M, B+〉
= 〈Eµ [S(.,U)], B+〉, for µ = x(S) ∈ Inv[S+]
= 0

Then ∆ is approachable hence maxk,`[S
k,`
n ]+ −→ 0.



Calibrating
Consider a sequence of random variables Xm with values in a
finite set Ω (written as a basis of RΩ).
Obviously any deterministic prediction algorithm φm - where the
loss is measured by ‖Xm−φm‖ - will have a worst loss 1 and
any random predictor a loss at least 1/2 (take Xm = 1 iff
φm(1)≤ 1/2).
Introduce a predictor with values in a finite discretization V of
D = ∆(Ω).
“φm = v,ν ∈ V” means that the anticipated distribution of X is ν ,
i.e. the predicted probability that Xm = ω (or Xω

m = 1) is vω .

Definition
φ is ε-calibrated if, for any v ∈ V:

lim
n→+∞

1
n
‖ ∑
{m≤n,φm=v}

(Xm− v)‖ ≤ ε.

Dawid (1982), [41].



If the average number of times v is predicted does not vanish,
the empirical average distribution of Xm on these dates is close
to v.
More precisely let Bv

n the set of stages before n where v is
announced, let Nv

n be its cardinal and X̄n(v) the average of Xm

(in the simplex ∆(Ω)) on these stages.
Then the condition writes:

lim
n→+∞

Nv
n

n
‖X̄n(v)− v‖ ≤ ε, ∀v ∈ V.



From internal consistency to calibrating
Foster and Vohra (1997) [47].
Consider the online algorithm where the choice set of the
forecaster is V and given X the reward is the vector with
components:

Uv = ‖X− v‖2, v ∈ V,

(where we use the L2 norm).
Given an internal consistent procedure φ one obtains (the
outcome is here a loss):

1
n ∑

m∈Bv
n

(Uv
m−Uw

m)≤ o(n), ∀w ∈ V,

which is:

1
n ∑

m∈Bv
n

(‖Xm− v‖2−‖Xm−w‖2)≤ o(n), ∀w ∈ V,



hence implies:

Nv
n

n
(‖X̄n(v)− v‖2−‖X̄n(v)−w‖2)≤ o(n), ∀w ∈ V.

In particular by chosing w a closest point to X̄n(v):

Nv
n

n
(‖X̄n(v)− v‖2)≤ δ

2 +o(n)

where δ is the L2 mesh of V, from which ε calibration follows.



From calibrating to approachability

Foster and Vohra (1997)
We use calibrating to prove approachability of convex sets.

Assume that the set C satisfies:
∀y ∈ Y,∃x ∈ X such that xAy ∈ C.

Consider a δ -grid of Y defined by {yv ,v ∈ V}.
A stage is of type v if player 1 predicts yv and then plays a mixed move xv such that xv Ayv ∈ C.
By using a calibrated procedure, the average move of player 2 on the stages of type v will be δ close to yv.
By a martingale argument the average payoff will then be ε close to xv Ayv for δ small enough and n large enough.
Finally the total average payoff is a convex combination of such amounts hence is close to C by convexity.

There is a huge literature on the relations between approachability, no-regret and calibrating.

See e.g.
Mannor and Stoltz, 2010 [98],
Abernethy, Bartlett and Hazan, 2011 [1],
Perchet, 2014 [122].



Extensions
Conditional expectation
Recall that the regret at stage n that the player wants to control
is of the form:

1
n

n

∑
m=1

[Uk
m−ωm], k ∈ K

where ωm = Ukm
m is the (random) payoff at stage m.

Let xm ∈ ∆(K) be the strategy of the player at stage m, then

E(ωm|hm−1) = 〈Um,xm〉

so that ωm−〈Um,xm〉 is a bounded martingale difference.
Hoeffding-Azuma’s [12], [72] concentration inequality for a
process {Zn} of martingale differences with |Zn| ≤ L gives that:

P{|Z̄n| ≥ ε} ≤ 2exp(−n ε2

2L2 )

Hence the average difference between the payoff and its
conditional expectation is controlled.



Thus we will study conditions of the form:

n

∑
m=1

Uk
m−〈Um,xm〉 ≤ o(n), k ∈ K.

or equivalently, because of the linearity:

n

∑
m=1
〈Um,x〉−〈Um,xm〉 ≤ o(n), x ∈ ∆(K).

and the requirement to be in the simplex will disappear.
Similarly the internal no-regret condition becomes:

n

∑
m=1

xk
m[U

j
m−Uk

m]≤ o(n), ∀k, j ∈ K.



Procedures in law
Assume that the actual move kn is not observed and define a pseudo-process R̃ defined through the conditional
expected regret:

Rn = Un−ωn1, R̃n = Un−〈Un,xn〉1.

More generally for Blackwell’s theorem, replace the actual payoff g by its conditional expectation γ under x, note that
the B condition still holds and the strategy σ̃(hn) = x(γ̄) will still imply that γ̄n approaches C and the same is true for
ḡn.
Then consistency holds both for the pseudo and the realized processes under σ̃ .
Experts and generalized consistency
External consistency can be considered as a robustness property of σ facing a given finite family of “external”
experts using procedures φ ∈Φ:

lim
1
n
[

n

∑
m=1
〈φm− xm,Um〉]+ = 0, ∀φ ∈Φ.

The typical case corresponds to a constant choice : φ = k and Φ = K.
In general “k” will be the (random) move of expert k, that the player follows with probability xk

m at stage m.
Uk

m is then the payoff to expert k at stage m.
Internal consistency corresponds to experts adjusting their behavior to the one of the agent.



From external to internal consistency

Stoltz and Lugosi (2005) [150]
Consider a family ψ ij,(i, j) ∈ K×K of experts and θ an algorithm that satisfies external consistency with respect to
this family.
Define σ inductively as follows.
Given some element p ∈ ∆(K), let p(ij) be the vector obtained by adding pi to the jth component of p.
Let qn+1(p) be the distribution induced by θ at stage n+1 given the history hn and the behavior ψ ij(hn) = p(ij) of the
experts.
Assume that the map p 7→ qn+1(p) is continuous and let p̄n+1 be a fixed point which defines σ(hn) = xn+1.
The fact that σ is an incarnation of θ implies that it performs well facing any ψ ij hence

[
n

∑
m=0
〈ψ ij

m− xm ,Um〉]≤ o(n), ∀i, j

which is

[
n

∑
m=0
〈p̄(ij)m− p̄m,Um〉]≤ o(n), ∀i, j

hence

[
n

∑
m=0

p̄i
m(Uj

m−Ui
m)]≤ o(n), ∀i, j

and this is the internal consistency condition.



Blum and Mansour (2007) [23]
Consider K parallel algorithms {φ [k]} having no external regret,
that generates each a (row) vector q[k] ∈ ∆(K) then define σ by
an invariant measure p satisfying

p = pq.

Given the outcome Um ∈ RK , let pkUm be the reward vector
used for algorithm φ [k].
Expressing the fact that φ [k] satisfies no external regret gives,
for all j ∈ K

[
n

∑
m=0

pk
mUj

m−〈q[k]m,pk
mUm〉]≤ o(n)

Note that ∑k〈q[k]m,pk
mUm〉= ∑k〈pk

mq[k]m,Um〉= 〈pm,Um〉, hence
by summing over k, for any function M : K 7→ K, corresponding
to a perturbation of σ with j = M(k) the difference between the
performances of σM and σ will satisfy as well

[
n

∑
m=0

∑
k

pk
mUM(k)

m −〈pm,Um〉] = [
n

∑
m=0

∑
k

pk
m(U

M(k)
m −Uk

m)]≤ o(n).

This is the internal consistency for “swap experts”.



