earning in continuous time

Learning in discrete time

onclusions

References

LEARNING IN HARMONIC GAMES

Panayotis Mertikopoulos

French National Center for Scientific Research (CNRS)

(Workshop on Learning in Games | Toulouse | July 3, 2024)

's a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	References
About					
🗎 Legacci, M, 8	k Pradelski, A geometric de	composition of finite games: Conv	ergence vs. recurrence under exp	oonential weights, ICM	L 2024
Legacci, M, P interests, pre		Pradelski, No-regret learning in ha	rmonic games: Extrapolation in		
				->FINCSJ	2
2	Sec. 2			fsi Conta	
	STON-				

D. Legacci

B. Pradelski

s a harmonic game? 200000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
About				

- 🖹 Legacci, M, & Pradelski, A geometric decomposition of finite games: Convergence vs. recurrence under exponential weights, ICML 2024
- Legacci, M, Papadimitriou, Piliouras, & Pradelski, No-regret learning in harmonic games: Extrapolation in the presence of conflicting interests, preprint, 2024

D. Legacci

C. Papadimitriou

G. Piliouras

B. Pradelski

What' ●00	s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
	Outline				
	 What's a harr 	monic game?			
	 No-regret lea 				
	V No-regret lea				
	3 Learning in co	ontinuous time			
	4 Learning in d	iscrete time			

Finite games							
Finite games							
	$\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ consi	sts of					
• A finite set of <i>players</i> $\mathcal{N} = \{1, \dots, N\}$							
A finite se	t of actions (or pure	strategies) $\mathcal{A}_i = \{1, \ldots, A_i\}$	} per player $i \in \mathcal{N}$				
 A finite set of <i>actions</i> (or <i>pure strategies</i>) A_i = {1,, A_i} per player i ∈ N An ensemble of <i>payoff functions</i> u_i: A ≡ ∏_i A_i → ℝ, i ∈ N 							

$$\alpha \equiv (\alpha_1,\ldots,\alpha_N) \in \mathcal{A} \coloneqq \prod_{i\in\mathcal{N}} \mathcal{A}_i$$

Pure - or realized - payoff of player i

$$u_i(\alpha) \equiv u_i(\alpha_i; \alpha_{-i}) \coloneqq u_i(\alpha_1, \ldots, \alpha_N)$$

Pure - or realized - payoff vector of player i

$$v_i(\alpha) \equiv v_i(\alpha_1,\ldots,\alpha_N) \coloneqq (u_i(\beta_i;\alpha_{-i}))_{\beta_i \in \mathcal{A}_i}$$

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
Mixed extensio	ns			

Players can randomize

Mixed strategy of player i

$$x_i = (x_{i\alpha_i})_{\alpha_i \in \mathcal{A}_i} \in \Delta(\mathcal{A}_i) \eqqcolon \mathcal{X}_i$$

 $\# x_{i\alpha_i} = \text{prob. that player } i \text{ plays } \alpha_i \in \mathcal{A}_i$

Mixed payoff of player i

$$u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)] = \sum_{\alpha_1 \in \mathcal{A}_1} \dots \sum_{\alpha_N \in \mathcal{A}_N} x_{1,\alpha_1} \cdots x_{N,\alpha_N} u_i(\alpha_1, \dots, \alpha_N)$$

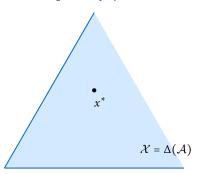
Mixed payoff vector of player i

 $v_i(x) \coloneqq (u_i(\alpha_i; x_{-i}))_{\alpha_i \in \mathcal{A}_i}$

vector of expected rewards # $v_i(x)$ only depends on x_{-i}

• Mixed extension of $\Gamma: \overline{\Gamma} \equiv \Delta(\Gamma)$

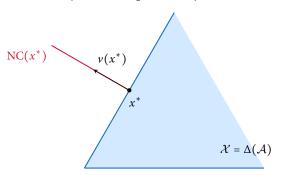
What's a harmonic game?	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	References
Nash equilibi	rium				
Nash equilit	orium			[Nash, ²	950]
"No	player has an incent	ive to deviate from their	chosen strategy if other	players don't"	
	$u_i(x_i^*)$	$(x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for	r all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$		
					_


nat's a harmonic game?	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	Conclusions O	Ref		
Nash equilibriu	m						
Nash equilibrium [Nash, 1950]							
"No player has an incentive to deviate from their chosen strategy if other players don't"							
	$u_i(x_i^*; :$	$(x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all x_{-i}	$x_i \in \mathcal{X}_i, i \in \mathcal{N}$				
 Variational 	characterization:	$\langle v(x^*), x - x^* \rangle \leq 0$ for all .	$x \in \mathcal{X}$ #St	ampacchia variational ine	quality		
Pure equili	brium:	$supp(x^*) = singleton$		# pure strategy	profile		
Strict equil	ibrium:	">" instead of "≥"	# unique	e best response; necessari	ly pure		

What's a harmonic game?

s a harmonic game? 0●0000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
Fauilibrium	configurations			

Equilibrium configurations


Figure: Different equilibrium configurations: fully mixed

s a harmonic game? ⊃●0000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
Equilibrium con	faurations			

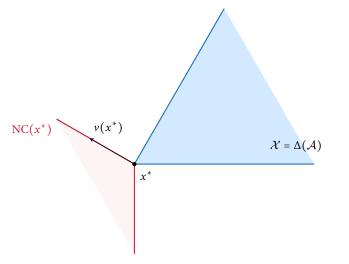
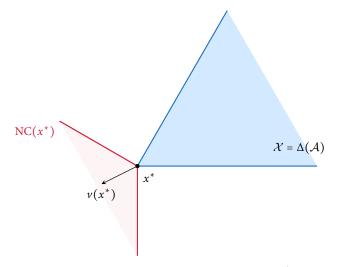

Equilibrium configurations

Figure: Different equilibrium configurations: fully mixed vs. mixed

s a harmonic game? ⊃●0000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	
Equilibrium confi	gurations			


