
Learning Equilibria with Bandit Feedback

Maryam Kamgarpour
École Polytechnique Fédérale de Lausanne, Switzerland

Workshop on Learning in Games, Toulouse, France

02.07.2024

1/40

Background - Control systems

From . . .

to . . .

2/40

Problem of interest - Learning in games

Player i does not know J i but can query it

ai J i(ai, a−i)

How do players learn to optimize their decisions?

3/40

Introduction

Learning Nash equilibria
Normal form games
Markov games

No-regret learning
Normal form games
Markov games

Conclusions

4/40

Outline

Introduction

Learning Nash equilibria
Normal form games
Markov games

No-regret learning

Conclusions

5/40

Convex games
I J i(ai, a−i): convex in ai, continuously differentiable

I ai ∈ Ai ⊂ Rd: convex and compact
I Examples

I mixed strategy extension of a finite action game
I traffic networks, electricity market

6/40

Nash equilibrium as a desirable solution outcome

a∗ = (a∗1, a∗2, . . . , a∗N) is a Nash equilibrium if for every player i

J i(a∗i, a∗−i) = min
ai

J i(ai, a∗−i)

I characterized by the pseudo-gradient: M : RNd → RNd

M(a) = [∇iJ i(ai, a−i)]Ni=1

a∗ Nash equilibrium ⇐⇒ M(a∗)T (a− a∗) ≥ 0,∀a ∈ A

7/40

Learning in convex games

Player i does not know J i but can query it

ai J i(ai, a−i)

Independent payoff-based approach:

θit+1 = ProjAi(θ
i
t − ηt

̂∇θiJ i(θit, θ
−i
t))

Challenges compared to the single agent setting:

1. How can agent i estimate ∇θiJ i(θ) without knowing θ?

2. Under which conditions do we have convergence?

8/40

Learning in convex games

Player i does not know J i but can query it

ai J i(ai, a−i)

Independent payoff-based approach:

θit+1 = ProjAi(θ
i
t − ηt

̂∇θiJ i(θit, θ
−i
t))

Challenges compared to the single agent setting:

1. How can agent i estimate ∇θiJ i(θ) without knowing θ?

2. Under which conditions do we have convergence?

8/40

Independent estimation of local gradients

I Finite difference: ̂∇θiJ i(θ) ≈ Ji(θi,θ−i)−Ji(θi+δ,θ−i)
δ

I requires others to stay with their action =⇒ coordination

I approach: randomize query δi ∼ N (0, σ2)

θi + δi J i(θi + δi, θ−i)

I Construct ̂∇θiJ i(θ) with one function evaluation
I bias: O(σ), variance O(1

σ2) [Nesterov, Spokoiny 2019]

Alternatively, uniform distribution sampling [Flaxman et al. 2004

9/40

The game pseudo-gradient

Consider known gradients, unconstrained. Learning dynamics:θ
1
t+1
...

θNt+1

 =

 θ
1
t
...
θNt

− ηt
 ∇θ1J

1(θt)
...

∇θNJN (θt)

︸ ︷︷ ︸
6=∇θJ(θ)

I ex: J1(θ) = θ1θ2 = −J2(θ),

[
∇θ1J1(θ)
∇θ2J2(θ)

]
=

[
0 1
−1 0

] [
θ1

θ2

]
I single agent analysis don’t generally work

10/40

Sufficient conditions for convergence

a∗ is strongly variationally stable: ∃ν > 0:

M(a)T (a− a∗) > ν‖a− a∗‖2, ∀a ∈ A

I example J i(a) = a1a2a3 + (ai)2, ai ∈ [−1, 2], i ∈ {1, 2, 3}

Algorithm: θt+1 = ProjA
(
θt − ηtM̂(θt)

)
Theorem
Assume M Lipschitz and a∗ strongly VS. For

∑
t ηt =∞,∑

t
η2t
σ2
t
<∞, θt converges almost surely to a∗

11/40

Sufficient conditions for convergence

a∗ is strongly variationally stable: ∃ν > 0:

M(a)T (a− a∗) > ν‖a− a∗‖2, ∀a ∈ A

I example J i(a) = a1a2a3 + (ai)2, ai ∈ [−1, 2], i ∈ {1, 2, 3}

Algorithm: θt+1 = ProjA
(
θt − ηtM̂(θt)

)
Theorem
Assume M Lipschitz and a∗ strongly VS. For

∑
t ηt =∞,∑

t
η2t
σ2
t
<∞, θt converges almost surely to a∗

11/40

Payoff-based learning leverages pseudo-gradient properties

Recent progress

I Mere monotonicity of M(a) ⊇ zero-sum matrix games:
extra-gradient, optimistic gradient descent-ascent, Tikhonov regularization, . . .