Large range

Blum and Mansour (2007) [23]; Cesa-Bianchi and Lugosi (2006)[36]; Lehrer (2003) [91].
Consider an even larger set of experts that are allowed (in addition to be adapted to the past history) to choose their actions and to
be active as a function of the choice of the predictor.
Explicitly every expert s ∈ S (finite) is characterized, at stage m, conditional to the past, by :
- a choice function f s

m : K→ K
- an activity function τs

m : K→ [0,1].
Given a predictor φ which prediction at stage m has a law pm the regret facing s is :

rs
m = ∑

k
pk

mτ
s
m(k)[Uf s

m(k)
m −Uk

m]

We assume that the functions f s ,τs are known by the predictor.

Then there exists a consistent procedure.



Bandit framework
This is the case where given the move k and the vector U the
only information to the agent is the realization ω = Uk (the
vector U is not announced).
Define the pseudo regret vector at each stage n by:

Ûk
n =

ωn

σ k
n

I{kn=k}

and note that it is an unbiased estimator of the true regret.
To keep the outcome bounded one may have to perturb the
strategy and same asymptotic properties hold.
Auer, Cesa-Bianchi, Freund, Shapire (2002), [8].
Similarly the pseudo regret matrix is:

Ŝkj
n =

σ k
n

σ
j
n

1{kn=j}−Uk1{kn=k}

with expectation σ k
n [U

j−Uk].

For more advances, see Bubeck and Cesa-Bianchi (2012),
chapter 5, [33].
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1. Unilateral procedures

Let G a finite game in strategic form.
Finitely many players labeled i = 1,2, . . . , I.
Si: finite set of actions of player i, S = ∏i Si, and Z = ∆(S) is the
set of probabilities on S (correlated moves).
Consider repeated interaction in discrete time where at each
stage the players observe the actions of their opponents.

We want evaluate the joint impact on the play of a prescribed
behavior of the players.



Since we will study the procedure from the view point of player
1 it is convenient to set S1 = K,X = ∆(K) (mixed moves of player
1), L = ∏i6=1 Si, and Y = ∆(L) (correlated moves of player 1’s
opponents) hence Z = ∆(K×L).
F : S→ R denotes the payoff function of player 1.

Player 1 faces the on-line problem, corresponding to the
repeated game, where at stage m if `m is the profile of moves of
his opponents, the outcome vector is is Um = {F(k, `m}k∈K}.



2. External regret and Hannan’s set

Let r(z) denote the K-dimensional vector at z in Z, defined by:

rj(z) = ∑
(k,`)∈K×L

z(k, `)[F(j, `)−F(k, `)]

Player 1 compares his payoff using an alternative move j to his
actual payoff at z, assuming the other players’ behavior fixed.

Definition
H1 (for Hannan’s set), Hannan (1956) [60] is the set of
correlated moves in Z satisfying the external no-deviation
condition for player 1. Formally:

H1 = {z ∈ Z : ∑
(k,`)∈K×L

z(j, `)[F(k, `)−F(j, `)]≤ 0,∀j ∈ K}

= {z∈Z : r(z) ∈ D = RK
−}.



The empirical average distribution of correlated moves on a
play is zn ∈ Z with:

zk`
n =

1
n

n

∑
m=1

1(km,`m)=(k,`)

Proposition
If Player 1 follows some external consistent procedure, the
empirical average distribution of moves converges to the
Hannan set H1 (in the sense that all accumulation points will be
in H1).



Proof
The external no regret property is:

1
n

n

∑
m=1

[Uj
m−Ukm

m ]≤ o(n) ∀j ∈ K

which is:

1
n

n

∑
m=1

F(j, `m)−
1
n

n

∑
m=1

F(km, `m)≤ o(n) ∀j ∈ K

and this expression is:

rj(zn) = ∑
k,`

zn(k, `)[ F(j, `)−F(k, `)]≤ o(n) ∀j ∈ K

so that the accumulation points of zn are in H1.



Alternative proof
We consider an auxiliary game with vector payoffs in RM , where the dimension is M = L+1, and the payoff
g(k, `) = (F(k, `), `) is the couple of the current payoff in the original game and of the opponent(s) profile.
D1 is the convex set:

D1 = {(u,θ) ∈ R×∆(L);u≥max
k∈K

F(k,θ)}.

Proposition
D1 is approachable.
Proof
The proof that D1 is approachable is that it is not excludable: namely, for any θ ∈ ∆(L), there is some k ∈ K such that
g(k,θ) ∈ D1.

This obviously implies the non emptiness of H1 since by approachability d(ḡn ,D1) goes to 0 hence also

[maxk∈K rkzn ]
+.



One defines similarly Hi for each player and H = ∩i∈IHi which is
the global Hannan’s set.

Proposition
If each player follows some external consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan
set H.

Note that no coordination is required.



3. Internal regret and correlated equilibria
Given z ∈ Z, introduce the comparison matrix

c(k,j)(z) = ∑
`∈L

z(k, `)[F(j, `)−F(k, `)], j,k ∈ K

This corresponds to the change in the payoff of Player 1 at z
when replacing move k by j.

Definition
C1 is the set of correlated moves satisfying the internal no
deviation property for player 1, namely:

C1 = {z ∈ Z; ∑
`∈L

z(k, `)[F(j, `)−F(k, `)]≤ 0,∀j,k ∈ K}.

= {z ∈ Z;c(k,j)(z)≤ 0,∀j,k ∈ K}.

It is obviously a subset of H1 since

∑
j∈K

c(j,k)(z) = rk(z).



Proposition
If Player 1 follows some internal no-regret procedure, the
empirical distribution of moves converges to the set C1.
Proof
The internal no regret property is:

1
n

n

∑
m=1,km=k

(Uj
m−Ukm

m )≤ o(n) ∀j,k ∈ K

thus:

1
n

n

∑
m=1,km=k

(F(j, `m)−F(km, `m)≤ o(n) ∀j,k ∈ K

and this expression is:

c(k,j)(zn) = ∑
k,`

zn(k, `)[ F(j, `)−F(k, `)]≤ o(n) ∀j,k ∈ K

so that the accumulation points of zn are in C1.



Recall that the set of correlated equilibrium distributions
(Aumann, 1974, [9]) of the game G with payoff functions {Fi}i∈I

is defined by:

C = {z ∈ Z; ∑
`∈S−i

z(k, `)[Fi(j, `)−Fi(k, `)]≤ 0, ∀j,k ∈ Si,∀i ∈ I}.

Hence one has :

Proposition
The intersection over all i ∈ I of the sets Ci is the set of
correlated equilibrium distributions of the game.
Thus we obtain:

Theorem
If each player follows some internal consistency procedure, the
empirical average distribution of moves converges to the set of
correlated equilibria.

Note that this provides an alternative proof of existence of
correlated equilibrium through the existence of internally
consistent procedures.



Alternative joint procedure

Hart and Mas Colell (2000) [62]
The procedure is defined (for player 1) by x1

n+1 being a function of his average regret, his last move s1
n = j and some large

parameter L, as follows:
x1

n+1(k) = R+
n (j,k)/L, k 6= j ; x1

n+1 = 1−∑
k 6=j

x1
n+1(k).

Theorem

If all players use the above procedure, the empirical distribution of moves converge to the set of correlated equilibria.