Figure: Different equilibrium configurations: fully mixed vs. mixed vs. pure

 $\# NC(x^*) = normal cone at x^* (outward normal directions)$

What's a harmonic game?		No-regret learning 00000	Learning in continuous time	Learning in discrete time 00000000	
	Equilibrium con	figurations			

Figure: Different equilibrium configurations: fully mixed vs. mixed vs. pure vs. strict

 $\# NC(x^*) = normal cone at x^* (outward normal directions)$

	s a harmonic game?	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	References
	Potential game	25				
	Potential gam	es		ſM	onderer & Shapley,	1996]
	The game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ is a po		ntial game if it admits a po			
		$u_i(\alpha_i;\alpha_{-i})-u$	$\alpha_i(\beta_i; \alpha_{-i}) = \Phi(\alpha_i; \alpha_{-i}) - \Phi(\alpha_i; \alpha_{-i})$	$\Phi(\beta_i; \alpha_{-i})$ for all $\alpha, \beta \in$	\mathcal{A}	

it's a harmonic game? 000●000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	Reference
Potential gam	ies				
Potential gar	nes		[M	onderer & Shapley,	1996]
The game $\Gamma \equiv 1$	$\Gamma(\mathcal{N},\mathcal{A},u)$ is a pote	ntial game if it admits a po	otential function $\Phi: \mathcal{A} \rightarrow$	${\mathbb R}$ such that	
	$u_i(\alpha_i;\alpha_{-i}) - i$	$u_i(\beta_i; \alpha_{-i}) = \Phi(\alpha_i; \alpha_{-i}) -$	$\Phi(\beta_i; \alpha_{-i})$ for all $\alpha, \beta \in$	$\in \mathcal{A}$	
D	1•				
Basic proper	ties				
Player interior	erests <mark>aligned</mark> along	a common objective		# common	interest

- Improvement paths always terminate
- Always admit pure equilibria

no best-response cycles

generically strict

What's a harmonic game? 000000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Graphical representation

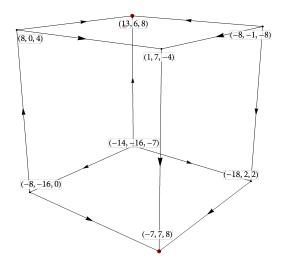


Figure: Response graph of a potential game (Nash in red)

What's a harmonic game? 000000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

Graphical representation



Figure: Response graph of a potential game (Nash in red)

s a harmonic game? 0000●0000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	Conclusions O	References
Harmonic gam	es				
Harmonic gan	ıes		[Candogan et al., 2	.011; Abdou et al.,	2022]
The game $\Gamma \equiv \Gamma($	$(\mathcal{N},\mathcal{A},u)$ is a harm	nonic game if it admits a h	armonic measure $\mu: \coprod_i \mathcal{A}$	$\mathfrak{l}_i ightarrow (0, \infty)$ such	that
	$\sum_{i\in\mathcal{N}}\sum_{\beta\in\mathcal{N}}$	$A_i \mu_{i\beta_i} [u_i(\alpha_i; \alpha_{-i}) - u_i(\beta_i)]$	$[\alpha_{-i}] = 0$ for all $\alpha \in \mathcal{A}$		
				iform harmonic: μ _i = : no deviation sources	1

terminology: harmonic component of Hodge decomposition

s a harmonic game? 0000●0000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	References	
Harmonic gai	nes					
Harmonic ga	imes		[Candogan et al., 2	2011; Abdou et al.,	2022]	
The game $\Gamma \equiv$	$\Gamma(\mathcal{N},\mathcal{A},u)$ is a harm	nonic game if it admits a h	armonic measure $\mu: \coprod_i \mathcal{A}$	$\mathfrak{A}_i \to (0,\infty)$ such	that	
$\sum_{i \in \mathcal{N}} \sum_{\beta \in \mathcal{A}_i} \mu_{i\beta_i} [u_i(\alpha_i; \alpha_{-i}) - u_i(\beta_i; \alpha_{-i})] = 0 \text{for all } \alpha \in \mathcal{A}$						
		ទេ		niform harmonic: μ _i = : no deviation sources ment of Hodge decom	or sinks	
Basic proper	ties					
Player interview	erests anti-aligned			# conflicts of	interest	
Improven	nent paths <mark>never</mark> terr	minate		# best-respon	se sinks	
No pure e	equilibria			# at least one full	y mixed	

s a harmonic game? 00000●000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

Graphical representation

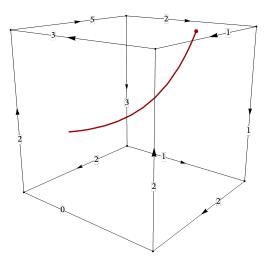


Figure: Response graph of a harmonic game (Nash in red)

What's a harmonic game? 00000000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	Reference
Harmonic res	sonance				
Examples of	harmonic games				
 Matching 	Pennies, Rock-Pape	r-Scissors, Dawkins' battle	of the sexes,		
Two-play	er zero-sum games w	rith a fully mixed equilibriu	ım	🖹 Legacci et al.	(2024)
 Cyclic ga 	mes			🖹 Hofbauer & Schlag	(2000)

Harmonic resonance Examples of harmonic games • Matching Pennies, Rock-Paper-Scissors, Dawkins' battle of the sexes, • Two-player zero-sum games with a fully mixed equilibrium	
 Matching Pennies, Rock-Paper-Scissors, Dawkins' battle of the sexes, 	
 Matching Pennies, Rock-Paper-Scissors, Dawkins' battle of the sexes, 	
Two-player zero-sum games with a fully mixed equilibrium	E Legacci et al. (2024)
 Cyclic games Hofbauer & Schlag 	🖹 Hofbauer & Schlag (2000)
▶	

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time		
Harmonic resond	ance				
Hodge decomp	osition of game	S	[Candogan et al., 2	2011; Abdou et al.,	2022]
Any finite game Γ o	can be decomposed	as $\Gamma = \Gamma_{pot} + \Gamma_{harm}$			

where Γ_{pot} is potential and Γ_{harm} is harmonic

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 00000000		
Harmonic reson	ance				
Hodge decomp	osition of game	25	[Candogan et al., 2	011; Abdou et al.,	2022]
Any finite game Γ can be decomposed as					

$$\Gamma = \Gamma_{pot} + \Gamma_{harm}$$

where Γ_{pot} is potential and Γ_{harm} is harmonic

Remarks:

- Decomposition not unique
- Harmonic and potential games are orthogonal
- ► Harmonic ≠ zero-sum A

must fix measure / gauge
given a measure / metric
zero-sum can be potential

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000		
Harmonic reson	ance				
Hodge decomp	oosition of game	25	[Candogan et al., 2	011; Abdou et al.,	2022]
Any finite game Γ can be decomposed as					

$$\Gamma = \Gamma_{pot} + \Gamma_{harm}$$

where Γ_{pot} is potential and Γ_{harm} is harmonic

Remarks:

- Decomposition not unique
- Harmonic and potential games are orthogonal
- ► Harmonic ≠ zero-sum 🖄

must fix measure / gauge
given a measure / metric
zero-sum can be potential

Harmonic games \rightsquigarrow strategic complement of potential games

What's a harmonic game? 00000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time		
This talk					
	Are harmonic and p	ootential games compleme	ntary from a dynamic vie	wpoint?	
	What is the long	g-run behavior of no-regret	learning in harmonic ga	mes?	
					13/37

What'	s a harmonic game? 00000000	No-regret learning ●0000	Learning in continuous time	Learning in discrete time	
	Outline				
	What's a hare				
	No-regret lea	rning			
	3 Learning in co	ontinuous time			
	4 Learning in d	iscrete time			

What's a harmonic game? 000000000000	No-regret learning O●OOO	Learning in continuous time	Learning in discrete time	Conclusions Ref O
Multi-agent l	earning			
Sequence of o	events - generic			
for each epoc	h and every player do			# continuous / discrete
Choose a	ction			# continuous / finite
Receive re	eward			# endogenous / exogenous
Get feedb	ack (maybe)			# full info / oracle / payoff-based
end for				

Defining elements

- Time: continuous or discrete?
- Players: continuous or finite?
- Actions: continuous or finite?
- ▶ Rewards: endogenous or exogenous (determined by other players or by "Nature")?
- ▶ Feedback: observe other actions / other rewards / only received?

What's a harmonic game? 000000000000	No-regret learning O●OOO	Learning in continuous time	Learning in discrete time	Conclusions Ref O
Multi-agent l	earning			
Sequence of o	events - generic			
for each epoc	h and every player do			# continuous / discrete
Choose a	ction			# continuous / finite
Receive re	eward			# endogenous / exogenous
Get feedb	ack (maybe)			# full info / oracle / payoff-based
end for				

Defining elements

- Time: continuous and discrete
- Players: kohtikukuk/ok/ finite
- Actions: kohthhubus/oh/finite
- Rewards: endogenous /df/dt/dg/dg/dd/dg (determined by other players /df/by///Wat/uh/a/)
- ▶ Feedback: observe other actions / other rewards / only received?

s a harmonic game? 00000000	No-regret learning 00●00	Learning in continuous time	Learning in discrete time 000000000	
	41			

Regret minimization

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

s a harmonic game? 00000000	No-regret learning OO●OO	Learning in continuous time	Learning in discrete time	
Regret minimize	ation			

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

No regret: $\operatorname{Reg}_i(T) = o(T)$

the smaller the better

"The chosen policy is as good as the best fixed strategy in hindsight."

#Worst-case guarantee: at the very least, minimize regret

's a harmonic game? 000000000	No-regret learning 00●00	Learning in continuous time	Learning in discrete time	
Regret minimiza	tion			
Individual regre	t			

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

No regret: $\operatorname{Reg}_i(T) = o(T)$

the smaller the better

"The chosen policy is as good as the best fixed strategy in hindsight."

#Worst-case guarantee: at the very least, minimize regret

Literature:

- Economics
- Mathematics ►
- ► Computer science

Hannan (1957); Hart & Mas-Colell (2000); Fudenberg & Levine (1998)

Blackwell (1956); Lai & Robbins (1985); Sorin (2024)

Shalev-Shwartz (2011); Cesa-Bianchi & Lugosi (2006); Lattimore & Szepesvári (2020)

s a harmonic game? 000000000	No-regret 000●C	g	Learning in continuous time	Learning in discrete time		

Regret minimization and rationality

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

Does no-regret learning converge to equilibrium?

What's a harmonic game? 00000000000		No-regret learning 000●0	Learning in continuous time	Learning in discrete time 000000000	

Regret minimization and rationality

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

Under no-regret learning, empirical frequencies of play converge to equilibrium

s a harmonic game? 00000000	No-regret learning 000●0	Learning in continuous time	Learning in discrete time	
Pograt minimi	ration and ration	-li+.,		

Regret minimization and rationality

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

Under no-regret learning, **empirical frequencies of play** converge to the game's **Hannan set** / **set of coarse correlated equilibria**

s a harmonic game? 000000000	No-regret learning 000●0	Learning in continuous time	Learning in discrete time	
Regret minim	ization and rationa	ılity		

Individual regret

$$\operatorname{Reg}_{i}(T) = \max_{\alpha_{i} \in \mathcal{A}_{i}} \sum_{t=1}^{T} [u_{i}(\alpha_{i}; z_{-i,t}) - u_{i}(z_{t})]$$

Under no-regret learning, **empirical frequencies of play** converge to the game's **Hannan set** / **set of coarse correlated equilibria**

Empirical frequencies of play

$$z_{\alpha,t} = \frac{1}{t} \sum_{\tau=1}^{t} \mathbb{1} \{ \alpha_{\tau} = \alpha \}$$

Coarse correlated equilibrium

A correlated strategy $z \in \Delta(\mathcal{A})$ is a coarse correlated equilibrium / Hannan consistent if

 $u_i(z) \ge u_i(\beta_i; z_{-i})$ for all $\beta_i \in \mathcal{A}_i, i \in \mathcal{N}$