I Local variational stability =⇒ local convergence

I Convergence rates

[Tatarenko, MK, IEEE TAC 2019, IEEE TCNS 2024, ECC 2024]

[Bravo et al., 2018], [Mertikopoulos et al. 2018], [Gao, Pavel, 2022], . . .

Challenge: many games including Markov games do not
satisfy above conditions

12/40

Markov games

I Dynamics: sh+1 ∼ P (.|sh, a1
h, . . . , a

N
h)

I Policy πi : S → ∆(Ai)

I V i
s (πi, π−i) = EP,π

∑∞
h=0 γ

tRi(sh, π
1(sh), . . . , πN (sh))

I Nash equilibrium:

V i
s (π∗i, π∗−i) ≥ V i

s (πi, π∗−i), ∀πi, ∀i

note change of notation: from costs to rewards and value function for players

13/40

Multiagent reinforcement learning approach

Given sh+1 ∼ P (.|sh, a1
h, . . . , a

N
h)

I Parametrize a policy ait ∼ πθi(.|sh), θi ∈ Rd

I Find equilibrium θ∗ = (θ1, . . . , θN) by interacting with the
system

(πθ1 , . . . , πθN) s0,a0, s1, . . .

14/40

Policy gradient class of algorithms

Single agent RL: V (θ) = EP,π
∑∞
h=0 γ

tR(sh, π(sh))

θt+1 = θt − ηt∇θV (θt)

I convergence under gradient dominance condition [Agarwal et al.,

2021],[Hu et al. 2023], [Bhandari et al. 2024], . . .

Multiagent RL: V i(θi, θ−i) = EP,π
∑∞
h=0 γ

tRi(sh, π
1(sh), . . . , πN (sh))

θit+1 = θit − ηt∇θiV i(θit, θ
−i
t)

I generally non-convergent

15/40

Challenging even in linear quadratic setting
single agent

J(θ) = Es0 [

∞∑
h=0

sThQsh + aThRah]

sh+1 = Ash +Bah

ah = θT sh, s0 ∼ D

multiagent

J i(θ) = Es0 [

∞∑
h=0

sThQ
ish + (ai)ThR

iaih]

sh+1 = Ash +

N∑
i=1

Baih

aih = (θi)T sh, x0 ∼ D

16/40

Multiagent policy gradient convergence condition

Results on subclasses of Markov games or depend on equilibria

I Zero-sum [Daskalakis et al. 2020], [Wei et al. 2021], [Cen et al. 2021], [K. Zhang et al. 2023], . . .

I Potential [Leonardos et al. 2022], [R. Zhang et al. 2021], [Ding et al. 2022]

I Variationally stable equilibrium [Giannou et al. 2022] =⇒ local
convergence

Our focus: presented as posters here

I Linear quadratic setting: conditions to be a potential game,
characterizing number of equilibria

I Zero-sum Markov games: relaxing past assumptions while
strengthening convergence result

17/40

Relaxing the equilibrium notion

A probability distribution P∗ on A is an equilibrium

∀i Eθ∼P∗ [J
i(θ)] ≤ Eθ∼P∗ [J

i(θ̃i, θ−i)], ∀θ̃i

I Focus: learning algorithms that scale with number of agents

18/40

Outline

Introduction

Learning Nash equilibria

No-regret learning
Normal form games
Markov games

Conclusions

19/40

Game as an adversarial bandit problem

Algorithm

at

Jt(at)

In a game: Jt(.) := J i(., a−it) for player i
Benchmark: no-regret

I Regret: R(T) =
T∑
t=0

Jt(at)︸ ︷︷ ︸
incurred cost

−min
a

T∑
t=0

Jt(a)︸ ︷︷ ︸
best cost

Algorithm is no-regret: R(T)/T → 0

20/40

Game as an adversarial bandit problem

Algorithm

at

Jt(at)

In a game: Jt(.) := J i(., a−it) for player i
Benchmark: no-regret

I Regret: R(T) =
T∑
t=0

Jt(at)︸ ︷︷ ︸
incurred cost

−min
a

T∑
t=0

Jt(a)︸ ︷︷ ︸
best cost

Algorithm is no-regret: R(T)/T → 0

20/40

Game as an adversarial bandit problem

Algorithm

at

Jt(at)