From calibrating to correlated equilibrium
Foster and Vohra (1997) [47]
Consider the case where Player 1 is forecasting the behavior (a profile in L) of his opponents.
Given a precision level δ , Player 1 is predicting points in a δ -grid {p[v],v ∈ V} of ∆(L) and then plays a (pure) best
reply to his forecast.
It is thus clear that if the forecast is calibrated the empirical distribution of the moves of the opponents, will converge
to the forecast, on each event of the form {m;pm = p[v]}, hence eventually the action chosen by Player 1, k, will be
close to a best reply to the frequency near p[v].
When looking at the average empirical distribution z, the conditional distribution z|k of z given k, will correspond to a
convex combination of distributions p[v] to which k is best reply, hence k will again be an (approximate ) best reply to
z|k: hence z is (approximately) in C1.
If all players use calibrated strategies the empirical average frequency converges to C.

Note that this is in the spirit of the dual approachability property and was used to obtain approachability of convex

sets.



4. Alternative approaches

Smooth fictitious play
This procedure is based only on the previous observations of
the outcome vectors and not on the moves of the predictor,
hence the regret cannot be used, Fudenberg and Levine (1995)
[54].
Recall that fictitious play corresponds to

xi
m+1 ∈ BRi(x̄−i

m )

where BRi is the best reply correspondence. Even for 2 player
matrix games this procedure does not have global convergence
properties, Shapley (1964), [142].
We consider here a unilateral version so player 1 faces a
sequence of vectors Um = F(., `m) and plays a perturbation of a
best reply to the average Ūn.



Definition
A smooth perturbation of the payoff on ∆(K)×U ∈U is a map
Vε(x,U) = 〈x,U〉− ερ(x), 0 < ε < ε0, such that:
(i) ρ : X→ R is a C 1 function with ‖ρ‖ ≤ 1,
(ii) argmaxx∈XVε(.,U) reduces to one point and defines a
continuous map brε : U → X, called a smooth best reply
function,
(iii) Let

Wε(U) = max
x

Vε(x,U) = Vε(brε(U),U).

then:
DWε(U) = brε(U).

(which is a version of the enveloppe theorem)



A typical example is obtained via the entropy function on
X = ∆(K):

ρ(x) = ∑
k

xk logxk. (7)

which leads to:

[brε(U)]k =
exp(Uk/ε)

∑j∈K exp(Uj/ε)
. (8)



Definition
A smooth fictitious play strategy σ ε is defined by

σ
ε(hn) = brε(Un).

The corresponding discrete dynamics written in the spaces of
both vectors and payoffs is:

Un+1−Un =
1

n+1
[Un+1−Un]. (9)

ωn+1−ωn =
1

n+1
[ωn+1−ωn]. (10)

with
E(ωn+1|hn) = 〈brε(Un),Un+1〉. (11)

External consistency is as usual:

1
n

n

∑
m=1

Uk
m−ωm ≤ o(n), ∀k ∈ K

or
〈x, Ūn〉− ω̄n ≤ o(n), ∀x ∈ ∆(K)



Fudenberg and Levine (1995) [54]

Theorem
For any η > 0, there exists ε̄ such that for ε ≤ ε̄, SFP(ε) is η-
consistent.

A similar result holds for conditional smooth fictitious play
generating an internal no-regret procedure, Fudenberg and
Levine(1999), [56].



Stochastic approximation
We summarize here results from Benaïm, Hofbauer and Sorin
(2005) [19], (2006) [20], following the approach for ODE by
Benaïm (1996) [15], (1999) [16], Benaïm and Hirsch (1996).

Consider a random discrete process defined on a compact
subset of RK and satisfying the differential inclusion :

Yn−Yn−1 ∈ an[T(Yn−1)+Wn]

where
i) T is an u.s.c. correspondence with compact convex values
ii) an ≥ 0, ∑n an =+∞, ∑n a2

n <+∞

iii) E(Wn|Y1, ...,Yn−1) = 0.

Theorem
The set of accumulation points of {Yn} is almost surely a
compact set, invariant and attractor free for the dynamical
system defined by the differential inclusion:

Ẏ ∈ T(Y).



One says that the process {Yn} is a Discrete Stochastic
Approximation of the differential inclusion.

A typical application is the case where:

Yn−Yn−1 = anZn

with Zn random, satisfying E[Zn|Y1, ...,Yn−1] ∈ T(Yn−1) where one
writes:

Yn−Yn−1 = an[E[Zn|Y1, ...,Yn−1]+Zn−E[Zn|Y1, ...,Yn−1])]

∈ an[T(Yn−1)+Wn]



i)Back to SFP

Lemma
The process (Un ,ωn) is a Discrete Stochastic Approximation for the differential inclusion:

(u̇, ω̇) ∈ {(U,〈brε (u),U〉)− (u,ω);U ∈U }. (12)

The main property of the continuous dynamics is given by:
Theorem
The set {(u,ω) ∈U ×R : Wε (u)−ω ≤ ε} is a global attracting set for the continuous dynamics.
In particular, for any η > 0, there exists ε̄ such that for ε ≤ ε̄, limsupt→∞ Wε (u(t))−ω(t)≤ η (i.e. continuous SFP(ε) satisfies
η-consistency).
Proof
Let q(t) = Wε (u(t))−ω(t).
Taking time derivative one obtains:

q̇(t) = DWε (u(t)).u̇(t)− ω̇(t)

= 〈brε (u(t)), u̇(t)〉− ω̇(t)

= 〈brε (u(t)),U−u(t)〉− (〈brε (u(t)),U〉−ω(t))

= −(〈brε (u(t)),u(t)〉−ω(t))

≤ −q(t)+ ε.

so that q(t)≤ ε +Me−t for some constant M and the result follows.
Theorem
For any η > 0, there exists ε̄ such that for ε ≤ ε̄, SFP(ε) is η- consistent.
Proof
The assertion follows from the previous result and the DSA property.

A similar result holds for conditional smooth fictitious play generating an internal no-regret procedure.
Recent advances: Benaim and Faure (2013) [17] obtain consistency with vanishing perturbation εn = n−a ,a < 1.

Process non longer autonomous.



ii) Approachability

In the framework of Blackwell’s theorem (convex case) one has:

ḡn+1− ḡn =
1
n
[gn+1− ḡn ]

with
〈ḡn−ΠC(ḡn),E(gn+1 |hn)−ΠC(ḡn)〉 ≤ 0

which is a DSA of
ż ∈ N(z)− z

with N(z)⊂ {v;〈z−ΠC(z),v−ΠC(z)〉 ≤ 0}.
Let P(z) = d2(z,C) = ‖z−ΠC(z)‖2 and Q(t) = P(zt).
One has ∇P(z) = 2[z−ΠC(z)]. Then:

Q̇(t) = 〈∇P(zt), żt〉 ∈ 2〈zt −ΠC(zt),vt −ΠC(zt)+ΠC(zt)− zt〉

≤ −2Q(t).

So that Q(t) decreases exponentially to 0 hence C is a global attractor and the limit points of the DSA {ḡn} are in C. The same proof
works for any C 1 function P non negative with P−1(0) = C and satisfying for some a > 0:

N(z)⊂ {v;〈∇P(z),v− z〉 ≤ −aP(z)}

Finally if one has, when z /∈ C
N(z)⊂ {v;〈∇P(z),v− z〉< 0}

P is a strong Lyapounov function related to C for the differential inclusion and any bounded DSA of the differential inclusion

converges to C.



iii) Regret In this framework the same function can be used to
define the distance and the strategy.

Definition
P is a potential function for D = RK

− if
(i) P is C 1 from RK to R+

(ii) P(w) = 0 iff w ∈ D
(iii) ∇P(w) ∈ RK

+

(iv) 〈∇P(w),w〉> 0,∀w /∈ D.
Compare Hart and Mas Colell (2001, 2003) [63], [64].

Example: P(w) = ∑k([wk]+)2= d(w,D)2.

1. External regret

Given a potential P for D = RK
−, the P-regret-based discrete

procedure for player 1 is defined by

σ(hn)÷∇P(Rn) if Rn /∈ D (13)

and arbitrarly otherwise.