What' 000	s a harmonic game? 000000000	No-regret learning 0000●	Learning in continuous time	Learning in discrete time	Conclusions O	References
	The VZ game					
	A coordination	game				
				B		
				,0) ,1)		

s a harmonic game? 00000000	No-regret learning 0000●	Learning in continuous time	Learning in discrete time 000000000	
The VZ game				

A coordination game with two feeble twins

Viossat & Zapechelnyuk, 2013

	A	A_{-}	В	B_{-}
Α	(1,1)	(1, 2/3)	(0, 0)	(0, -1/3)
A_{-}	(2/3, 1)	(2/3, 2/3)	(-1/3, 0)	(-1/3, -1/3)
В	(0,0)	(0, -1/3)	(1,1)	(1, 2/3)
B_{-}	(-1/3, 0)	(-1/3, -1/3)	(2/3, 1)	(2/3, 2/3)

Feeble twins:

- A_{-} is strictly 1/3-dominated by A
- B_- is strictly 1/3-dominated by B

s a harmonic game? 00000000	No-regret learning 0000●	Learning in continuous time	Learning in discrete time 000000000	
The VZ game				

A coordination game with two feeble twins

Viossat & Zapechelnyuk, 2013

	A	A_{-}	В	B_{-}
Α	(1,1)	(1, 2/3)	(0, 0)	(0, -1/3)
A_{-}	(2/3, 1)	(2/3, 2/3)	(-1/3, 0)	(-1/3, -1/3)
В	(0, 0)	(0, -1/3)	(1,1)	(1, 2/3)
B_{-}	(-1/3, 0)	(-1/3, -1/3)	(2/3, 1)	(2/3, 2/3)

Feeble twins:

- A_{-} is strictly 1/3-dominated by A
- B_- is strictly 1/3-dominated by B

BUT!

- Suppose players play (A_-, A_-) and (B_-, B_-) each with prob. 1/2
- Distribution of play is a CCE: $u_i(\alpha_i; z_{-i}) u_i(z) \le -1/6$
- ▶ No regret!

in fact, *negative* regret

s a harmonic game? 000000000	No-regret learning 0000●	Learning in continuous time	Learning in discrete time 000000000	
The VZ game				

A coordination game with two feeble twins

🗎 Viossat & Zapechelnyuk, 2013

	A	A_{-}	В	B_{-}
Α	(1,1)	(1, 2/3)	(0, 0)	(0, -1/3)
A_{-}	(2/3, 1)	(2/3, 2/3)	(-1/3, 0)	(-1/3, -1/3)
В	(0,0)	(0, -1/3)	(1,1)	(1, 2/3)
B_{-}	(-1/3, 0)	(-1/3, -1/3)	(2/3, 1)	(2/3, 2/3)

Feeble twins:

- A_{-} is strictly 1/3-dominated by A
- B_- is strictly 1/3-dominated by B

BUT!

- Suppose players play (A_-, A_-) and (B_-, B_-) each with prob. 1/2
- Distribution of play is a CCE: $u_i(\alpha_i; z_{-i}) u_i(z) \le -1/6$
- No regret!

in fact, negative regret

No-regret play may lead to playing dominated strategies for all time!

What's	s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	
	Outline				
	What's a harm				
	 No-regret lear 				
	3 Learning in co	ontinuous time			
	4 Learning in dis	screte time			

Game-theore	tic learning		
Sequence of	events — continuou	s time	
	game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$		
repeat			
At each e	poch <i>t</i> ≥ 0 do simultar	reously for all players $i \in \mathcal{N}$	# continuous tim
Choose n	nixed strategy $x_i(t) \in \mathcal{X}$	$\mathcal{C}_i \coloneqq \Delta(\mathcal{A}_i)$	# mixin
Get mixe	d payoff $u_i(x(t)) = \langle v_i \rangle$	$(x(t)), x_i(t)$	# payoff phas
Observe 1	mixed payoff vector v_i	(x_t)	#feedback phas
until end			

- Time: $t \ge 0$
- **Players:** many (finite)
- Actions: finite
- Payoffs: endogenous
- ► Feedback: mixed payoff vectors

multi-agent learning

game-theoretic learning

a harmonic game? 200000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	
Learning with ex	ponential weights			

Exponential reinforcement mechanism:

Score each action based on its cumulative payoff over time:

$$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x(\tau)) d\tau$$

Play an action with probability exponentially proportional to its score

 $x_{i\alpha_i}(t) \propto \exp(y_{i\alpha_i}(t))$

Exponential weight dynamics

[Littlestone & Warmuth, 1994; Auer et al., 1995]

$$\dot{y}_i = v_i(x)$$
 $x_i = \Lambda(y_i) \coloneqq \frac{\exp(y_i)}{\|\exp(y_i)\|_1}$ (EWD)

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time 00●000000000	Learning in discrete time	
Learning with e	ponential weights			

Exponential reinforcement mechanism:

Score each action based on its cumulative payoff over time:

$$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x(\tau)) d\tau$$

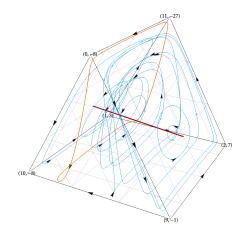
Play an action with probability exponentially proportional to its score

 $x_{i\alpha_i}(t) \propto \exp(y_{i\alpha_i}(t))$

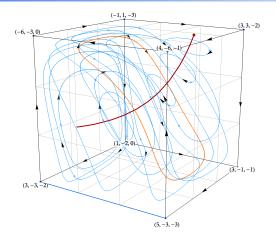
The replicator dynamics

[Taylor & Jonker, 1978]

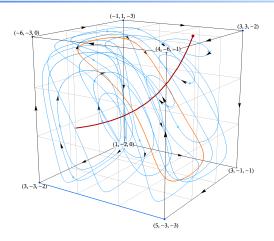
$$\dot{x}_{i\alpha_i} = x_{i\alpha_i} [u_i(\alpha_i; x_{-i}) - u_i(x)]$$


(RD)

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	


Figure: The replicator dynamics in a 2 × 2 harmonic game (Nash in red)

What's a harmonic game? 000000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	


