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Finite games

Finite games

A finite game Γ ≡ Γ(N ,A, u) consists of
▸ A finite set of players N = {, . . . ,N}

▸ A finite set of actions (or pure strategies) Ai = {, . . . , A i} per player i ∈N

▸ An ensemble of payoff functions u i ∶A ≡∏i Ai → R, i ∈N

Notation
▸ Action profile:

α ≡ (α , . . . , αN) ∈ A ∶=∏i∈N Ai

▸ Pure – or realized – payoff of player i

u i(α) ≡ u i(α i ; α−i) := u i(α , . . . , αN)

▸ Pure – or realized – payoff vector of player i

v i(α) ≡ v i(α , . . . , αN) := (u i(β i ; α−i))β i∈Ai

# vector of “what-if ” / counterfactual rewards
P. Mertikopoulos CNRS
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Mixed extensions

Players can randomize

▸ Mixed strategy of player i
x i = (x iα i )α i∈Ai ∈ ∆(Ai) =: Xi

# x iα i = prob. that player i plays α i ∈Ai

▸ Mixed payoff of player i

u i(x) = Eα∼x[u i(α)] = ∑
α∈A

. . . ∑
αN∈AN

x,α⋯xN ,αN u i(α , . . . , αN)

▸ Mixed payoff vector of player i
v i(x) := (u i(α i ; x−i))α i∈Ai

# vector of expected rewards

# v i(x) only depends on x−i

▸ Mixed extension of Γ: Γ̄ ≡ ∆(Γ)

P. Mertikopoulos CNRS
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Nash equilibrium

Nash equilibrium [Nash, 1950]

“No player has an incentive to deviate from their chosen strategy if other players don’t”

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ Variational characterization: ⟨v(x∗), x − x∗⟩ ≤  for all x ∈ X # Stampacchia variational inequality

▸ Pure equilibrium: supp(x∗) = singleton # pure strategy profile

▸ Strict equilibrium: “>” instead of “≥” # unique best response; necessarily pure

P. Mertikopoulos CNRS
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Equilibrium configurations

Figure: Different equilibrium configurations: fully mixed

X = ∆(A)

.
x∗

# NC(x∗) = normal cone at x∗ (outward normal directions)
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Equilibrium configurations

Figure: Different equilibrium configurations: fully mixed vs. mixed

X = ∆(A)

NC(x∗)

.
x∗

v(x∗)

# NC(x∗) = normal cone at x∗ (outward normal directions)
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Equilibrium configurations

Figure: Different equilibrium configurations: fully mixed vs. mixed vs. pure

X = ∆(A)
NC(x∗)

.
x∗

v(x∗)

# NC(x∗) = normal cone at x∗ (outward normal directions)
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Equilibrium configurations

Figure: Different equilibrium configurations: fully mixed vs. mixed vs. pure vs. strict

X = ∆(A)
NC(x∗)

.
x∗

v(x∗)

# NC(x∗) = normal cone at x∗ (outward normal directions)
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Potential games

Potential games [Monderer & Shapley, 1996]

The game Γ ≡ Γ(N ,A, u) is a potential game if it admits a potential function Φ∶A→ R such that

u i(α i ; α−i) − u i(β i ; α−i) = Φ(α i ; α−i) −Φ(β i ; α−i) for all α, β ∈ A

Basic properties

▸ Player interests aligned along a common objective # common interest

▸ Improvement paths always terminate # no best-response cycles

▸ Always admit pure equilibria # generically strict

P. Mertikopoulos CNRS
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Graphical representation

Figure: Response graph of a potential game (Nash in red)

P. Mertikopoulos CNRS



8/37

What’s a harmonic game? No-regret learning Learning in continuous time Learning in discrete time Conclusions References

Graphical representation

Figure: Response graph of a potential game (Nash in red)

P. Mertikopoulos CNRS



9/37

What’s a harmonic game? No-regret learning Learning in continuous time Learning in discrete time Conclusions References