Discrete dynamics associated to the average regret:

Rn+1−Rn =
1

n+1
(Rn+1−Rn)

By the choice of σ

〈∇P(Rn),E(Rn+1|hn)〉= 0.

(recall 〈x,Ex(R(.,U))〉= 0.)
The continuous time version is expressed by the following
differential inclusion in Rm:

ẇ ∈ N(w)−w (14)

where N is a correspondence that satisfies

〈∇P(w),N(w)〉= 0.

Theorem
The potential P is a Lyapounov function associated to D = RK

−.
Hence, D contains a global attractor attractor.



Proof
For any solution w, if w(t) /∈ D then

d
dt

P(w(t)) = 〈∇P(w(t)), ẇ(t)〉

∈ 〈∇P(w(t)), N(w(t))−w(t)〉=−〈∇P(w(t)),w(t)〉< 0

Corollary
Any P-regret-based discrete dynamics satisfies internal
consistency.
Proof
D = RK

− contains an attractor whose basin of attraction contains
the range R of R and the discrete process for R̄n is a bounded
DSA.



2. Internal regret

Given a potential Q for M = RK2
− , a Q-regret-based discrete procedure for player 1 is a strategy σ satisfying

σ(hn) ∈ Inv[∇Q(Sn)] if Sn /∈M (15)

and arbitrarly otherwise.
The discrete process of internal regret matrices is:

S̄n+1− S̄n =
1

n+1
[Sn+1− S̄n ]. (16)

with the property:
〈∇Q(S̄n),E(Sn+1 |hn)〉= 0.

(Recall 〈A,Eµ (S(.,U))〉= 0.)

Corresponding continuous procedure with w ∈ RK2

ẇ(t) ∈ N(w(t))−w(t) (17)

and
〈∇Q(w),N(w〉= 0.

The previous continuous time process satisfy:
w+

k`(t)→t→∞0.

Corollary
The discrete process (16) satisfy:

[S̄k`
n ]+→t→∞0 a.s.

hence conditional consistency (internal no regret) holds.



Multiplicative Weight Algorithm: discrete and continuous time
Evolution of a single population with K types modelized through
a symmetric 2 person game with K×K payoff (fitness) matrix A
Aij is the payoff of "i" facing "j".
xk

t : frequency of type k at time t.
Replicator equation on the simplex ∆(K) of RK

ẋk
t = xk

t
(
ekAxt− xtAxt

)
, k ∈ K (RD) (18)

Taylor and Jonker (1978) [155]



Replicator dynamics for I populations

ẋip
t = xip

t [F
i(eip,x−i

t )−Fi(xi
t,x
−i
t )], p ∈ Si, i ∈ I

natural interpretation: xi
t = {x

ip
t ,p ∈ Si}, is a mixed strategy of

player i.
The model is in the framework of an I-person game but we
consider the dynamics for one player, without hypotheses on
the behavior of the others.
Hence, from the point of view of this player, he is facing a
(measurable) vector outcome process {Ut, t ≥ 0}, with values in
the cube U = [−1,1]K where K is his move’s set.
Uk

t is the payoff at time t if k is the choice at that time.
The U -replicator process (RP) is specified by the following
equation on ∆(K):

ẋk
t = xk

t [U
k
t −〈xt,Ut〉], k ∈ K. (19)



The logit map L from RK to ∆(K) is defined by:

Lk(V) =
expVk

∑j expV j . (20)

Recall that L satisfies

Proposition

L(V) = argmax∆(K)[ 〈V,x〉−ρ(x)].

The following procedure has been introduced in discrete time in
the framework of on-line algorithms under the name
“multiplicative weight algorithm", Vovk, 1990 [159], Littlestone
and Warmuth (1994) [94].

xn+1 = L(
n

∑
m=1

Um)



Define the continuous exponential weight process (CEW),
Sorin (2009) [144] on ∆(K) by:

xt = L(
∫ t

0
Usds).

(CEW) provides an explicit solution of (RP), Rustichini (1999)
[135], Hofbauer, Sorin and Viossat (2009) [80]

Proposition
(CEW) satisfies (RP).



Hofbauer, Sorin and Viossat (2009) [80]

Proposition
(CEW) or (RP) satisfies external consistency.

Proof
By integrating:

ẋk
t

xk
t
= [Uk

t −〈xt,Ut〉], k ∈ K. (21)

one obtains, on the support of x0:∫ t

0
[Uk

s −〈xs,Us〉]ds =
∫ t

0

ẋk
s

xk
s
ds = log(

xk
t

xk
0
)≤− logxk

0.



Back to a game framework this implies that if player 1 follows
(RP) the set of accumulation points of the corrrelated
distribution induced by the empirical process of moves will
belong to his Hannan set H1.

The example due to Viossat (2007) [157] of a game where the
limit set for the replicator dynamics is disjoint from the unique
correlated equilibrium shows that (RP) does not satisfy internal
consistency.



To obtain similar results in discrete time one can starting from a
discrete process construct a continuous time interpolation then
use an adapted consistent procedure. It remains to describe a
discretization and to evaluate the error terms.
This was done in Sorin (2009) [144] for the entropy on the
simplex.
A much more general result will be described in section 3.
The result implies that for

xm+1 = L(a
m

∑
s=1

Us)

the n stage regret satisfies

n

∑
s=1

Uk
s −〈xs,Us〉 ≤ 0(

√
n)

which match the initial result of Auer et alii (1995) (2022) [8]
using the discrete MWA.



Hence the general picture is (ρ is the entropy function)

argmax〈∑n
m=1 Um ,x〉 or argmax〈Ūn ,x〉 gives fictitious play

argmax〈Ūn ,x〉− ερ(x) gives approximate consistency
argmax〈Ūn ,x〉− (1/

√
n)ρ(x) corresponds to a vanishing perturbation.

In continuous time one can take argmax〈Ūt ,x〉− (1/t)ρ(x)



No convergence to Nash
There is no uncoupled deterministic smooth dynamic that converges to Nash equilibrium in all finite 2-person
games: Hart and Mas-Colell (2003).
Similarly there are no learning process with finite memory such that the stage behavior will converge to Nash
equilibrium: Hart and Mas-Colell (2005).
Similar results were obtained for MAD dynamics, Hofbauer and Swinkels (1995)
see also Foster and Young (2001) On the impossibility of predicting.

Young (2002) On the limits to rational learning .





Part II: No-regret (II)



General framework
V normed vector space, finite dimensional,
dual V∗ and duality map 〈.|.〉,
X ⊂ V compact convex.

Consider algorithms that associate to a trajectory of parameters
{ut ∈ V∗, t ≥ 0} in the dual space, a process of actions/controls
{xt ∈ X, t ≥ 0} in the primal space, where xt depends on
{(xs,us),0≤ s < t}.

Rt(y) =
∫ t

0
〈us|y− xs〉ds, t ≥ 0, y ∈ X (22)

or in discrete time:

Rn(y) =
n

∑
m=1
〈um|y− xm〉, y ∈ X. (23)



The procedure satisfies the no-regret property if:

Rt(y)≤ o(t), ∀y ∈ X, (24)

or
Rn(y)≤ o(n), ∀y ∈ X. (25)



A) We compare the performance of the algorithms in terms of
regret under three (increasing) assumptions:
(I) general case: {ut} is a bounded measurable process in V∗,
(II) closed form: ut = φ(xt) for a continuous vector field
φ : X→ V∗,
(III) convex gradient: ut =−∇f (xt), f : X→R, C 1 convex function
(with similar properties in discrete time).

B) We consider three different procedures:
a) Projected dynamics (PD),
b) Mirror descent (MD),
c) Dual averaging (DA).