Figure: The replicator dynamics in a 2 × 3 harmonic game (Nash in red)

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Figure: The replicator dynamics in a $2 \times 2 \times 2$ harmonic game (Nash in red)

a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Figure: The replicator dynamics in a $2 \times 2 \times 2$ harmonic game (Nash in red)

Trajectories always periodic!

s a harmonic game? 200000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 00000000		
What's going o	on? [Geometric ve	rsion]			
	0	l" to potential games he potential/harmonic dec	composition?	# convergence	to Nash

No-regret learning 00000	Learning in continuous time 000000000000	Learning in discrete time	Conclusions O	Referer
on? [Geometric ve	rsion]			
oehavior "orthogona	l" to potential games		# convergence	to Nash
lynamic version of	the potential/harmonic dec	composition?		
ecomposition of	finite games		[Legacci et al.,	2024]
ame can be decomp	osed as			
	v(x) = F(x) +	B(x)		
irrotational and B i	s incompressible under the	Shahshahani metric on λ	,	
	nd only if it is uniform harm		r L	
ł	behavior "orthogona dynamic version of t ecomposition of t	ecomposition of finite games game can be decomposed as	behavior "orthogonal" to potential games dynamic version of the potential/harmonic decomposition? ecomposition of finite games	behavior "orthogonal" to potential games # convergence dynamic version of the potential/harmonic decomposition? ecomposition of finite games [Legacci et al., game can be decomposed as

What's a harmonic game? 00000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	Reference
What's going	on? [Geometric ve	ersion]			
,	0	al" to potential games the potential/harmonic de	composition?	# convergence	to Nash
	ecomposition of			[Legacci et al.,	2024]
	guine cui de décomp	v(x) = F(x) +	+ B(x)		
where F is	irrotational and B i	s incompressible under the	e Shahshahani metric on .	X	
 A game is 	incompressible if a	nd only if it is <mark>uniform har</mark> r	nonic		

Remarks:

• Shahshahani metric \rightsquigarrow replicator-compatible geometric structure on $\mathcal X$

 $\# g_{\alpha\beta}(x) = \delta_{\alpha\beta}/x_{\alpha}$

Why uniform?

 \triangle highly surprising structural match!

a harmonic game?	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

Quasi-periodicity

Poincaré recurrence

A dynamical system is **Poincaré recurrent** if almost all solution trajectories return **arbitrarily close** to their starting point **infinitely many times** # formal definition of "quasi-periodicity"

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

Incompressibility, recurrence, and harmonic games

Volume preservation

If Γ is incompressible / harmonic, the replicator dynamics are volume-preserving under the Shahshahani metric:

 $\operatorname{vol}_{\operatorname{Shah}}(A) = \operatorname{vol}_{\operatorname{Shah}}(\operatorname{RD}_t(A))$ for every measurable set of initial conditions $A \subseteq \mathcal{X}$

Incompressibility, recurrence, and harmonic games

Volume preservation

If Γ is incompressible / harmonic, the replicator dynamics are volume-preserving under the Shahshahani metric:

 $\operatorname{vol}_{\operatorname{Shah}}(A) = \operatorname{vol}_{\operatorname{Shah}}(\operatorname{RD}_t(A))$ for every measurable set of initial conditions $A \subseteq \mathcal{X}$

Poincaré recurrence [Legacci et al., 2024]

In any uniform harmonic game, the replicator dynamics are Poincaré recurrent.

a harmonic game? 200000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Exponential weights redux

Exponential weight dynamics

$$\dot{y}_i = v_i(x)$$
 $x_i = \Lambda(y_i) = \frac{\exp(y_i)}{\|\exp(y_i)\|_1}$

24/

(EWD)

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

Exponential weights redux

Exponential weight dynamics

$$\dot{y}_i = v_i(x)$$
 $x_i = \Lambda(y_i) = \frac{\exp(y_i)}{\|\exp(y_i)\|_1}$ (EWD)

Softmax interpretation

$$x = \Lambda(y) \iff x = \arg \max_{z \in \mathcal{X}} \left\{ \langle y, z \rangle - \underbrace{\sum_{\alpha \in \mathcal{A}} z_{\alpha} \log z_{\alpha}}_{\text{extronic penalty}} \right\}$$

entropic penalty

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Exponential weights redux

Exponential weight dynamics

$$\dot{y}_i = v_i(x)$$
 $x_i = \Lambda(y_i) = \frac{\exp(y_i)}{\|\exp(y_i)\|_1}$ (EWD)

Softmax interpretation

$$x = \Lambda(y) \iff x = \arg \max_{z \in \mathcal{X}} \left\{ \langle y, z \rangle - \underbrace{\sum_{\alpha \in \mathcal{A}} z_{\alpha} \log z_{\alpha}}_{\text{entropic penalty}} \right\}$$

Is there a general principle in play?

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time 00000000000000	Learning in discrete time	
Regularized lea	urning			

Replace the "leader" / hard arg max

$$x_i(t) = \operatorname*{arg\,max}_{z_i \in \mathcal{X}} \underbrace{\int_0^t u_i(z_i; x_{-i}(\tau)) d\tau}_{-1}$$

cumulative payoff

with a "*regularized leader*" / soft arg max:

$$x_{i}(t) = \underset{z_{i} \in \mathcal{X}}{\operatorname{arg\,max}} \left\{ \underbrace{\int_{0}^{t} u_{i}(z_{i}; x_{-i}(\tau)) d\tau}_{\operatorname{cumulative payoff}} - \underbrace{h_{i}(z_{i})}_{\operatorname{penalty}} \right\}$$

where $h_i: \mathcal{X}_i \to \mathbb{R}$ is a strongly convex **regularizer** on \mathcal{X}_i

