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High-level overview (approachability version)

• Blackwell approachability is a powerful tool for designing
learning algorithms (e.g. first algorithms for calibrated

forecasts and low internal regret).

• [Abernethy et al., 2011] showed how to reduce approachability
to online convex optimization, but this reduction is lossy (e.g.,

it gets O(
√Td) regret for full-information learning from d

experts when O(
√T log d) is possible).

• This paper: We show that by using a pseudonorm in place of
the Euclidean norm in Blackwell approachability, we can

recover efficient algorithms with tight regret bounds for many

regret minimization problems (external regret, swap regret,

and some new ones).
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High-level overview (regret version)

Consider a “regret minimization” problem where the learner

chooses actions from an n-dimensional convex set, the adversary
chooses losses from anm-dimensional convex set, and all payoffs /
benchmark payoffs are bilinear in these actions and losses.

Theorem (Informal)

There exists a learning algorithm that guarantees regret
O(poly(n,m)

√T). Moreover, if it is possible to efficiently compute the
regret in hindsight, it is possible to efficiently run this algorithm.
Note that this does not depend on the number of benchmarks you
are competing against! (e.g., in swap regret there are KK
benchmarks, but n = m = K ).
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Approachability 101

• Let P ⊆ Rn and L ⊆ Rm be two bounded convex sets.
• Let u : P × L → Rd be any bilinear vector-valued function.
• Let S ⊆ Rd be a convex set s.t. for all ` ∈ L, there exists a p ∈ P
such that u(p, `) ∈ S (S is approachable).

Theorem (Blackwell Approachability)

There exists a learning algorithm (i.e., a function mapping
(`1, `2, . . . , `t−1)→ pt) with the property that

limT→∞d
(
1

T
T∑
t=1
u(pt, `t),S

)
= 0,

where d(x, S) is the minimum (Euclidean) distance between x and S.
Intuition: multidimensional, algorithmic version of theminimax
theorem.
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Approachability =⇒ sublinear regret

Full-information learning with experts via approachability:
• Let P = ∆K , L = [0,1]K , S = (−∞,0]k, and u : P × L → RK
defined via:

u(p, `)i = 〈p, `〉 − 〈ei, `〉.
• The regret of playing the sequence of actions p = (p1, . . . ,pT)
against the sequence of losses ` = (`1, . . . , `T) is given by:

Reg(p, `) =

[
max
i∈[d]

T∑
t=1
u(pt, `t)i

]
+

• If 1T
∑T
t=1 u(pt, `t)→ S , then Reg(p, `) = o(T)! (but what’s the

dependence on T and K?)
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L∞-approachability
Note that (when S = (−∞,0]d):

Reg(p, `) =

[
max
i∈[d]

T∑
t=1
u(pt, `t)i

]
+

= T · d∞
(
1

T
T∑
t=1
u(pt, `t),S

)
. (1)

where d∞(x, y) = max |xi − yi| is the L∞ distance.

Two takeaways:

1 Good regret minimization bounds are the same as good

(quantitative) bounds for L∞ Blackwell approachability.
2 We can define Reg(p, `) as in (1) for any bilinear u where
S = (−∞,0]d is approachable. Captures a fairly wide range of
regret minimization problems...
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Some other regrets

Swap regret

Let P = ∆K , L = [0,1]K , u : P × L → R(KK ), with

u(p, `)π =
K∑
i=1
pi`i − pi`π(i),

for each π : [K ]→ [K ]. Reg(p, `) is swap regret, d = KK .

“Procrustean” swap regret

Let P = L = BK = {x ∈ RK | ||x||2 ≤ 1}, u : P × L → RO(K), with

u(p, `)Q = 〈p, `〉 − 〈Qp, `〉,
for each Q ∈ O(K) (“orthogonal group”). Reg(p, `) is Procrustean
swap regret (cf. the orthogonal Procrustes problem), d =∞.
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Algorithms for L∞-approachability

Theorem ([Perchet, 2015, Shimkin, 2016, Kwon, 2021])

For any u : P × L → Rd (where (−∞,0]d is approachable), there exists
a learning algorithm that runs in poly(n,m,d) time per round and
guarantees

Reg(p, `) = O(
√T log d).

Consequences:

• For swap regret, this is a learning algorithm with O(
√TK log K)

regret that takes time KO(K) per round.
• For Procrustean swap regret, no non-trivial regret guarantee
(since d =∞).
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New algorithms for L∞-approachability
Theorem

For any u : P × L → Rd (where (−∞,0]d is approachable), there exists
a learning algorithm that guarantees

Reg(p, `) = O(nm√T).