C) We analyze the relations between the continuous and
discrete time processes, in particular in terms of speed of
convergence to 0 of the average regret.

D) We also study the convergence of the trajectories of {xt} or
{xn} (in classes (II) and (III)).



Framework (I) corresponds to the usual model of on-line
learning where the agent observes {us,s < t} and chooses xt.

The next two frameworks (II) and (III), describe more specific
cases where the parameter ut is a function of the action xt.

Famework (II), closed form, is relevant for game dynamics and
variational inequalities.

Consider a strategic game Γ(φ) with a finite set of players I,
where the equilibrium set E is given by the solutions x ∈ X of the
following variational inequalities:

〈φ i(x)|xi− yi〉 ≥ 0, ∀yi ∈ Xi,∀i ∈ I.

Here Xi ⊂ V i is the strategy set of player i ∈ I, X = ∏i Xi, and
φ i : X→ V i∗ is her evaluation function.



Examples include:
- finite games (with mixed extension): φ i is the vector payoff
VGi.
- continuous games with payoff Gi, C 1 and concave wrt xi, ∀i ∈ I
then φ i is the gradient of Gi w.r.t. xi.
- population games (Wardrop equilibria), Xi is the simplex ∆(Si)
and φ i corresponds to the outcome function Fi : Si×X −→ R.

For each player i, the reference process is ui
t = φ i(xt) which, as

a function of xt, is determined by the behavior of all players.
Hence the overall global dynamics of {xt} is generated by a
family of unilateral procedures since for each i, xi

t depends on
(ui,xi) only.
In particular for each player i, the knowledge of φ j, j 6= i, is not
assumed.

Thus for each player individually the situation is like general
case (I), while the private parameters of the players are linked
via xt.



We will analyze the consequences on the process {xt},
assuming only that each player uses a procedure satisfying the
no-regret condition.

Obviously the (global) algorithm associated to the global
parameter φ = {φ i} will also share the no-regret property since:∫ t

0
〈φ i(xs)|xi− xi

s〉ds≤ o(t), ∀xi ∈ Xi, ∀i ∈ I,

implies: ∫ t

0
〈φ(xs)|x− xs〉ds≤ o(t), ∀x ∈ X.

But in addition it is decentralized in the sense that xi depends
upon φ i only.



Framework (III) covers the case of convex optimization where
the parameter, after the choice xt, is the gradient of the
(unknown) convex function and ut =−∇f (xt).

The research in this area is extremely active and very diverse;
it links basic optimization algorithms, Polyak, 1987 [127],
Nemirovski and Yudin, 1983 [110], Nesterov, 2004 [113], to
on-line procedures, see e.g. Zinkevich, 2003 [165].



Recent books and lecture notes include:

Bubeck S. (2011) Introduction to online optimization, Lecture
Notes.
Bubeck S. (2015) Convex optimization: Algorithms and
complexity, Fondations and Trends in Machine Learning, 8,
231-357.
Hazan E. (2011)The convex optimization approach to regret
minimization, Optimization for machine learning, S. Sra, S.
Nowozin, S. Wright eds, MIT Press, 287-303.
Hazan E. (2015) Introduction to Online Convex Optimization,
Fondations and Trends in Optimization, 2, 157-325.
Hazan E. (2019) Optimization for Machine Learning ,
https://arxiv.org/pdf/1909.03550.pdf.
Rakhlin A. (2009) Lecture notes on on-line learning.
Shalev-Shwartz S. (2012) Online Learning and Online Convex
Optimization, Foundations and Trends in Machine Learning, 4,
107-194.



Related algorithms have also been developped in Operations
Research (transportation, networks), see e.g. Dupuis and
Nagurney, 1993 [44], Nagurney and Zhang, 1996 [107], Smith,
1984 [143].

Note that each community (learning, game theory, optimization)
has its own terminology and point of view.



2. Closed field, continuous time

Definitions and notations

We describe here some relations with variational inequalities
when the parameter process has a closed form: u = φ(x).
NE(φ) is the set of (internal) solutions, in X, of the variational
inequality:

〈φ(x)|y− x〉 ≤ 0, ∀y ∈ X. (26)

a) If φ is the evaluation function in a game Γ(φ), NE(φ)
corresponds to the set of equilibria.

b) The minimization of a C 1 convex function f on X corresponds
to the variational inequality (26) with φ =−∇f .
This case presents two properties:
φ is dissipative,
φ is a gradient.
The general definitions are as follows.



Definition
φ : X→ V∗ is dissipative if it satisfies:

〈φ(x)−φ(y)|x− y〉 ≤ 0, ∀x,y ∈ X. (27)

A game Γ(φ) is dissipative if φ is dissipative.
This notion is related to the monotonicity requirement in Rosen
(1965) [134].
The terminology is "stable" in Hofbauer and Sandholm (2009)
[76], "contractive" in Sandholm (2015) [139] and "dissipative" in
Sorin and Wan, 2016 [149].



SE(φ) is the set of (external) solutions, in X, of the variational
inequality:

〈φ(y)|y− x〉 ≤ 0, ∀y ∈ X. (28)

Note that SE(φ) is convex.

Recall, see Minty, 1967 [103], that if φ is dissipative, then :

NE(φ)⊂ SE(φ) 6= /0

and if φ is continuous the reverse inclusion is satisfied:

SE(φ)⊂ NE(φ) 6= /0.

If NE(φ) = SE(φ) we will also use the notation E(φ) = E for this
set.

Fundamental example: 0-sum game
If F : X = X1×X2→ R is C 1 and concave/convex, the vector
field φ = (∇1F,−∇2F) is dissipative, Rockafellar (1970) [133].
The elements of NE(φ) = SE(φ) = E are optimal strategies of
the associated 0-sum game.



We define a potential for a vector field, see e.g. Sorin and Wan
(2016) [149].

Definition
A real function W of class C 1 on X = ∏i Xi, is a potential for φ if
there exist strictly positive functions µ i on X, i ∈ I, such that:〈

∇
iW(x)−µ

i(x)φ i(x),yi− xi〉= 0, ∀x ∈ X,∀yi ∈ Xi, ∀i ∈ I. (29)

where ∇iW denotes the gradient w.r.t. xi.
A game Γ(φ) corresponding to such φ is a potential game.

Alternative previous definitions include:
Monderer and Shapley [105] for finite games,
Sandholm [137] for population games.



The following result is classical, see e.g. Sandholm (2001)
[137].

Proposition
Let φ be a vector field with potential Φ.
1. Every local maximum of Φ belongs to NE(φ).
2. If Φ is concave on X, then any element in NE(φ) is a global
maximum of Φ on X.



Results
Assume that the procedure satisfies the no-regret property:

Rt(y)≤ o(t), ∀y ∈ X,

where:

Rt(y) =
∫ t

0
〈φ(xs)|y− xs〉ds, t ≥ 0,y ∈ X.

A first property deals with convergent trajectories {xt}.
Lemma
If φ is continuous and xs→ x, then x ∈ NE(φ).
Proof:
Since Rt(y) =

∫ t
0〈φ(xs)|y− xs〉ds:

Rt(y)
t
→ 〈φ(x)|y− x〉, ∀y ∈ X. (30)

and Rt(y)≤ o(t) implies x ∈ NE(φ).

In particular, if x is a stationary point for the discrete or
continuous time procedure, then x ∈ NE(φ).



Define the time average trajectories :

x̄t =
1
t

∫ t

0
xsds and x̄n =

1
n

n

∑
m=1

xm.