What's a harmonic game? 000000000000		No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	
	Regularized learn	ning			
	Replace the "lead e	er" / hard arg max			

$$x_i(t) = \underset{z_i \in \mathcal{X}}{\operatorname{arg\,max}} \underbrace{\int_0^t u_i(z_i; x_{-i}(\tau)) d\tau}_{-1}$$

cumulative payoff

with a "*regularized leader*" / soft arg max:

$$x_{i}(t) = \underset{z_{i} \in \mathcal{X}}{\operatorname{arg\,max}} \left\{ \underbrace{\int_{0}^{t} u_{i}(z_{i}; x_{-i}(\tau)) d\tau}_{\operatorname{cumulative payoff}} - \underbrace{h_{i}(z_{i})}_{\operatorname{penalty}} \right\}$$

where $h_i: \mathcal{X}_i \to \mathbb{R}$ is a strongly convex **regularizer** on \mathcal{X}_i

Follow-the-regularized-leader (FTRL)

$$\dot{y}_i(t) = v_i(x(t)) \qquad x_i(t) = Q_i(y_i(t))$$

(FTRL-D)

where

$$Q_i(y_i) = \underset{z_i \in \mathcal{X}_i}{\operatorname{arg\,max}} \{ \langle y_i, z_i \rangle - h_i(z_i) \}$$

regularized choice / best response map

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000000	

Example: Projection dynamics

Euclidean / Ridge regularization

Regularizer:

$$h(x) = \frac{1}{2} \sum_{\alpha} x_{\alpha}^2$$

Choice map:

$$\Pi(y) = \underset{x \in \mathcal{X}}{\operatorname{arg\,max}} \{ \langle y, x \rangle - (1/2) \| x \|_{2}^{2} \} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \| y - x \| = \operatorname{proj}_{\mathcal{X}}(y)$$

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time 000000000000000	Learning in discrete time	
Example: Proj	ection dynamics			

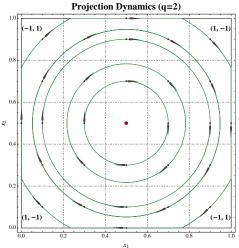
Euclidean / Ridge regularization

Regularizer:

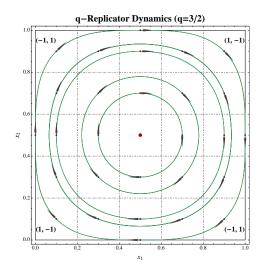
$$h(x) = \frac{1}{2} \sum_{\alpha} x_{\alpha}^2$$

Choice map:

$$\Pi(y) = \underset{x \in \mathcal{X}}{\operatorname{arg\,max}} \{ \langle y, x \rangle - (1/2) \| x \|_{2}^{2} \} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \| y - x \| = \operatorname{proj}_{\mathcal{X}}(y)$$

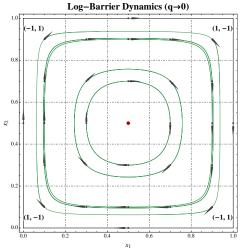

Projection dynamics

[Friedman, 1991; M & Sandholm, 2016]


$$\dot{y}_i(t) = v_i(x(t))$$
 $x_i(t) = \Pi(y_i(t))$

(PD)


's a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	


s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time 00000000000	Learning in discrete time 000000000	
What's going on?	[Dual version]			

Poincaré recurrence [Legacci et al., 2024]

The dynamics of FTRL are Poincaré recurrent in any harmonic game

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time 00000000000	Learning in discrete time 000000000	
What's going on?	[Dual version]			

Poincaré recurrence [Legacci et al., 2024]

The dynamics of FTRL are Poincaré recurrent in any harmonic game

Remarks:

- ▲ No geometric compatibility → requires completely different proof technique
 - Leverage tools from convex analysis \rightsquigarrow constant of motion
 - Simultaneously extend to all harmonic measures and all regularizers

at's a harmonic game? 00000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time ●00000000	Conclusions O	References
Outline					
1 What's	a harmonic game?				
2 No-reg	ret learning				
3 Learnin	ng in continuous time				
4 Learnir	ng in discrete time				

Game-theore	ic learning			
Sequence of e	vents – discrete ti	me		
Require: finite g	game Γ = Γ($\mathcal{N}, \mathcal{A}, u$)			
repeat				
At each ep	och <i>t</i> = 1, 2, do sin	nultaneously for all players $i \in$	\mathcal{N}	# discrete time
Choose m	ixed strategy $x_{i,t} \in \mathcal{X}_i$	$\coloneqq \Delta(\mathcal{A}_i)$		# mixing
Choose ac	tion $\alpha_{i,t} \sim x_{i,t}$ and get	realized payoff $u_i(\alpha_{i,t}; \alpha_{-i,t})$		# payoff phase
Observe n	nixed payoff vector v_i	$(x_t) = (u_i(\alpha_i; x_{-i,t}))_{\alpha_i \in \mathcal{A}_i}$		#feedback phase

Defining elements

- ► Time: *t* = 1, 2, . . .
- Players: many (finite)
- Actions: finite
- Payoffs: endogenous
- Feedback: mixed payoff vectors

multi-agent learning

game-theoretic learning

full information, exact

a harmonic game? DOOOOOOOO	No-regret learning 00000	Learning in continuous time	Learning in discrete time	Conclusions O	References
Follow-the-rea	ularized-leader				

Follow-the-regularized-leader (FTRL)

$$y_{i,t+1} = y_{i,t} + \gamma_t v_t$$

$$x_{i,t+1} = Q_i(y_{i,t+1}) \equiv \underset{x_i \in \mathcal{X}}{\arg \max}\{\langle y_{i,t+1}, x_i \rangle - h_i(x_i)\}$$

Regularized best responses instead of logit choice map

🖹 M & Sandholm (2016)

(FTRL)

• Every player's *regularizer* $h_i: \mathcal{X}_i \to \mathbb{R}$ is continuous and strongly convex on \mathcal{X}_i

$$h_i(x'_i) \ge h_i(x_i) + \langle \nabla h_i(x_i), x'_i - x_i \rangle + (K_i/2) ||x'_i - x_i||^2$$

Template includes: exponential weights, (lazy) projected gradient ascent, Tsallis-based algorithms, ...