Harmonic games

Harmonic games [Candogan et al., 2011; Abdou et al., 2022]

The game Γ ≡ Γ(N ,A, u) is a harmonic game if it admits a harmonic measure µ∶∐i Ai → (,∞) such that

∑i∈N∑β∈Ai
µ iβ i [u i(α i ; α−i) − u i(β i ; α−i)] =  for all α ∈ A

+ uniform harmonic: µ i = unifAi

+ flow conservation: no deviation sources or sinks

+ terminology: harmonic component of Hodge decomposition

Basic properties

▸ Player interests anti-aligned # conflicts of interest

▸ Improvement paths never terminate # best-response sinks

▸ No pure equilibria # at least one fully mixed

P. Mertikopoulos CNRS
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Graphical representation

Figure: Response graph of a harmonic game (Nash in red)
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Harmonic resonance

Examples of harmonic games

▸ Matching Pennies, Rock-Paper-Scissors, Dawkins’ battle of the sexes, …

▸ Two-player zero-sum games with a fully mixed equilibrium Legacci et al. (2024)

▸ Cyclic games Hofbauer & Schlag (2000)

▸ ⋯

Hodge decomposition of games [Candogan et al., 2011; Abdou et al., 2022]

Any finite game Γ can be decomposed as
Γ = Γpot + Γharm

where Γpot is potential and Γharm is harmonic

P. Mertikopoulos CNRS
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Harmonic resonance

Hodge decomposition of games [Candogan et al., 2011; Abdou et al., 2022]

Any finite game Γ can be decomposed as
Γ = Γpot + Γharm

where Γpot is potential and Γharm is harmonic

Remarks:
▸ Decomposition not unique # must fix measure / gauge

▸ Harmonic and potential games are orthogonal # given a measure / metric

▸ Harmonic ≠ zero-sum 1 # zero-sum can be potential

Harmonic games ; strategic complement of potential games

P. Mertikopoulos CNRS
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This talk

Are harmonic and potential games complementary from a dynamic viewpoint?

What is the long-run behavior of no-regret learning in harmonic games?

P. Mertikopoulos CNRS
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Outline

1 What’s a harmonic game?

2 No-regret learning

3 Learning in continuous time

4 Learning in discrete time
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Multi-agent learning

Sequence of events – generic
for each epoch and every player do # continuous / discrete

Choose action # continuous / finite

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

end for

Defining elements

▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions: continuous or finite?

▸ Rewards: endogenous or exogenous (determined by other players or by “Nature”)?

▸ Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos CNRS
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Regret minimization

Individual regret

Regi(T) = max
α i∈Ai

T

∑
t=
[u i(α i ; z−i ,t) − u i(zt)]

No regret: Regi(T) = o(T) # the smaller the better

“The chosen policy is as good as the best fixed strategy in hindsight.”

# Worst-case guarantee: at the very least, minimize regret

Literature:
▸ Economics Hannan (1957); Hart & Mas-Colell (2000); Fudenberg & Levine (1998)

▸ Mathematics Blackwell (1956); Lai & Robbins (1985); Sorin (2024)

▸ Computer science Shalev-Shwartz (2011); Cesa-Bianchi & Lugosi (2006); Lattimore & Szepesvári (2020)

P. Mertikopoulos CNRS
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Regret minimization and rationality

Individual regret

Regi(T) = max
α i∈Ai

T

∑
t=
[u i(α i ; z−i ,t) − u i(zt)]

Does no-regret learning converge to equilibrium?