In a game: Jt(.) := J i(., a−it) for player i
Benchmark: no-regret

I Regret: R(T) =
T∑
t=0

Jt(at)︸ ︷︷ ︸
incurred cost

−min
a

T∑
t=0

Jt(a)︸ ︷︷ ︸
best cost

Algorithm is no-regret: R(T)/T → 0

20/40

No-regret learning and equilibria

Let each player adopt a no-regret algorithm

I empirical distribution of actions → coarse-correlated
equilibrium

NE

mixed NE

CCE

Remark

I CCEs may have better efficiency but

I CCEs can have weight on strictly dominated actions

21/40

Multiplicative weight algorithms for no-regret

Player i’s actions {1, 2, . . . , n}, unknown cost: Jt(.)

Probability distribution on actions: wt
I sample: at ∼ wt
I play the action: Jt(at)
I update probabilities wt+1, based on Jt(at)

I bandit feedback: wt+1(k) = wt(k) exp−ηtJt(k), for k = at
I full feedback: wt+1(k) = wt(k) exp−ηtJt(k), for ∀k

22/40

Optimal regret rates based on player’s feedback

n: number of actions for player, T : number of iterations

I Bandit feedback [Auer et al. 2003]

Algorithm
Jt(at)at+1

I Regret R(T) grows as
√
Tn log n

I Full feedback [Freund et al.1997]

Algorithm
Jt(.)at+1

I Regret R(T) grows as
√
T log n

Can we improve the dependence on n?

23/40

Optimal regret rates based on player’s feedback

n: number of actions for player, T : number of iterations

I Bandit feedback [Auer et al. 2003]

Algorithm
Jt(at)at+1

I Regret R(T) grows as
√
Tn log n

I Full feedback [Freund et al.1997]

Algorithm
Jt(.)at+1

I Regret R(T) grows as
√
T log n

Can we improve the dependence on n?

23/40

Optimal regret rates based on player’s feedback

n: number of actions for player, T : number of iterations

I Bandit feedback [Auer et al. 2003]

Algorithm
Jt(at)at+1

I Regret R(T) grows as
√
Tn log n

I Full feedback [Freund et al.1997]

Algorithm
Jt(.)at+1

I Regret R(T) grows as
√
T log n

Can we improve the dependence on n?

23/40

Optimal regret rates based on player’s feedback

n: number of actions for player, T : number of iterations

I Bandit feedback [Auer et al. 2003]

Algorithm
Jt(at)at+1

I Regret R(T) grows as
√
Tn log n

I Full feedback [Freund et al.1997]

Algorithm
Jt(.)at+1

I Regret R(T) grows as
√
T log n

Can we improve the dependence on n?

23/40

Idea: mimic full feedback

Notice: J i(., a−it) is a static function
Algorithms achieving optimal regret rate:

I bandit: wt+1(k) = wt(k) exp−ηtJt(k)

I full: wt+1(.) = wt(.) exp−ηtJt(.)

Player i estimates its cost from past data Ĵ it (a
i
t, a
−i
t), ait, a

−i
t

I mimic full: wt+1(.) = wt(.) exp−ηtĴ
i
t (.,a

−i
t)

24/40

Modeling class for cost function
J has a bounded norm in a reproducing Kernel space =⇒
J can be modeled by a Gaussian process

I J(a) ∼ GP
(
µ(a), k(a,a′)

)
I µ: mean, k: covariance (kernel)
I examples of covariance function:

kpoly(a,a
′) =

(
l + a>a′

)d
, kSE(a,a′) = exp

(
−‖a− a

′‖2

l2

)

25/40

Estimating the cost function distribution

J(a) ∼ GP
(
µ(a), k(a,a′)

)
I observe: costs J(al), actions al, l = 1, . . . , t

I obtain posterior distribution of J(.)
I analytic formula for updating mean µt(.) and variance σt(.)

prior posterior

26/40

Confidence bounds on the estimated cost

Ĵt(a) := µt(a)− βtσt(a)

I Ĵt(a) small =⇒ cost low or uncertainty high

I βt > 0 chosen to ensure Ĵt(a) ≤ J(a) with high probability

confidence bound on GP

27/40

Gaussian process multiplicative weight algorithm (GPMW)

Player i’s actions {1, 2, . . . , n}, unknown cost: J(ai, a−i)

Optimistic cost estimate at time t: Ĵ it (a) := µt(a)− βtσt(a)
Probability distribution on actions: wt
I sample: a ∼ wt
I observe: J i(a, a−it) and a−it
I update Ĵ it (.)