00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000●00000	Conclusions O	Referen
Examples					
Example (Ric	lge regularization)			
Regulariz	er:	$h(x) = \frac{1}{2} \ $	$\ \mathbf{x}\ ^2$		
 Algorithm 	n:	$y_{t+1} = y_t + \gamma_t v_t \qquad x_t$	$_{+1} = \Pi_{\mathcal{X}}(y_{t+1})$		
Example (En	tropic rogularizat	ion			
	tropic regularizat	ion)			
Example (Ent		ion) $h(x) = \sum_{\alpha \in \mathcal{A}} x_{\alpha}$	$\log x_{\alpha}$		

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 0000●0000	

Non-convergence of FTRL

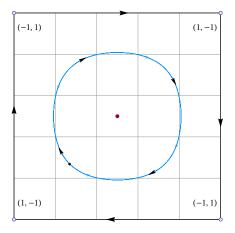


Figure: The replicator dynamics in Matching Pennies

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 0000€0000	

Non-convergence of FTRL

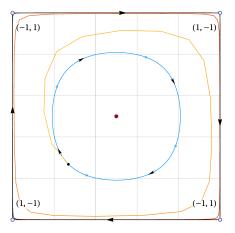


Figure: The FTRL algorithm in Matching Pennies

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 0000€0000	

Non-convergence of FTRL

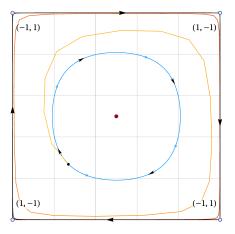


Figure: The FTRL algorithm in Matching Pennies

FTRL does not converge in harmonic games

What 000	's a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time ○○○○○○○○○○	Conclusions O	Reference
	FTRL with an	extrapolation	step			
			Extrapolated FT	RL (FTRL+)		
	a) Extrapol b) Update p		$y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(F	TRL+)

P. Mertikopoulos

	Extrapolated FT	RL (FTRL+)		
a) Extrapola b) Update pl	 $y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(FT	RL
Payoff model				
	$v_{i,t} =$			
	$v_{i,t+1/2} =$			

	Extrapolated FT	RL (FTRL+)		
a) Extrapol b) Update p	 $y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(FT	RL+)
Payoff mode				
	$v_{i,t} =$			
	 $v_{i,t+1/2} = v_i(x_{t+1/2})$			

a) Ext					
1	rapolation phase: date phase:	$y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(F	TRL+
Payoff n	nodel				
		$v_{i,t} = 0$			
		$v_{i,t+1/2} = v_i(x_{t+1/2})$			

		Extrapolated FT	RL (FTRL+)		
a) Extrapo b) Update	lation phase: phase:	$y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(F	TRL+)
Payoff mode		$v_{i,t} = v_i(x_t)$			

CNRS

		Extrapolated FT	RL (FTRL+)		
a) Extrapo b) Update	lation phase: phase:	$y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(F	TRL+)
	1				
Payoff mode	el	$v_{i,t} = v_i(x_{t-1/2})$			

CNRS

		Extrapolated FT	RL (FTRL+)	
<i>a</i>) Extrapolation<i>b</i>) Update phase:		$= y_{i,t} + \eta_i v_{i,t}$ $= y_{i,t} + \eta_i v_{i,t+1/2}$	$\begin{aligned} x_{i,t+1/2} &= Q_i(y_{i,t+1/2}) \\ x_{i,t} &= Q_i(y_{i,t+1}) \end{aligned}$	(F
ayoff model				
		$v_{i,t} = \lambda_i v_i(x_t) + (1$	$(-\lambda_i)v_i(x_{t-1/2})$	
	$v_{i,i}$	$x_{t+1/2} = v_i(x_{t+1/2})$		

CNRS

harmonic game? 0000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 00000€000	Conclusions O
FTRL with an	extrapolation s	step		
		Extrapolated FT	RL (FTRL+)	
a) Extrapol b) Update p	ation phase: bhase:	$y_{i,t+1/2} = y_{i,t} + \eta_i v_{i,t}$ $y_{i,t+1} = y_{i,t} + \eta_i v_{i,t+1/2}$	$x_{i,t+1/2} = Q_i(y_{i,t+1/2})$ $x_{i,t} = Q_i(y_{i,t+1})$	(FTRI
· · ·		<i>y</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		y y (* 1814)2		
Payoff model		$v_{i,t} = \lambda_i v_i(x_t) + (1$		
		$v_{i,t} = \lambda_i v_i(x_t) + (1$		
		$v_{i,t} = \lambda_i v_i(x_t) + (1$		
Payoff model		$v_{i,t} = \lambda_i v_i(x_t) + (1$	$(\lambda - \lambda_i)v_i(x_{t-1/2})$	evich, 1976; Nemirovski, 20

s a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

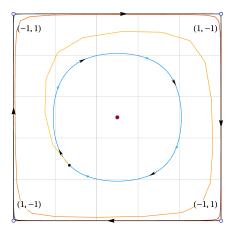


Figure: FTRL in Matching Pennies X

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 000000●00	

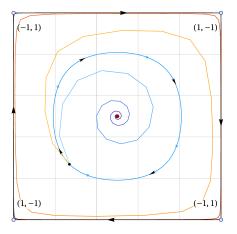


Figure: Mirror-Prox in Matching Pennies ✓

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

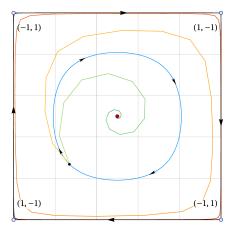


Figure: Optimistic FTRL in Matching Pennies ✓

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time	

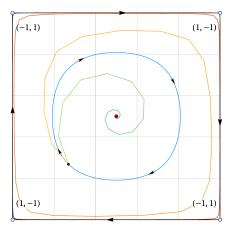
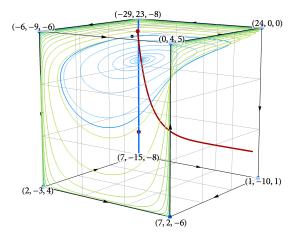



Figure: Optimistic FTRL in Matching Pennies ✓

Does (FTRL+) **converge** in harmonic games?

a harmonic game? 00000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 0000000●0	

Figure: (FTRL+) in a 2 × 2 × 2 harmonic game ✓

Does (FTRL+) **converge** in harmonic games?

