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Background - Control systems

From ...

L
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Problem of interest - Learning in games

Player i does not know J* but can query it

(li Ji(aiv a7i>

How do players learn to optimize their decisions?
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Convex games
> Ji(a',a™"): convex in a', continuously differentiable
> o' € A" ¢ R%: convex and compact

> Examples

> mixed strategy extension of a finite action game
> traffic networks, electricity market

total demand (MW)

J VA (0 (xe) ‘

— te(0e(e))

tree ——tree-r -
feh = A, feh feh+ A, Consumer

price
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Nash equilibrium as a desirable solution outcome

a* = (a*',a*?,...,a*") is a Nash equilibrium if for every player i

Ji(a*i,a*_i) = min Ji(ai,a*_i)
a’L

» characterized by the pseudo-gradient: M : RNV¢ — RNd

M(a) = [ViJ'(a',a™" )L,

a* Nash equilibrium <= M (a*)"(a —a*) >0,Va € A
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Learning in convex games

Player i does not know J but can query it

(Ii ‘]i(aiv a’_i)

Independent payoff-based approach:

—

0;,1 = Proji(0; — m Vs J1(03,0,1))
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Learning in convex games

Player i does not know J but can query it

(Ii ‘]i(aiv a’_i)

Independent payoff-based approach:
01 = Projai(0; — n:Vei J1(6},0, "))
Challenges compared to the single agent setting:
1. How can agent i estimate Vi J*(6) without knowing 67

2. Under which conditions do we have convergence?
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Independent estimation of local gradients

» Finite difference: Vﬁ&) ~ Ji(eiﬁ_i)*g"(e’#zs,e—i)

» requires others to stay with their action = coordination

» approach: randomize query 6° ~ N(0,0?)

» Construct Vi J#(0) with one function evaluation
> bias: O(c), variance O(—y) [Nesterov, Spokoiny 2019]

Alternatively, uniform distribution sampling [Flaxman et al. 2004
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The game pseudo-gradient

Consider known gradients, unconstrained. Learning dynamics:

0} 1 o} Vo J'(6;)
= m :
o) 4 oN Von IV (6;)
N—_———
#VJ(0)
Vo J1(0) 0 176!
> ey J1 _pnlp2 _ _ 72 0 _
o )02 = o), [0 [0 1[0

» single agent analysis don't generally work
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Sufficient conditions for convergence

a” is strongly variationally stable: 3 > 0:
M(a)'(a —a*) > v||a—a*|?, Yac A

> example Ji(a) = a'a?a® + (a')?, o' € [-1,2],i € {1,2,3}
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Sufficient conditions for convergence

a” is strongly variationally stable: 3 > 0:
M(a)'(a —a*) > v||a—a*|?, Yac A
> example Ji(a) = a'a?a® + (a')?, o' € [-1,2],i € {1,2,3}

Algorithm: ;41 = Proj 4 (6; — n. M (6;))

Theorem
Assume M Lipschitz and a* strongly VS. For ), ny = oo,

2
Dot Z—% < 00, 0, converges almost surely to a*
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Payoff-based learning leverages pseudo-gradient properties

Recent progress

» Mere monotonicity of M (a) O zero-sum matrix games:

extra-gradient, optimistic gradient descent-ascent, Tikhonov regularization, ...
» Local variational stability = local convergence
» Convergence rates

[Tatarenko, MK, IEEE TAC 2019, IEEE TCNS 2024, ECC 2024]

[Bravo et al., 2018], [Mertikopoulos et al. 2018], [Gao, Pavel, 2022], ...

Challenge: many games including Markov games do not
satisfy above conditions
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Markov games

» Dynamics: spi1 ~ P(.|sp,al,...,al)

» Policy 7' : S — A(AY)

> Vi, m) = Epx Ypeo Y R (s (s1), -, 7 (sn))
» Nash equilibrium:

Vi(’]'(‘*i,ﬂ’*_i) > V;i(ﬂ_i’ﬂ_*—i)’ Vﬂ'i, Vi

s

note change of notation: from costs to rewards and value function for players
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Multiagent reinforcement learning approach

: 1 N
Giversprr~PHsr 67
» Parametrize a policy a} ~ myi(.|sn), 6 € RY
» Find equilibrium 8* = (8',...,0") by interacting with the
system

(7T91,...,7T9N) - S0,AQ, S1,. .-
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Policy gradient class of algorithms

Single agent RL: vV(6) =Ep . 325°, v* R(sn, 7(sn))

Or41 =0, — VoV (6)

» convergence under gradient dominance condition [aganal et al,

2021],[Hu et al. 2023], [Bhandari et al. 2024], ...