Lemma
If φ is dissipative, the accumulation points of {x̄t} or {x̄n} are in
SE(φ).
Proof:

Rt(y)
t

=
1
t

∫ t

0
〈φ(xs)|y− xs〉 ≥

1
t

∫ t

0
〈φ(y)|y− xs〉= 〈φ(y)|y− x̄t〉.

Hence under the no-regret condition any accumulation point x̂
of {x̄t} will satisfy 〈φ(y)|y− x̂〉 ≤ 0.

This result implies the non-emptiness of SE(φ) for dissipative φ .
In particular the minmax theorem (in the C 1 case) follows from
the existence of no-regret procedures.



Class (III): convex gradient.

Since ut =−∇f (xt) with f C 1 convex, this corresponds to a
specific case of dissipative and continuous vector field φ ,
hence: SE(φ) = NE(φ) = E = argminX f .
Use the basic convexity property:

〈∇f (xt)|y− xt〉 ≤ f (y)− f (xt)

to obtain with ut =−∇f (xt) in the definition of the regret Rt(y):∫ t

0
[f (xs)− f (y)]ds≤

∫ t

0
〈−∇f (xs)|y− xs〉ds = Rt(y)

which implies by Jensen’s inequality:

f (x̄t)− f (y)≤ 1
t

∫ t

0
[f (xs)− f (y)]ds≤ Rt(y)

t
. (31)



In particular one obtains:

Lemma
i) The accumulation points of {x̄t} or {x̄n} belong to E.
ii) If t 7→ f (xt) (resp. n 7→ f (xn)) is decreasing, the accumulation
points of {xt} or {xn} belong to E.



Continuous time
A very useful tool is available in this set-up.

Level functions

Definition
P : R+×X→ R+ is a level function (for {ut,xt}) if:

〈ut,xt− y〉 ≥ d
dt

P(t;y), ∀t ∈ R+,∀y ∈ X. (32)

Proposition
Rt(y) =

∫ t
0〈us|y− xs〉ds≤ P(0;y)−P(t;y) is bounded.

(1) no-regret property: Rate of convergence 1/t.

(2) Class (II): Assume y∗ ∈ SE(φ), then P(t;y∗) is decreasing:

d
dt

P(t;y∗)≤ 〈φ(xt),xt− y∗〉 ≤ 0.



Positive correlation

Given a dynamics ẋt = D(xt), f decreases on trajectories if:

d
dt

f (xt) = 〈∇f (xt)|ẋt〉 ≤ 0.

The analogous property for a vector field φ is:

〈φ(xt)|ẋt〉 ≥ 0.

In the framework of games, a similar condition was described in
discrete time as Myopic Adjustment Dynamics, Swinkels (1993)
[154] : if xi

n+1 6= xi
n then Gi(xi

n+1,x
−i
n )> Gi(xi

n,x
−i
n ).

The corresponding notion in continuous time is positive
correlation, (between the dynamics and the vector field),
Sandholm (2010) [138]:

ẋi
t 6= 0 =⇒ 〈φ i(xt), ẋi

t〉> 0.



Proposition
Consider a vector field φ with potential Φ.
If the dynamics satisfies positive correlation, then Φ is a strict
Lyapunov function.
All ω-limit points are rest points.
This result is proved by Sandholm (2001) [137] for his version
of potential population game, see extensions in Benaim,
Hofbauer and Sorin (2005) [19].
A similar property for fictitious play in discrete time is
established in Monderer and Shapley (1996) [105].

We will show that this property holds for the three dynamics
defined below.



3. GD, MD and DA
We first describe in this subsection three procedures in
continuous time that satisfy the no-regret property. Their
discrete time counterparts will be analyzed in the next
subsection.

As usual, discrete time dynamics are easier to describe but
their mathematical properties are more difficult to establish.
This explain why we choose to start with the continuous time
versions.

We now introduce and study three dynamics:

- Projected dynamics (PD),
- Mirror descent (MD),
- Dual averaging (DA).

Continuous time
In each case we first define the dynamics, then control the
values of the regret by exhibiting a level function and finally
study the trajectories for class (II) and (III).



Hilbertian framework: Projected Dynamics

V Hilbert, X ⊂ V, convex closed.

Dynamics

analogous to projected gradient descent (Levitin and Polyak,
1966) and defined, as projected dynamics (PD), by xt ∈ X with:

〈ut− ẋt,y− xt〉 ≤ 0,∀y ∈ X. (33)

which is:
ẋt = ΠTX(xt)(ut). (34)

since TC(x) is a cône (where ΠC is the projection on the closed
convex set C and TC(x) is the tangent cône to C at x).



Values

Proposition

V(t;y) =
1
2
‖xt− y‖2, y ∈ X, (35)

is a level function.
Proof:
(33) gives:

〈ut,y− xt〉 ≤ 〈ẋt,y− xt〉=−
d
dt

V(t;y).



Trajectories

Proposition
Assume φ dissipative and E 6= /0.
{xt} converges weakly to a point in E.
Proof:
- {xt} is bounded hence has weak accumulation points.
- The weak limit points of {xt} are in E
- ‖xt− y∗‖ converges when y∗ ∈ E
Hence by Opial’s lemma [118], xt converges weakly to a point in
E.



Lemma
Positive correlation holds.
Proof:

〈φ(xt), ẋt〉= ‖ẋt‖2

since 〈ut− ẋt, ẋt〉= 0 by (33) and Moreau’s decomposition,
Moreau, 1965 [106].

Consider class (III): ut =−∇f (xt).

Proposition
f (xt) is decreasing and converges to f ∗ = minX f at speed 1/t
Assume E 6= /0. {xt} weakly converges to a point in E.
Proof:
Weak accumulation points of {xt} are in E.
Then Opial’s lemma applies.



Mirror descent

Continuous version of “Mirror descent algorithm”,
Nemirovski and Yudin (1983), [110], Beck and Teboulle (2003).
[14]

Dynamics H strictly convex, C 2,

X, compact, convex ⊂ dom H.
The continuous time process mirror descent (MD) satisfies,
xt ∈ X and:

〈ut−
d
dt

∇H(xt)|y− xt〉 ≤ 0,∀y ∈ X. (36)

The previous analysis corresponds to the case: H(x) = 1
2‖x‖

2.



Values

Bregman distance associated to H:

DH(y,x) = H(y)−H(x)−〈∇H(x)|y− x〉(≥ 0).

d
dt

DH(y,xt) = 〈−
d
dt

∇H(xt)|y− xt〉, (37)

so that (36) implies:

〈ut|y− xt〉 ≤ −
d
dt

DH(y,xt).

Proposition
P(t;y) = DH(y,xt) is a level function.



Trajectories

The use of special functions H adapted to X allows to produce
a trajectory that remains in int X hence to get rid of the normal
cône .
This leads to:

d
dt

∇H(xt) = ut (38)

ẋt = ∇
2H(xt)

−1ut. (39)

which corresponds to a Riemannian metric, see Bolte and
Teboulle, 2003 [25], Alvarez, Bolte and Brahic, 2004 [2],
Mertikopoulos and Sandholm, 2018 [101].

Lemma
Positive correlation holds.
Proof :

〈φ(xt)|ẋt〉= 〈φ(xt)|∇2H(xt)
−1

φ(xt)〉 ≥ 0.



Consider now class (III).

By Lemma 33 the accumulation points of {xt} are in E.

To prove convergence one introduces the following :

Hypothesis [H1]: if zk→ y∗ ∈ S then DH(y∗,zk)→ 0.
For example H is L-smooth (see e.g. Nesterov, 2004 [113]
Section 1.2.2.) and then:

0≤ DH(x,y)≤
L
2
‖x− y‖2.

Hypothesis [H2]: if DH(y∗,zk)→ 0,y∗ ∈ S then zk→ y∗.
For example H is β -strongly convex (see e.g. Nesterov, 2004
[113] Section 2.1.3.) and then:

DH(x,y)≥
β

2
‖x− y‖2.