s a harmonic game? 000000000	No-regret learning 00000	Learning in continuous time	Learning in discrete time 00000000●	

The long-run behavior of FTRL+

Guarantee 1: Constant regret

INF Assume:

- Γ is μ-harmonic
- Each player follows (FTRL+) with $\eta_i \leq m_i K_i [2(N+2) \max_j m_j L_j]^{-1}$
- ☞ Then: (FTRL+) enjoys the bound

$$\operatorname{Reg}_{i}(T) \leq \frac{H_{i}}{\eta_{i}} + \frac{2L_{i}}{N+2} \sum_{j \in \mathcal{N}} \frac{H_{j}}{\eta_{j}L_{j}} = \mathcal{O}(1)$$

where $H_i = \max h_i - \min h_i$, and L_i is the Lipschitz modulus of v_i

[Legacci et al., 2024]

The long-run behavior of FTRL+

Guarantee 1: Constant regret

Assume:

- \blacktriangleright Γ is μ -harmonic
- Each player follows (FTRL+) with $\eta_i \leq m_i K_i [2(N+2) \max_i m_i L_i]^{-1}$
- RF Then: (FTRL+) enjoys the bound

$$\operatorname{Reg}_{i}(T) \leq \frac{H_{i}}{\eta_{i}} + \frac{2L_{i}}{N+2} \sum_{j \in \mathcal{N}} \frac{H_{j}}{\eta_{j}L_{j}} = \mathcal{O}(1)$$

where $H_i = \max h_i - \min h_i$, and L_i is the Lipschitz modulus of v_i

Guarantee 2: Convergence

Assume:

- Γ is μ -harmonic
- Each player follows (FTRL+) with $\eta_i \leq m_i K_i [2(N+2) \max_i m_i L_i]^{-1}$

 \square Then: the sequence x_t generated by (FTRL+) converges to a Nash equilibrium

[Legacci et al., 2024]

[Legacci et al., 2024]

Main take-aways:

- Harmonic games behave "orthogonally" to potential games in terms of learning
- No-regret learning in continuous time is recurrent
- No-regret learning in discrete time may be divergent...

Main take-aways:

- Harmonic games behave "orthogonally" to potential games in terms of learning
- No-regret learning in continuous time is recurrent
- No-regret learning in discrete time may be divergent...
- ...but an extrapolation step recovers convergence to Nash equilibrium

Main take-aways:

- Harmonic games behave "orthogonally" to potential games in terms of learning
- No-regret learning in continuous time is recurrent
- No-regret learning in discrete time may be divergent...
- ...but an extrapolation step recovers convergence to Nash equilibrium
- ...and guarantees constant regret

Main take-aways:

- Harmonic games behave "orthogonally" to potential games in terms of learning
- No-regret learning in continuous time is recurrent
- No-regret learning in discrete time may be divergent...
- ...but an extrapolation step recovers convergence to Nash equilibrium
- ...and guarantees constant regret

This is just a first peek:

- Rate of convergence?
- Inexact / Payoff-based information
- Adaptive / Agnostic step-size policies

difficult, but not hopeless
two-step policies?
AdaGrad-like?

References I

- Abdou, J., Pnevmatikos, N., Scarsini, M., and Venel, X. Decomposition of games: Some strategic considerations. Mathematics of Operations Research, 47(1):176-208, February 2022.
- [2] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.
- [3] Blackwell, D. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6:1-8, 1956.
- [4] Candogan, O., Menache, I., Ozdaglar, A., and Parrilo, P. A. Flows and decompositions of games: harmonic and potential games. Mathematics of Operations Research, 36(3):474-503, 2011.
- [5] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [6] Friedman, D. Evolutionary games in economics. Econometrica, 59(3):637-666, 1991.
- [7] Fudenberg, D. and Levine, D. K. The Theory of Learning in Games, volume 2 of Economic learning and social evolution. MIT Press, Cambridge, MA, 1998.
- [8] Hannan, J. Approximation to Bayes risk in repeated play. In Dresher, M., Tucker, A. W., and Wolfe, P. (eds.), Contributions to the Theory of Games, Volume III, volume 39 of Annals of Mathematics Studies, pp. 97-139. Princeton University Press, Princeton, NJ, 1957.
- [9] Hart, S. and Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. *Econometrica*, 68(5):1127-1150, September 2000.
- [10] Hofbauer, J. and Schlag, K. H. Sophisticated imitation in cyclic games. Journal of Evolutionary Economics, 10:523-543, September 2000.
- [11] Korpelevich, G. M. The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody, 12:747-756, 1976.
- [12] Lai, T. L. and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4-22, 1985.

References II

- [13] Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.
- [14] Legacci, D., Mertikopoulos, P., Papadimitriou, C. H., Piliouras, G., and Pradelski, B. S. R. No-regret learning in harmonic games: Extrapolation in the presence of conflicting interests. Preprint, 2024.
- [15] Legacci, D., Mertikopoulos, P., and Pradelski, B. S. R. A geometric decomposition of finite games: Convergence vs. recurrence under exponential weights. In ICML '24: Proceedings of the 41st International Conference on Machine Learning, 2024.
- [16] Littlestone, N. and Warmuth, M. K. The weighted majority algorithm. Information and Computation, 108(2):212-261, 1994.
- [17] Mertikopoulos, P. and Sandholm, W. H. Learning in games via reinforcement and regularization. Mathematics of Operations Research, 41 (4):1297-1324, November 2016.
- [18] Monderer, D. and Shapley, L. S. Potential games. Games and Economic Behavior, 14(1):124 143, 1996.
- [19] Nash, J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36:48-49, 1950.
- [20] Nemirovski, A. S. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251, 2004.
- [21] Popov, L. D. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.
- [22] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- [23] Sorin, S. No-regret algorithms in online learning, games and convex optimization. Mathematical Programming, 203:645-686, 2024.
- [24] Taylor, P. D. and Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 40(1-2):145-156, 1978.
- [25] Viossat, Y. and Zapechelnyuk, A. No-regret dynamics and fictitious play. Journal of Economic Theory, 148(2):825-842, March 2013.