Furthermore, if Reg(p, `) can be computed in time poly(n,m, T), then
this algorithm can be implemented in time poly(n,m) per round.
Consequences:

• For swap regret, this is a learning algorithm with O(K2√T)
regret that takes time poly(K) per round.

• For Procrustean swap regret, this is a learning algorithm with
O(d2√T) regret that takes time poly(d) per round.

We can also obtain slightly tighter bounds (in terms of the sizes of

P , L, and u) – see paper.
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New algorithms for L∞-approachability (cont.)
But sometimes (e.g., for swap regret) O(

√T log d) is better than
O(poly(n,m)

√T)!

Theorem

If there is a poly(n,m)-time algorithm which, given a (1-dim) bilinear
function v : P × L → R, returns the maximum entropy of a distribution
ρ ∈ ∆d satisfying

d∑
i=1

ρiu(p, `)i = v(p, `),

then there exists a learning algorithm that runs in poly(n,m) time per
round which guarantees Reg(p, `) = O(

√T log d).
This is possible for swap regret, and therefore we can get an

O(poly(K))-time algorithm with O(
√KT log K) regret.
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Online linear optimization

The online linear optimization (OLO) problem for (bounded/convex)
action set X ⊆ Rk and loss set Y ⊆ Rk:
• Every round t ∈ [T ], the adversary selects a loss yt ∈ Y , the
learner picks an action xt ∈ X based on y1 through yt−1.
• The learner wants low regret (wrt best fixed action):

Reg(x, y) =
T∑
t=1
〈x, y〉 − minx∗∈X〈x

∗, y〉.

Algorithms: (all variants of FTRL)
• For general convex X ,Y can get O(diam(X )diam(Y)

√T) regret
(“quadratic regularizer”).

• If X = ∆d and Y = [−1,1]d, can get O(
√T log d) regret

(“negentropy regularizer”).
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Reducing L∞-approachability to OLO

1: Initialization: Let F be an OLO algorithm for the sets X = ∆d
and Y = [−1,1]d, let x1 be an arbitrary point in X .

2: for t = 1 to T do
3: Choose pt ∈ P s.t. ∀` ∈ L, 〈xt,u(pt, `)〉 ≤ 0. (possible since

(−∞,0]d is approachable)
4: Play action pt and receive as feedback `t ∈ L.
5: Set yt = −u(pt, `t).
6: Set xt+1 = F(y1, y2, . . . , yt).
7: end for

Algorithm 1: Algorithm A for L∞-approachability
Theorem ([Perchet, 2015, Shimkin, 2016, Kwon, 2021])

In Algorithm 1, RegA(p, `) ≤ RegF (x, y).

DMMSS (Google) Pseudonorm Approachability June 30, 2024 12 / 22



Dimensionality reduction

Observation: A bilinear u : P × L → Rd is a linear function from
conv(P ⊗ L)→ Rd. So:
• ∑t u(pt, `t) only depends on∑t pt ⊗ `t.
• For any x ∈ Rd, there is a nm-dim x̃ ∈ conv(P ⊗ L)∗ s.t.〈

x,∑
t
u(pt, `t)

〉
=

〈
x̃,∑

t
pt ⊗ `t

〉
• For any convex set S ⊆ Rd, there is a convex set
S̃ ⊆ conv(P ⊗ L) s.t.

∑
t u(pt, `t) ∈ S iff∑t pt ⊗ `t ∈ S̃.

• There exists a pseudonorm f and a convex cone S̃ s.t.

d∞
(∑

t
u(pt, `t), (−∞,0]d

)
= df

(∑
t
pt ⊗ `t, S̃

)
.
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Pseudonorms and pseudodistances

Definition

A function f : V → R+ on a vector space V is a pseudonorm if:
1 f (0) = 0

2 f (αz) = αf (z) for all α ≥ 0 (positive homogeneity)
3 f (z+ z′) ≤ f (z) + f (z′).

A pseudonorm f defines a pseudodistance df (x, y) = f (x − y).
Norms⇔ symmetric convex sets, pseudonorms⇔ convex sets.

Takeaway: Any d-dimensional L∞-approachability can be
reinterpreted as a nm-dimensional pseudonorm-approachability
problem.
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Reducing L∞-approachability to OLO (Part II)
1: Initialization: Let F ′ be an OLO algorithm for the sets
X = conv({ui}) ⊆ conv(P ⊗ L)∗ and Y = −conv(P ⊗ L), let x1 be
an arbitrary point in X .