Multiagent RL: vi(6?,67%) = Ep » 3252 o v R (sp, (1), - - 7N (s1))
0,1 =0; — VeV (0;,0, )

» generally non-convergent
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Challenging even in linear quadratic setting
single agent

Global Convergence of Policy Gradient Methods

[ee]

J(H) = Eso[ E SZQSh =+ G/,;I;Rah] for the Linear Quadratic Regulator
h=0

Sh41 = Asy, + Bay,

Maryam Fazel ' Rong Ge > Sham M. Kakade' Mehran Mesbahi *'

Abstract 2016) and Atari game playing (Mnih et al., 2015). Deep
— GT D Direct policy gradient methods for reinforcement reinforcement leaming (DecpRL) is becoming increasingly
ap = Sh, S0 "~ Learmine e confinuoas camtro] prablemms are 8 popular for tackling such challenging sequential decision

nonular annroach for a variety of reasons: 1) thev making problems

multiagent

Policy-Gradient Algorithms Have No Guarantees of

o0
Ji (0) — ESD [Z Srfz;QiSh + (az)ngaﬁJ Convergence in Linear Quadratic Games

Eric Mazumdar Lillian J. Ratliff
h=0 University of California, Berkeley ty of Washington
erkeley, CA cattle, WA
N mazumdar@berkeley.edu ratlifl@uw.cdu

Michael 1. Jordan S. Shankar Sastry

— University of California, Berkeley University of California, Berkeley
S h+1 A Sh + B a h Berkeley, CA Berkeley, CA

sastry@coe berkeley.edu

jordan@cs.

i=1 ABSTRACT of multi-agent reinforoement learning have made use of policy

1 T ! actor-criic (13, 17,30),
a’h:(e) Sh; xOND
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Multiagent policy gradient convergence condition

Results on subclasses of Markov games or depend on equilibria
> Zero—sum [Daskalakis et al. 2020], [Wei et al. 2021], [Cen et al. 2021], [K. Zhang et al. 2023], ...
P Potential [ Leonardos et al. 2022], [R. Zhang et al. 2021], [Ding et al. 2022]

> Variationally stable equilibrium (Giannou et al. 20227 = local
convergence

Our focus: presented as posters here

P Linear quadratic setting: conditions to be a potential game,
characterizing number of equilibria

P> Zero-sum Markov games: relaxing past assumptions while
strengthening convergence result
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Relaxing the equilibrium notion

A probability distribution P* on A is an equilibrium

Vi Egup-[J'(0)] < Egup-[J(6",677)], VO’

B -

1.

» Focus: learning algorithms that scale with number of agents
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Outline

|!o—regret|earn|ng
Normal form game:
Markov game

[Conclusiond
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Game as an adversarial bandit problem

EEEEEE—

Algorithm

Jt(at)
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Game as an adversarial bandit problem

EEEEEE—

Algorithm

Jt(at)

In a game: Jy(.) := J(.,a;") for player i
Benchmark: no-regret
T T
» Regret: R(T) = Z Ji(ar) — mamz Ji(a)
t=0

t=0

~
incurred cost best cost
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Game as an adversarial bandit problem

EEEEEE—

Algorithm

Jt(at)

In a game: Jy(.) := J(.,a;") for player i
Benchmark: no-regret
T T
» Regret: R(T) = Z Ji(ar) — mamz Ji(a)
t=0

t=0

~
incurred cost best cost

Algorithm is no-regret: R(T)/T — 0
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No-regret learning and equilibria
Let each player adopt a no-regret algorithm
» empirical distribution of actions — coarse-correlated

equilibrium

CCE

mixed NE

D

» CCEs may have better efficiency but

Remark

» CCEs can have weight on strictly dominated actions
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Multiplicative weight algorithms for no-regret

Player i's actions {1,2,...,n}, unknown cost: J;(.)