Empirical frequencies of play

zα ,t =

t

t

∑
τ=

1{ατ = α}

Coarse correlated equilibrium

A correlated strategy z ∈ ∆(A) is a coarse correlated equilibrium / Hannan consistent if

u i(z) ≥ u i(β i ; z−i) for all β i ∈ Ai , i ∈N

P. Mertikopoulos CNRS
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The VZ game

A coordination game

A B
A (, ) (, )
B (, ) (, )

Feeble twins:
▸ A− is strictly /-dominated by A
▸ B− is strictly /-dominated by B

BUT!
▸ Suppose players play (A− , A−) and (B− , B−) each with prob. /
▸ Distribution of play is a CCE: u i(α i ; z−i) − u i(z) ≤ −/
▸ No regret! # in fact, negative regret

No-regret play may lead to playing dominated strategies for all time!

P. Mertikopoulos CNRS
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A coordination game with two feeble twins Viossat & Zapechelnyuk, 2013
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Game-theoretic learning

Sequence of events — continuous time
Require: finite game Γ ≡ Γ(N ,A, u)

repeat
At each epoch t ≥  do simultaneously for all players i ∈ N # continuous time

Choose mixed strategy x i(t) ∈ Xi ∶= ∆(Ai) # mixing

Get mixed payoff u i(x(t)) = ⟨v i(x(t)), x i(t)⟩ # payoff phase

Observe mixed payoff vector v i(xt) # feedback phase

until end

Defining elements

▸ Time: t ≥ 

▸ Players: many (finite) # multi-agent learning

▸ Actions: finite

▸ Payoffs: endogenous # game-theoretic learning

▸ Feedback: mixed payoff vectors

P. Mertikopoulos CNRS



19/37

What’s a harmonic game? No-regret learning Learning in continuous time Learning in discrete time Conclusions References

Learning with exponential weights

Exponential reinforcement mechanism:

▸ Score each action based on its cumulative payoff over time:

y iα i (t) = ∫
t


v iα i (x(τ)) dτ

▸ Play an action with probability exponentially proportional to its score

x iα i (t)∝ exp(y iα i (t))

Exponential weight dynamics [Littlestone & Warmuth, 1994; Auer et al., 1995]

ẏ i = v i(x) x i = Λ(y i) :=
exp(y i)
∥exp(y i)∥

(EWD)

P. Mertikopoulos CNRS
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Exponential reinforcement mechanism:

▸ Score each action based on its cumulative payoff over time:

y iα i (t) = ∫
t


v iα i (x(τ)) dτ

▸ Play an action with probability exponentially proportional to its score

x iα i (t)∝ exp(y iα i (t))

The replicator dynamics [Taylor & Jonker, 1978]

ẋ iα i = x iα i [u i(α i ; x−i) − u i(x)] (RD)
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What do the dynamics look like?

(1, -6)

(2, -5)

(0, -9)

(3, -10)

Figure: The replicator dynamics in a  ×  harmonic game (Nash in red)

Trajectories always periodic!
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What's going on? [Geometric version]

▸ Dynamic behavior “orthogonal” to potential games # convergence to Nash

▸ Is there a dynamic version of the potential/harmonic decomposition?

Geometric decomposition of finite games [Legacci et al., 2024]

1 Any finite game can be decomposed as
v(x) = F(x) + B(x)

where F is irrotational and B is incompressible under the Shahshahani metric on X

2 A game is incompressible if and only if it is uniform harmonic

Remarks:
▸ Shahshahani metric ; replicator-compatible geometric structure on X # αβ(x) = δαβ/xα
9 Why uniform? 1 highly surprising structural match!
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Quasi-periodicity

Poincaré recurrence
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times # formal definition of “quasi-periodicity”

P. Mertikopoulos CNRS



23/37

What’s a harmonic game? No-regret learning Learning in continuous time Learning in discrete time Conclusions References

Incompressibility, recurrence, and harmonic games

Volume preservation
If Γ is incompressible / harmonic, the replicator dynamics are volume-preserving under the Shahshahani
metric:

volShah(A) = volShah(RDt(A)) for every measurable set of initial conditions A ⊆ X

Poincaré recurrence [Legacci et al., 2024]

In any uniform harmonic game, the replicator dynamics are Poincaré recurrent.