Proposition
Consider class (III). If H is smooth and strongly convex, {xt}
converges weakly to some x∗ ∈ E.
Proof:
Let x∗ be an accumulation point of {xt}. Then x∗ ∈ E by Lemma
33 and thus DH(x∗,xt) is decreasing. Since this sequence is
decreasing to 0 on a subsequence xtk → x∗ by [H1], it is
decreasing to 0, hence by [H2] xt→ x∗.



Dual averaging

Continuous version of dual averaging Nesterov, 2009 [114].
We follow Kwon and Mertikopoulos, 2017 [89].

Dynamics

Assume h bounded strictly convex s.c.i. with domh = X ⊂ V
convex compact.
Let h∗(w) = supx∈V〈w|x〉−h(x) be the Fenchel conjugate. h∗ is
differentiable.
Introduce :

Ut =
∫ t

0
usds

and let the dual averaging (DA) dynamics be defined by:

xt = argmax{〈Ut|x〉−h(x); x ∈ V}= argmax{〈Ut|x〉−h(x); x ∈ X}.

The dynamics can be written as:

xt = ∇h∗(Ut) ∈ X (40)



Values
Consider the Fenchel coupling:

W(t;y) = h∗(Ut)+h(y)−〈Ut|y〉 (≥ 0). (41)

d
dt

h∗(Ut) = 〈ut|∇h∗(Ut)〉= 〈ut|xt〉 (42)

thus:
d
dt

W(t;y) = 〈ut|xt− y〉

Proposition
W is a level function.



There is an important literature on continuous time dynamics
with similar features, see e.g. :
- in convex optimization: Attouch and Teboulle, 2004 [3],
Attouch, Bolte, Redont and Teboulle, 2004 [4], Auslender and
Teboulle, 2006 [10], 2009 [11]... Teboulle, 2018 [156],
- in game theory: Hofbauer and Sandholm, 2009 [76],
Coucheney, Gaujal and Mertikopoulos, 2015 [39],
Mertikopoulos and Sandholm, 2016 [100], Mertikopoulos and
Sandholm (2018) [101], Mertikopoulos and Zhou (2019) [102]
...



Discrete time: general case

We consider now discrete time algorithms.

Remark that the dynamics depends on an additional parameter,
the step size.



Hilbertian framework: Projected Dynamics

Dynamics

Levitin and Polyak (1966) [93], Polyak (1987) [127], gradient
projection method:

xm+1 = argminX{−〈um,x〉+
1

2ηm
‖x− xm‖2},

= argmaxX{〈um,x〉−
1

2ηm
‖x− xm‖2}, (43)

with ηm decreasing, which corresponds to:

xm+1 = ΠX[xm +ηmum], (44)

or with variational characterization:

〈xm +ηmum− xm+1,y− xm+1〉 ≤ 0,∀y ∈ X. (45)



Values

Let m(X) be the diameter of X. Assume ‖um‖= ‖um‖∗ ≤M.

Proposition

Rn(x)≤
1

2ηn
m(X)2 +

M2

2

n

∑
m=1

ηm

hence with ηn = 1/
√

n:

Rn(x)≤ O(
√

n).

Trajectories

Lemma
For x∗ ∈ SE(φ), ‖xm− x∗‖ converges if ηn ∈ `2.

Proposition
If ηn ∈ `2 and g is dissipative, {xn} converges to a point in SE(φ).



Mirror descent

Assumption:
H, L-strongly convex for some norm ‖.‖ on V = Rn.
‖un‖∗ ≤M.

Dynamics

Nemirovski and Yudin (1983), [110], Beck and Teboulle (2003)
[14].
The mirror descent algorithm is given by :

xm+1 = argminX{−〈um| x〉+
1

ηm
DH(x,xm)}, (46)

Variational formulation:

〈∇H(xm)+ηmum−∇H(xm+1)|x− xm+1〉 ≤ 0,∀x ∈ X. (47)



Values

Proposition

Rn(x)≤
DH(x,x1)

η
+nη

M2

2L
.

Then η = 1/
√

n and Rn(x)≤ O(
√

n).

Same property with ηn = 1/
√

n via double trick.

Trajectories

Lemma
For x∗ ∈ SE(φ), DH(x∗,xn) converges if {ηn} ∈ `2.



Dual averaging

Assumptions:
a) h is a l.s.c. function from V to R∪{+∞}, L-strongly convex for
some norm ‖.‖ on V = Rn, with domh = X.
b) ‖um‖∗ ≤M,∀n ∈ IN.

Dynamics

Dual averaging, Nesterov (2009).
Let Um = ∑

m
k=1 uk

The algorithm is again given by a maximization property:

xm+1 = argminV{−〈Um|x〉+(1/ηm)h(x)},
= argmaxX{〈Um|x〉− (1/ηm)h(x)} (48)

which is:
xm+1 = ∇h∗(ηmUm).

where {ηm} is decreasing.



Values

Xiao (2010) [162] or discrete approximation of (40), Kwon and
Mertikopoulos (2017). [89]:

Proposition

Rn(x) =
n

∑
m=1
〈um|x− xm〉 ≤

rX(h)
ηn

+
∑

n
m=1 ηm−1‖um‖2

∗
2L

. (49)

Assume: ‖um‖∗ ≤M.
Convergence rate O(

√
n) with time varying parameters

ηm = 1/
√

m.



Comments on the discrete dynamics framework

1) The three algorithms achieve the same bound O(1/
√

n) for the speed of convergence of the average regret, which is optimal
already in class (III), Nesterov, 2004 [113] , using time varying step sizes ηn = 1/

√
n.

2) More precise properties concerning the trajectories are available only in the (PD) set-up. The results are similar to the ones in
the continuous case, Section 3.2, if ηn ∈ `2. (Compare to the analysis in Peypouquet and Sorin, 2010 [126] for dynamics induced
by maximal monotone operators in discrete and continuous time.)

3) For vector fields φ with potential W one does not have the property W(xn) decreasing.



2.5 Discrete time:regularity

This section deals with class (III) convex gradient, where in addition f satisfies some regularity properties.
Recall that f is β smooth if:

|f (y)− f (x)−〈∇f (x)|y− x〉| ≤ β

2
‖x− y‖2 . (50)

Equivalently, ∇f is β -Lipschitz.
Hilbertian framework: Projected Dynamics
Assumption: f is β smooth.
Same procedure with constant steps:

xm+1 = ΠX (xm−η∇f (xm)).

The analysis in this section is standard, see e.g. Nesterov, 2004 [113].
Take η = 1/β and define vn = β (xn+1− xn).
The main tool is the following:
Descent lemma

f (xn+1)− f (y)≤ 〈vn ,y− xn〉−
1

2β
‖vn‖2 .

In particular f (xn) decreasing and {‖vn‖} ∈ `2.
Values

n[f (xn+1)− f (y)]≤ Rn(y)−
1

2β
‖

n

∑
m=1
‖vm‖2 =

β

2
‖y− x1‖2 .

Hence convergence rate of the order 1
n with constant step size.

Trajectories
Lemma Let y∗ ∈ E. Then ‖xn− y∗‖ decreases.

Proposition {xn} converges to a point in E.



Mirror descent

The dynamics is still:
〈∇H(xn)−λ∇f (xn)−∇H(xn+1)|x− xn+1〉 ≤ 0,∀x ∈ X.