Probability distribution on actions: w;
» sample: a; ~ w;
» play the action: J;(a;)
» update probabilities w1, based on Ji(ay)

» bandit feedback: w; (k) = w;(k)exp="7t*) for k = a,
> full feedback: w;1(k) = wq(k)exp "7t ) for Vk
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Optimal regret rates based on player's feedback

n: number of actions for player, T": number of iterations
» Bandit feedback [aver et al. 2003]

at+1

Algorithm

Jt(at)
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Optimal regret rates based on player's feedback

n: number of actions for player, T": number of iterations

» Bandit feedback [aver et al. 2003]

Algorithm
at+1

> Regret R(T) grows as v/Tnlogn

Jt(at)
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Optimal regret rates based on player's feedback

n: number of actions for player, T": number of iterations
» Bandit feedback [aver et al. 2003]

at+1

Algorithm

> Regret R(T) grows as v/Tnlogn

> FU” feedback [Freund et al.1997]

a1

Algorithm

» Regret R(T) grows as /T logn

Jt(at)

Ji ()
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Optimal regret rates based on player's feedback

n: number of actions for player, T": number of iterations
» Bandit feedback [aver et al. 2003]

at+1

Algorithm

> Regret R(T) grows as v/Tnlogn

> FU” feedback [Freund et al.1997]

a1

Algorithm

» Regret R(T) grows as /T logn

Jt(at)

Ji ()

Can we improve the dependence on n?
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Idea: mimic full feedback

Notice: J(.,a;") is a static function
Algorithms achieving optimal regret rate:
> bandit: w1 (k) = wy(k) exp /e
> full: wiy1(.) = we(.) exp 70
Player i estimates its cost from past data .J} (al,a;?), d, a;
—ne i (ay )

» mimic full: wi1(.) = we(.) exp
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Modeling class for cost function
J has a bounded norm in a reproducing Kernel space —
J can be modeled by a Gaussian process

> J(a) ~ GP(u(a), k(a,a'))
» 1 mean, k: covariance (kernel)
» examples of covariance function:

d 12
bla-a) = (1+a7a)" kspla.a) = e (-122210)
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Estimating the cost function distribution

J(a) ~ GP(u(a), k(a,a))
» observe: costs J(a;), actions a;, 1=1,...,t

» obtain posterior distribution of J(.)
> analytic formula for updating mean p:(.) and variance o¢(.)

prior posterior

-5 0 5 -5 0 5
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Confidence bounds on the estimated cost

Ji(@) = p(a) — Bio(a)

> jt(a) small = cost low or uncertainty high
» B; > 0 chosen to ensure .J;(a) < .J(a) with high probability

: 7

| A

-5 0 5

confidence bound on GP
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Gaussian process multiplicative weight algorithm (GPMW)
Player i's actions {1,2,...,n}, unknown cost: J(a’,a™?)
Optimistic cost estimate at time t: J/(a) := p;(a) — Bioi(a)
Probability distribution on actions: w;
> sample: a ~ wy
> observe: Ji(a,a;") and a;"
> update J/(.)

28/40



GPMW regret rates

» Mimic full feedback by observing others’ actions

. Algorithm |«
i1 Ji ()

Theorem
Assume: player’s cost from a GP prior

> Regret grows as: (y/Tlogn + yrvVT)

[Sessa, Bogunovic, MK, Krause, NeurlPS 2019]

250
Independent

300 Matern
§150: Squared
B exponential
3100
@

50 Linear (d=4)

0 20 _3 40 50
T

bound on ~y1 based on the kernel [srinivas et al. 2010]
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Extensions of GP multi-agent learning

P contextual games [NeurlPs 2020 [aIsTATS 20241, equilibria efficiency and
game design [AISTAT2019, ICML2021]

P transportation network, resource allocation, electricity
auctions, autonomous driving, energy management

N Clatksville N

Reducing congestion on road
networks [ NeurlPS 2020]

Balancing bike distribution to
maximize utility [ I1cML 2021]
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Extension to multi-agent reinforcement learning (MARL)

» Dynamics sp4+1 = f(sh, a;lwa;% e 7ahN) + wh
> s, € SCRP, al € A CR?