P. Mertikopoulos CNRS
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Exponential weights redux

Exponential weight dynamics

ẏ i = v i(x) x i = Λ(y i) =
exp(y i)
∥exp(y i)∥

(EWD)

Softmax interpretation

x = Λ(y) ⇐⇒ x = argmaxz∈X{⟨y, z⟩ −∑α∈A zα log zα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

entropic penalty

}

Is there a general principle in play?
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Regularized learning

Replace the “leader” / hard argmax

x i(t) = argmax
z i∈X

∫
t


u i(z i ; x−i(τ)) dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cumulative payoff

with a “regularized leader” / soft argmax:

x i(t) = argmax
z i∈X

{ ∫
t


u i(z i ; x−i(τ)) dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cumulative payoff

− h i(z i)
´¹¹¹¹¸¹¹¹¹¶
penalty

}

where h i ∶Xi → R is a strongly convex regularizer on Xi

Follow–the–regularized–leader (FTRL)

ẏ i(t) = v i(x(t)) x i(t) = Q i(y i(t)) (FTRL-D)

where

Q i(y i) = argmax
z i∈Xi

{⟨y i , z i⟩ − h i(z i)} # regularized choice / best response map
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Example: Projection dynamics

Euclidean / Ridge regularization

Regularizer:

h(x) = 
∑α x


α

Choice map:
Π(y) = argmax

x∈X
{⟨y, x⟩ − (/)∥x∥} = argmin

x∈X
∥y − x∥ = projX (y)

Projection dynamics [Friedman, 1991; M & Sandholm, 2016]

ẏ i(t) = v i(x(t)) x i(t) = Π(y i(t)) (PD)

P. Mertikopoulos CNRS
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What do the dynamics look like?

The Tsallis kernel: h(x) = [q( − q)]−∑α(xα − x
q
α)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0
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0.6
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x1

x 2

Projection Dynamics Hq=2L
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What do the dynamics look like?
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What do the dynamics look like?

The Tsallis kernel: h(x) = [q( − q)]−∑α(xα − x
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What's going on? [Dual version]

Poincaré recurrence [Legacci et al., 2024]

The dynamics of FTRL are Poincaré recurrent in any harmonic game

Remarks:
1 No geometric compatibility Ô⇒ requires completely different proof technique

▸ Leverage tools from convex analysis ; constant of motion

▸ Simultaneously extend to all harmonic measures and all regularizers
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Outline

1 What’s a harmonic game?

2 No-regret learning

3 Learning in continuous time

4 Learning in discrete time
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Game-theoretic learning

Sequence of events — discrete time
Require: finite game Γ ≡ Γ(N ,A, u)

repeat
At each epoch t = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy x i ,t ∈ Xi ∶= ∆(Ai) # mixing

Choose action α i ,t ∼ x i ,t and get realized payoff u i(α i ,t ; α−i ,t) # payoff phase

Observe mixed payoff vector v i(xt) = (u i(α i ; x−i ,t))α i∈Ai # feedback phase

until end

Defining elements

▸ Time: t = , , . . .

▸ Players: many (finite) # multi-agent learning

▸ Actions: finite

▸ Payoffs: endogenous # game-theoretic learning

▸ Feedback: mixed payoff vectors # full information, exact
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Follow–the–regularized–leader

Follow–the–regularized–leader (FTRL)

y i ,t+ = y i ,t + γtvt
x i ,t+ = Q i(y i ,t+) ≡ argmax

x i∈X
{⟨y i ,t+ , x i⟩ − h i(x i)} (FTRL)

▸ Regularized best responses instead of logit choice map M & Sandholm (2016)

▸ Every player’s regularizer h i ∶Xi → R is continuous and strongly convex on Xi

h i(x′i) ≥ h i(x i) + ⟨∇h i(x i), x′i − x i⟩ + (K i/)∥x′i − x i∥

▸ Template includes: exponential weights, (lazy) projected gradient ascent, Tsallis-based algorithms, …
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Examples