We follow Bauschke, Bolte and Teboulle, 2017 [13]
H and f are C 1

Hypothesis [A]:
there exists L > 0 such that:

L DH −Df ≥ 0

(preorder: L H− f convex, Nguyen, 2017 [117])
If H is strongly convex and f is smooth, [A] holds.
Values
One has, by [A]:

f (x)≤ f (y)+ 〈∇f (z)|x− y〉+LDh(x,z)−Df (y,z)

(the last term is ≤ 0 when f is convex).
Take 2λL = 1
Proposition
Assume H convex.
1) f (xn) is decreasing.
2) ∑DH (xn+1 ,xn)<+∞.
3) Assume f convex, lower bounded.

f (xn)− f (y)≤ 2L
n

DH (y,x1)

Recent result: Bui and Combettes, 2020 [34] Theorem 3.9:
variable metrics Hn allow to reach f (xn)− f ∗ = o(1/n).
Trajectories
Propositon Assume f convex.
1) y∗ ∈ E implies DH (y∗ ,xn) decreases.
2) Assume:
[H1] : xk → x∗ ∈ E⇒ DH (x∗ ,xk)→ 0
[H2] : x∗ ∈ E,DH (x∗ ,xk)→ 0⇒ xk → x∗

Then {xn} converges to a point in E.



Dual averaging

We follow Lu, Freund and Nesterov (2018)
Dual averaging with constant step size under Hypothesis [A]:
L h− f convex
f convex and C 1

h : V→ R∪{+∞} l.s.c. with dom h = X.

xm+1 = argmaxX{〈Um|x〉−L h(x)} (51)

with uk =−∇f (xk).
Values
Proposition
f convex, lower bounded.

f (x̄n)− f (y)≤ L
n

h(y), ∀y ∈ X.



Comments on the regular case

1) In the three cases (PD), (MD) and (DA) the speed of convergence of the values is O(1/n) and the algorithms use a constant step
parameter.
2) Using (PD) with f smooth implies f (xn) decreasing and the convergence of {xn}.
3) The approach in Section 5.2 shows that similar results can be obtained using (MD) without assuming f with Lipschitz gradient if
the regularization function H is adapted to f : condition ([A].

4) Analogous results for the values are much simpler to obtain in the (DA) framework. However the properties concern the value at

the average f (x̄n) and no result is available on the trajectories.



Concluding remarks

For the three dynamics (PG), (MD) and (DA) the following 1), 2) and 3) holds:
1) In continuous time the speed of convergence of the average regret to 0, of the order O(1/t) is not better in the general gradient
convex case than in on-line learning.
2) In discrete time the speed of convergence of the average regret to 0, of the order O(1/

√
n) is not better in the general gradient

convex case than in on-line learning.
3) Adding a regularity hypothesis on the convex function does not change the convergence rate in continuous time but allow a
better convergence in discrete time from O(1/

√
n) to O(1/n).

4) A similar phenomena appears with the so-called acceleration procedures following Nesterov, 1983 [112].
In the continuous time case a second order ODE leads to a speed of convergence f (xt)− f (x∗)≤ O( 1

t2
) with no further hypothesis

on f , see Su, Boyd and Candes, 2014 [152], 2016 [153], Krichene, Bayen and Bartlett, 2015 [87], 2016 [88], Wibisono, Wilson and
Jordan, 2016 [161], Attouch and Peypouquet, 2016 [5], Attouch, Chbani, Peypouquet and Redont, 2018 [6]...
To obtain a similar property in discrete time, namely f (xn)− f (x∗)≤ O( 1

n2 ) one has to assume f smooth.
The same remark apply to the (weak) convergence of the trajectory, where the smooth hypothesis on f is needed in discrete time
and not in continuous time, Chambolle and Dossal, 2015[38], Attouch, Chbani, Peypouquet, Redont 2018 [6]...
5) Concerning the link between discrete and continuous time dynamics, there are no direct results of the form: no-regret property in
continuous time imply no-regret property in discrete time but analogy of the tools used and ad-hoc choice of the stage step size,
see Sorin, 2009 [144], Kwon and Mertikopoulos, 2017 [89] and the Lyapounov functions in Krichene, Bayen and Bartlett, 2015 [87],
2016 [88], Wibisono, Wilson and Jordan, 2016 [161].
6) The Hilbert framework for (PD) allows to obtain convergence results on the trajectories.
The two other algorithms are more flexible and can achieve better explicit speed of convergence of the values by choosing an
adequate norm, adapted to the problem, see the discussion in Bauschke, Bolte and Teboulle, 2017 [13].
For (MD), specific regularization functions H can also lead to convergence of the trajectories.

(DA) is much simpler to implement due to its integral formulation. However no convergence properties of the trajectories are in

general available.



Advances

Popov - trajectories
We follow Popov (1980) [128], see also Korpelevich (1976) [86].
y0 and x0 are given (in fact only y0 and φ(x0) are used).
The general on-line dynamics is as follows:

yt+1 = ΠZ[yt +αt]
xt+1 = ΠZ[yt+1 +αt] (52)

and we consider the closed case with constant step size,
αt = ηφ(xt).
Two levels: action and memory.
The action xt determines the parameter αt.
Then one updates the memory yt through αt.
The new memory yt+1 and the parameter αt defines the new
action xt+1.



(PG)

Theorem (Popov, 1980)
Finite dimensional, euclidean.
Assume:
φ L Lipschitz and 3ηL < 1.
φ dissipative.
E 6= /0 (no compactness on X).
Then ‖xt− yt‖ tends to 0 and {xt} converges to a point in E.

(MD)

Theorem
Finite dimensional
Assume:
φ L Lipschitz and 3ηL < 1.
φ dissipative
E 6= /0.
xk→ x implies DH(y,xk)→ DH(y,x).
Then ‖xt− yt‖ tends to 0 and {xt} converges to a point in E.



Two levels procedures and optimism
We follow Rakhlin and Sridharan (2013) [130].
The general on-line algorithm is as follows (MD):
yt+1 = T(yt;αt)

〈∇H(yt)+αt−∇H(yt+1)|z− yt+1〉 ≤ 0,∀z ∈ X

updating of the memory using the parameter αt and
xt+1 = T(yt+1;βt+1)

〈∇H(yt+1)+βt+1−∇H(xt+1)|z− xt+1〉 ≤ 0,∀z ∈ X

updating of the move using an anticipation βt+1.
Popov’s algorithm corresponds to the closed form:
αt = ηφ(xt) = βt+1





Theorem (Rakhlin Sridharan, 2013)
H 1-strongly convex.

Take αt = ut/
√

t and βt = vt/
√

t

RT(x) =
T

∑
t=1
〈ut|x− xt〉 ≤ O(

√
T).

More precisely:

〈αt|x− xt〉 ≤ (1/2)‖αt−βt‖2
∗+DH(x,yt)−DH(x,yt+1)−DH(xt,yt).

(53)
same order of convergence than discrete time (MD) with
variable step size.



Popov - evaluation
Framework of RS with datas Popov
αt = ηφ(xt).
We follow Hsieh, Iutzeler, Malick and Mertikopoulos (2019) [82]

Theorem
Assume φ L Lipschitz and ηL≤ 1/2:

η〈φ(xt)|z− xt〉 ≤ (1/2)(ηL)2[‖xt−1− xt−2‖2−‖xt− xt−1‖2]

+DH(z,yt)−DH(z,yt+1)

Assume in addition φ dissipative:

T〈φ(z)|z− x̄T〉 ≤ RT(z) =
T

∑
t=1
〈φ(xt)|z− xt〉 ≤ K.



New directions
Last iterate convergence

Mixed two levels procedure:
(MD) for the action, (DA) for the memory
different step sizes

Adaptive step size, Hsieh, Iutzeler, Malick and Mertikopoulos
(2021)
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Link with continuous time and acceleration
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Imperfect monitoring
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Weak calibration
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