# Coalition in Online Private Auctions and unimodal bandits

D. Baudry, H. Richard, M. Cherifa, C. Calauzènes, V. Perchet

FAIRPLAY (Criteo, Inria, Ensae)

# WLiG









# • Public (old) Auctions

- 1. User *u* arrives, with some features  $X_u$  (irrelevant for us)
- 2. **DSP** (us) runs *N* campaigns, observe  $v_{u,1}, v_{u,2}, \ldots, v_{u,N}$
- 3. DSP bids  $\max_{i \in [N]} v_{u,i}$
- 4. Competition  $bidsv_{u,N+1}, \ldots, v_{u,N+p}$
- 5. 2nd price auction. Winner arg max  $v_{u,j}$ , pays 2nd-highest

# • Private (future) Auctions

- 1. User u arrives, its features  $X_u$  are **not observed**
- 2. **DSP** (us) **Only knows**  $v_{??,1} \sim F_1, v_{??,2}, \dots, v_{??,N} \sim F_N$
- 3. DSP do not bid but selects subset of compaigns  $\mathcal{N} \subset [N]$
- 4. Competition bids  $v_{u,n+1}, \ldots, v_{u,n+p}$
- 5. Winner  $\arg \max_{j \in \mathcal{N} \cup \{n+1,...,n+p\}} v_{u,j}$ , pays 2nd-highest

- Choosing a larger number of ads impacts the outcome: Increases the probability of winning Decreases the gain from winning
- Larger size also impacts the observations
   Increases the proba. of observing (a click or not)
   Decreases the observation quality (high variance)
- $\implies$  Tradeoff in choosing "coalition size"
  - Model (new, future) privacy constraints in online advertising

- T ad slots sold sequentially through second price auctions. Highest bidder wins, pays second highest bid
- The DSP chooses  $n_t \leq N$  campaigns that *participate*
- There are  $p \in \mathbb{N}^*$  external competitors.
- All N + p bidders' valuation are i.i.d.  $v_{n,t} \sim F$  the **unknown** cdf Bidders bid truthfully their value,  $b_{n,t} = v_{n,t}$
- DSP only observes the reward and value if the coalition wins.

#### The reward and regret

• If coalition chooses *n* bidders to participate, its reward is

$$\mathsf{r}(n) \coloneqq \mathbb{E}_{\mathbf{v}=(\mathsf{v}_i)_{i\in[n+p]}\sim \mathsf{F}^{\otimes n+p}} \bigg[ (\mathbf{v}_{(1)}-\mathbf{v}_{(2)}) \mathbb{1} \bigg\{ rg\max_{i\in[n+p]} \mathsf{v}_i\in[n] \bigg\} \bigg]$$

where  $\boldsymbol{v}_{(1)}$  and  $\boldsymbol{v}_{(2)}$  are first and second maximum of  $\boldsymbol{v}.$ 

• Sequence of choices  $n_1, \ldots, n_T$  leads to regret

$$\mathcal{R}_T = \sum_{t \leq T} r(n^*) - r(n_t)$$
, with  $n^* = \operatorname*{argmax}_{n \in [N]} r(n)$ 

• Standard bandit algorithms  $\mathcal{R}_T \leq \tilde{\mathcal{O}}(\min\{\frac{N\log(T)}{\Delta}, \sqrt{NT}\})$ 

 $\implies$  Leverage structure to improve guarantees ?

Using order statistics properties, the reward function is satisfies,

$$r(n) = \underbrace{n \int_{0}^{1} F^{p+n-1}(x) - F^{p+n}(x) \mathrm{d}x}_{n \text{ times a decreasing function with } n}$$
(1)

 $\implies$  r(n) is usually unimodal (at least for lots of cdf F)!

# **Lemma** $r(\cdot)$ is unimodal if the quantile function $F^{-1}(q) := \sum_{k \ge 0} \frac{c_k}{k!} q^k$ satisfies $c_k \le (k-1)c_{k-1}$

#### Corollary

Let F be the cdf of a Bernoulli, truncated exponential or Complementary Beta distribution. Then, for any  $p \in \mathbb{N}^*$ , r is unimodal.