> Objective Vi(n?, m~%) = B[ 1o v (s, 7 (sn), 7 (s1))]

Approach: estimate the transition function f via its posterior mean
ut(s,a) € RP and confidence functions (s, a) € RP*P
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Approach: model-based learning of equilibrium distribution

> Initialize Py. Fort =0,1,...

> sample (7},...,7Y) ~ P
(7t 7)) -80,a0751,---,5H_1
> estimate P(.|sp,a},...,al) — {Vi(0 )},

> compute P;; as the equilibrium distribution of {V;i(8 )},

» V;(.): optimistic estimate of V(.) at iteration ¢
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Regret of the MARL algorithm

Dynamic regret

ZmaxE = [Vi(m, 7 Y)] = Em, [Vi(m)]

melli ™t
Theorem
Under Lipschitz continuity of f, {r®, 7'},
' T
RU(T)=O(LH'*/TIr)+ ) &
t=0

» Zr(p, H,vyr): information gain
» ¢;: approximate CCE for {V;( Y N

[Sessa, MK, Krause, ICML 2022]
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Example: Multi-agent RL in autonomous driving
SMARTS autonomous car simulation environment [znou et al. 2021]
> testing multi-agent RL algorithms for autonomous driving
> realistic traffic data and car dynamics

(a) U-turn (b) Lane merging (c) Intersection

|

(e) Two-way traffic (f) Unprotected left turn (g) Cut-in

(i) Off-ramp merge (j) Cascading lane change (k) Bus stop merge (1) Roundabout
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Multiagent reinforcement learning for autonomous driving

» Objective: progress towards the goal, avoid collision
» Dynamics: P(.|sp,a},a?)

P s: positions and velocities of cars

» a': heading and speed, i = 1,2

> 7gi(s): parametrized by neural networks, ¢ = 1,2

Autonomous cars

Human driven car

AGENT-1

The autonomous cars can coordinate and overtake the human-driven car

Implementation on multiagent autonomous car simulation environment [Zhou et al. 2021]
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Learning to coordinate
Learning to coordinate = less breaking, more successful merges

Cumulative rewards Cumulative rewards
60 60
40 40
20 20
0 0
-20 -20 8
—40 b —40 Q
—60 o 3 —60 5 §

" Avg. agent AGENT-0 AGENT-1 ' Avg.agent AGENT-0 AGENT-1

Single-agent optima Multi-agent equilibrium

Average rewards for the agents

" 0

25
o
0
20 25
known model | _gy
-40 —— pred. mean 25
. — TS —— HMARL
— H-MARL 1007 —— DQN (model-free)

=125

0 s 10 15 20 5 » 1 5 10 15 20 25 30 5000 10000 15000

Figure: left: value of optimism, right: value of learning the model
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Summary

» Payoff-based learning of Nash equilibria

P require assumptions on pseudo-gradient or the equilibrium
» challenging to extend to Markov games

> No-regret learning

P tractable and ensure convergence to CCEs
» can improve rates using a model-based approach
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Outlook

» Learning equilibria in Markov games under coupling constraint
» Provable algorithms under partial and asymmetric information

» Learning of “good” equilibria, mechanism design

> Applications: power markets, robotics, autonomous driving

39/40



Acknowledgements

P Former and current students and postdocs: O Karaca, L Furieri, P Giuseppe
Sessa, A Maddux, G Salizzoni, S Hosseinirad, R Ouhamma

P Collaborators: T Tatarenko, A Krause, Bugonovic

| 2 Funding : ERC, NSERC Canada, Swiss National Fund, NCCR Automation

https://www.epfl.ch/labs/sycamore/

40/40


https://www.epfl.ch/labs/sycamore/

	Introduction
	Learning Nash equilibria
	Normal form games
	Markov games

	No-regret learning
	Normal form games
	Markov games

	Conclusions
	Appendix
	Non-strictly monotone games