2: for t = 1 to T do
3: Choose pt ∈ P s.t. ∀` ∈ L, 〈xt,pt ⊗ `〉 ≤ 0.
4: Play action pt and receive as feedback `t ∈ L.
5: Set yt = −pt ⊗ `t.
6: Set xt+1 = F ′(y1, y2, . . . , yt).
7: end for
Algorithm 2: Algorithm A′ for L∞-approachability (via dimen-
sionality reduction)

Theorem (BMMSS)

In Algorithm 2, RegA′(p, `) ≤ RegF ′(x, y).
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Key Proof Tool

Theorem

Let f be a pseudonorm and T ∗f =
{
θ : ∀z ∈ Rd, 〈θ, z〉 ≤ f (z)

}
the dual

set associated to f . Then, for any closed convex set S ⊂ Rd, the
following equality holds for any z ∈ Rd:

df (z,S) = infs∈S f (z− s) = sup
θ∈T ∗f

{
θ · z− sup

s∈S
θ · s

}
.

Proof. Using Fenchel-duality:

df (z,S) = infs∈S f (z− s) = inf
s∈Rd
{f (z− s) + IS(s)} (def. of IS )

= sup
θ∈Rd

{
−
(
IT ∗
f (−θ) + θ · z

)
− sup
s∈S
{−θ · s}

}
(IT ∗

f conjugate of f + Fenchel duality theorem)
= sup
−θ∈T ∗

f

{
−θ · z− sup

s∈S
{−θ · s}

}
= sup

θ∈T ∗
f

{
θ · z− sup

s∈S
θ · s

}
.
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More Details

For any i ∈ [d], there exists vi ∈ Rmn such that:

∀p ∈ P, l ∈ L, ui(p, l) = 〈vi,p⊗ l〉.
Define

S̃ = {x : 〈x, vi〉 ≤ 0, ∀i ∈ [d]} and f (x) =

[
max
i∈[d]
〈x, vi〉

]
+

.

S̃ is closed convex and f is a pseudonorm. Using the tool result, we
can prove:

d∞
(∑

t
u(pt, `t), (−∞,0]d

)
= df

(∑
t
pt ⊗ `t, S̃

)
= sup
x∈T ∗f
〈x, z〉,

as well as:

T ∗f = conv{v1, . . . , vd}
(separability) ∀` ∈ L,∃p ∈ P such that p⊗ l ∈ S̃.
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Proof of Theorem

In light of the previous identities:

df
(
1

T
T∑
t=1
pt ⊗ `t, S̃

)
= sup
x∈T ∗f

〈
x, 1T

T∑
t=1
pt ⊗ `t

〉

= − infx

〈
x, 1T

T∑
t=1

(−pt ⊗ `t)
〉

=
1

T Reg(F ′)− 1T
T∑
t=1
〈xt,−pt ⊗ `t〉

≤ 1T Reg(F ′).
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Summary

• If you don’t do dimensionality reduction, you have to solve
OLO over d-dimensional nice sets (∆d and [−1,1]d).
• If you do dimensionality reduction, you instead can solve OLO
over nm-dimensional “weird” sets (X and Y).
• If you apply generic OLO algorithms (e.g. GD), you get
O(poly(n,m)

√T) regret.
• You can do this efficiently with appropriate oracles for X and Y ,
which corresponds to evaluating Reg.

• The negentropy regularizer in d dimensions corresponds to the
“max entropy” regularizer described earlier (running this gives

O(
√T log d) regret).
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Applications

Two applications (see paper for details):

• Converging to Bayesian correlated equilibria:
[Mansour et al., 2022] define “Bayesian swap regret”, with the

property that if all players in a game are running algorithms

with low Bayesian swap regret, then they converge to a

Bayesian correlated equilibrium. We provide the first

polynomial (time and regret) algorithm for this notion of regret.

• Reinforcement learning in constrained MDPs: Existing work
(e.g. [Miryoosefi and Jin, 2021]) has applied (L2) approachability
to get low regret algorithms for episodic RL in constrained

MDPs. By applying pseudonorm approachability, we improve

dependence on number of constraints d from poly(d) to log d.
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Thanks!

Some open questions:
• Is this reduction tight? Can you always recover the best
approachability guarantees by applying some OLO algorithm?

• When can we efficiently (in poly(m,n) time) solve the max
entropy problem?

• What is the best (efficient) OLO algorithm for the X and Y
produced by a fixed P , L, and u? Is it an FTRL algorithm?
• What class of regret minimization problems can be captured by
(L∞-approachability)? Other natural applications?

arxiv.org/abs/2302.01517
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