#### More examples on unimodality



Figure: r(n) for some parametric distributions with different number of parameters and competitors.

$$r(n) = \underbrace{n \int_{0}^{1} F^{p+n-1}(x) - F^{p+n}(x) dx}_{\text{estimating } F^{n+p-1} \text{ and } F^{n+p} \text{ is sufficient to estimate } r(n)}$$

- *n* not fixed in advance!
  - $\implies$  Need an estimator for any power  $F^m$ .
- A sample of  $F^{n_t+p}$  gathered if auction t is won (the winning bid)
  - Combining samples from different *F*<sup>*n*<sub>t</sub>+*p*</sup> challenging
  - $\hat{F}^m = (\hat{F}^k)^{\frac{m}{k}}$  much simpler, if *m* and *k* not too different

#### The estimator $\hat{r}_k(n)$

- Past winning bids when  $n_t = k \overline{W_k} = (w_{k,1}, \dots, w_{k,m_k})$
- Empirical cdf of  $F^{k+p}$ :  $\hat{F}_{k+p}(x) = \frac{1}{m_k} \sum_{j=1}^{m_k} \mathbb{1}\{w_{k,j} \le x\}$
- Estimations

• of powers 
$$\tilde{F}_{k+p}^{n+p}(x) = \hat{F}_{k+p}^{\frac{n+p}{k+p}}(x)$$

• of reward function (*n* different estimators)

$$\widehat{r}_k(n) = n \int_0^1 \left( \widetilde{F}_{k+p}^{n+p-1}(x) - \widetilde{F}_{k+p}^{n+p}(x) \right) \mathrm{d}x$$

 $\land \land k$  and *n* should be **close enough** 

$$F(x)^n - \widehat{F}_k(x)^{\frac{n}{k}} \approx \frac{n}{k} F_k(x)^{\frac{n}{k}} (F(x)^k - \widehat{F}_k(x)) \frac{1}{F(x)}$$

• 
$$n \ge k$$
, error scales as  $n/k$ 

• n < k, error scales with 1/F(x)

# Theorem (informal)

Fix  $n \leq N$ , then for any  $k \in \mathcal{N}(n) := \left[\frac{n+p}{2} - p, \frac{3}{2}(n+p-1) - p\right]$ , with probability  $1 - \delta$ ,

$$|\widehat{r}_k(n) - r(n)| \lesssim \sqrt{\frac{\log\left(\frac{nm_k}{\delta}\right)}{m_k}} + n\left(\frac{\log\left(\frac{nm_k}{\delta}\right)}{m_k}\right)^{\frac{n+p-1}{k+p}}$$

- The *n* term becomes  $L \log(n)$  if *F L*-Lipschitz
- Technical proof on concentration ineq.
- Can estimate r(n) from any k in its neighborhood  $\mathcal{N}(n)$ the one with the most samples !

# The algorithms



11/18

Idea: adaptation of OSUB (Combes and Proutière 2014).

Algorithm Local Greedy LG **Input:** exploration parameter  $\alpha$ , neighborhoods  $\mathcal{N}(n)$ Play  $n_1 = 1$  and observe  $w \sim F^{1+p}$ ; ▷ Initialization for t > 2 do Set  $\ell_t = n_{t-1}$ , compute  $(\hat{r}_{\ell_t}(n))_{n \in \mathcal{V}(\ell_t)}$ ;  $\triangleright$  Estimate from leader if  $m_t := |\{s \in [t-1], n_s = \ell_t\}| \le \alpha t$  then play  $n_t = \ell_t$ ; ▷ Linear sampling else | play  $n_t \in \operatorname{argmax}_{n \in \mathcal{V}(\ell_t)} \hat{r}_{\ell_t}(n)$ ;  $\triangleright$  Greedy play in  $\mathcal{N}(\ell_t)$ Observe  $w \sim F^{n_t+p}$ :  $\triangleright$  Gather feedback