Example (Ridge regularization)

▸ Regularizer:
h(x) = 

 ∥x∥


▸ Algorithm:
yt+ = yt + γtvt xt+ = ΠX (yt+)

Example (Entropic regularization)

▸ Regularizer:
h(x) = ∑

α∈A
xα log xα

▸ Algorithm:
yt+ = yt + γtvt xt+ = Λ(yt+)
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Non-convergence of FTRL

(1, -1)

(-1, 1)

(-1, 1)

(1, -1)

Figure: The replicator dynamics in Matching Pennies

FTRL does not converge in harmonic games
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FTRL with an extrapolation step

Extrapolated FTRL (FTRL+)

a) Extrapolation phase: y i ,t+/ = y i ,t + η iv i ,t x i ,t+/ = Q i(y i ,t+/)
b) Update phase: y i ,t+ = y i ,t + η iv i ,t+/ x i ,t = Q i(y i ,t+)

(FTRL+)

Payoff model

v i ,t =
v i ,t+/ =

v i(xt+/)

Examples
▸ λ i = : Mirror-prox / Extra-gradient Korpelevich, 1976; Nemirovski, 2004

▸ λ i = : Optimistic FTRL / Popov updates Popov, 1980; ?
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Extrapolated FTRL (FTRL+)

a) Extrapolation phase: y i ,t+/ = y i ,t + η iv i ,t x i ,t+/ = Q i(y i ,t+/)
b) Update phase: y i ,t+ = y i ,t + η iv i ,t+/ x i ,t = Q i(y i ,t+)

(FTRL+)

Payoff model

v i ,t = λ iv i(xt) + ( − λ i)v i(xt−/)
v i ,t+/ = v i(xt+/)

Examples
▸ λ i = : Mirror-prox / Extra-gradient Korpelevich, 1976; Nemirovski, 2004

▸ λ i = : Optimistic FTRL / Popov updates Popov, 1980; ?
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Long-run behavior of FTRL+

Figure: FTRL in Matching Pennies 7

Does (FTRL+) converge in harmonic games?
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Long-run behavior of FTRL+

Figure: Mirror-Prox in Matching Pennies 3

Does (FTRL+) converge in harmonic games?
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Long-run behavior of FTRL+

Figure: Optimistic FTRL in Matching Pennies 3

Does (FTRL+) converge in harmonic games?
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Long-run behavior of FTRL+
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Long-run behavior of FTRL+

Figure: (FTRL+) in a  ×  ×  harmonic game 3

Does (FTRL+) converge in harmonic games?
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The long-run behavior of FTRL+

Guarantee 1: Constant regret [Legacci et al., 2024]

+ Assume:
▸ Γ is µ-harmonic
▸ Each player follows (FTRL+) with η i ≤ m iK i[(N + )max j m jL j]−

+ Then: (FTRL+) enjoys the bound

Regi(T) ≤
H i

η i
+ L i

N +  ∑j∈N
H j

η jL j
= O()

where H i = max h i −min h i , and L i is the Lipschitz modulus of v i

Guarantee 2: Convergence [Legacci et al., 2024]

+ Assume:
▸ Γ is µ-harmonic
▸ Each player follows (FTRL+) with η i ≤ m iK i[(N + )max j m jL j]−

+ Then: the sequence xt generated by (FTRL+) converges to a Nash equilibrium
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Take-aways and conclusions

Main take-aways:

▸ Harmonic games behave “orthogonally” to potential games in terms of learning
▸ No-regret learning in continuous time is recurrent
▸ No-regret learning in discrete time may be divergent…

▸ …but an extrapolation step recovers convergence to Nash equilibrium
▸ …and guarantees constant regret

This is just a first peek:

▸ Rate of convergence? # difficult, but not hopeless

▸ Inexact / Payoff-based information # two-step policies?

▸ Adaptive / Agnostic step-size policies # AdaGrad-like?
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