# Theorem (informal)

Let  $\Delta := \min_{n \in [N-1]} |r(n+1) - r(n)|$  (worst local gap) and  $\Delta_n = r(n^*) - r(n)$ . The regret of LG is **bounded** and satisfies

$$\mathcal{R}_{T} \leq \tilde{\mathcal{O}}_{N}(\sum_{n \in [N]} \frac{\Delta_{n}}{\Delta^{2}})$$

✓ Works thanks to uni-modality:

there is a better decision in the neighborhood of the empirical best one in the direction of the optimal.

13/18

- X The regret of LG depends on the worst local gap!
- X The worst case regret scales as  $T^{2/3}$

- Combine Local Greedy and Successive Elimination
- Use **first** a geometric grid s.t. adjacent points are in their respective neighborhood.
  - $\implies$  **linear** samples to estimate optimal r(n) and its neighbors  $\implies$  Bounded regret on the grid
- Then, (variants of) Greedy on the last bin
  - $\implies$  Bounded regret on this **bin** (but with "local" gaps)

#### **Greedy Grid**

**Algorithm** Greedy Grid **Input:** Grid S, confidence levels  $(\delta_t)_{t \in \mathbb{N}}$ , sampling parameter  $\alpha$ Play  $n_1 = \min S$  and observe  $w \sim F^{n_1+p}$ for t > 2 and  $n \in [N]$  do  $\ell_n = \operatorname{argmax}_{k \in \mathcal{V}(n)} m_k(t)$ ; ▷ Elect leaders  $L_n = \widehat{L}_{\ell_n}(n, \delta_t)$  and  $U_n = \widehat{U}_{\ell_n}(n, \delta_t)$ ; ▷ Compute UCB and LCB  $i_t^* = \operatorname{argmax}_{n \in [N]} L_n$ ;  $\triangleright$  Compute best lower bound index  $C_t = \{a \in S, U_s \ge L_{i^*}, \forall s \in [a, i^*_t]\}; \triangleright$  Remaining grid arms if  $n_{t-1} \in B(i_t^*)$  and  $m_{n_{t-1}} \leq \alpha t$  then Play  $n_t = n_{t-1}$ ▷ linear sampling else ▷ Play unif in grid or greedy | If  $C_t \neq \emptyset$ : Round Robin on  $C_t$  Else play  $\operatorname{argmax}_{n \in B(i^*)} \hat{r}_{\ell_n}(n)$ Observe  $w \sim F^{n_t+p}$ 

15/18

# Theorem (informal)

Suppose that GG is tuned with confidence level  $\delta_t = \frac{1}{N^2 t^3}$ , and  $\alpha = 1/4$ . Then, for any  $T \in \mathbb{N}$  it holds that

$$\mathcal{R}_{\mathcal{T}} \leq ilde{\mathcal{O}}(\sum_{n \in \mathcal{B}^{\star}} rac{1}{\Delta_n} + \sum_{k \in \mathcal{S}} rac{1}{\Delta_k})$$

•  $\mathcal{B}^*$  is the bin of arm  $n^*$ .

✓ No dependence on the worst local gap anymore! ✓  $\mathcal{R}_T \leq \mathcal{O}(\sqrt{(\log(N) + |\mathcal{B}^*|)T}) = \mathcal{O}(\sqrt{(\log(N) + n^*)T})$  A benchmark of LG, GG, UCB, EXP3 and OSUB on synthetic data in terms of the expected regret  $\mathcal{R}(\mathcal{T})$ .



Figure: Performance of LG and GG, OSUB, UCB and EXP3, computed over 20 trajectories, with  $\mathcal{B}(0.05)$ , N = 100 and p = 4

17/18

- Improve the dependency in N (hidden) with DKW ?
- Different distributions *F<sub>i</sub>* or adversaries per campaign (combinatorics)
- Adversarial/contextual/etc
- Parallel Multi-channel variants
- Incentivization (truthful vs manipulative bidders)