I wt+1(k) = wt(k) exp−ηtĴ
i
t (a), ∀k

28/40

GPMW regret rates
I Mimic full feedback by observing others’ actions

Algorithm
Ĵ it (.)ait+1

Theorem
Assume: player’s cost from a GP prior

I Regret grows as:
(√
T log n+ γT

√
T
)

[Sessa, Bogunovic, MK, Krause, NeurIPS 2019]

bound on γT based on the kernel [Srinivas et al. 2010]

29/40

Extensions of GP multi-agent learning

I contextual games [NeurIPS 2020],[AISTATS 2024], equilibria efficiency and
game design [AISTAT2019, ICML2021]

I transportation network, resource allocation, electricity
auctions, autonomous driving, energy management

Reducing congestion on road
networks [NeurIPS 2020]

Balancing bike distribution to
maximize utility [ICML 2021]

30/40

Extension to multi-agent reinforcement learning (MARL)

I Dynamics sh+1 = f(sh, a
1
h, a

2
h . . . , a

N
h) + ωh

I sh ∈ S ⊂ Rp, aih ∈ Ai ⊂ Rq

I Objective V i(πi, π−i) = E[
∑H−1

h=0 r
i(sh, π

i(sh), π−i(sh))]

Approach: estimate the transition function f via its posterior mean
µt(s,a) ∈ Rp and confidence functions Σt(s,a) ∈ Rp×p

31/40

Approach: model-based learning of equilibrium distribution

I Initialize P0. For t = 0, 1, . . .
I sample (π1

t , . . . , π
N
t) ∼ Pt

(π1
t , . . . , π

N
t) s0, a0, s1, . . . , sH−1

I estimate P (.|sh, a1h, . . . , aNh) → {V̄ it (θ)}Ni=1
I compute Pt+1 as the equilibrium distribution of {V̄ it (θ)}Ni=1

I V̄ i
t (.): optimistic estimate of V i(.) at iteration t

32/40

Regret of the MARL algorithm

Dynamic regret

Ri(T) :=

T∑
t=1

max
π∈Πi

Eπ−it
[
V i(π, π−it)

]
− Eπt

[
V i(πt)

]
Theorem
Under Lipschitz continuity of f , {ri, πi}Ni=1

Ri(T) = O
(
LH1/2

√
TIT) +

T∑
t=0

εt

I IT (p,H, γHT): information gain

I εt: approximate CCE for {V̄ i
t (θ)}Ni=1

[Sessa, MK, Krause, ICML 2022]

33/40

Example: Multi-agent RL in autonomous driving
SMARTS autonomous car simulation environment [Zhou et al. 2021]

I testing multi-agent RL algorithms for autonomous driving

I realistic traffic data and car dynamics

34/40

Multiagent reinforcement learning for autonomous driving

I Objective: progress towards the goal, avoid collision
I Dynamics: P (.|sh, a1

h, a
2
h)

I s: positions and velocities of cars
I ai: heading and speed, i = 1, 2
I πθi(s): parametrized by neural networks, i = 1, 2

The autonomous cars can coordinate and overtake the human-driven car

Implementation on multiagent autonomous car simulation environment [Zhou et al. 2021]

35/40

Learning to coordinate
Learning to coordinate =⇒ less breaking, more successful merges

Single-agent optima Multi-agent equilibrium

Average rewards for the agents

Figure: left: value of optimism, right: value of learning the model

36/40

Outline

Introduction

Learning Nash equilibria

No-regret learning

Conclusions

37/40

Summary

I Payoff-based learning of Nash equilibria
I require assumptions on pseudo-gradient or the equilibrium
I challenging to extend to Markov games

I No-regret learning
I tractable and ensure convergence to CCEs
I can improve rates using a model-based approach

38/40

Outlook

I Learning equilibria in Markov games under coupling constraint

I Provable algorithms under partial and asymmetric information

I Learning of “good” equilibria, mechanism design

I Applications: power markets, robotics, autonomous driving

39/40

Acknowledgements

I Former and current students and postdocs: O Karaca, L Furieri, P Giuseppe

Sessa, A Maddux, G Salizzoni, S Hosseinirad, R Ouhamma

I Collaborators: T Tatarenko, A Krause, Bugonovic

I Funding : ERC, NSERC Canada, Swiss National Fund, NCCR Automation

https://www.epfl.ch/labs/sycamore/

40/40

https://www.epfl.ch/labs/sycamore/

	Introduction
	Learning Nash equilibria
	Normal form games
	Markov games

	No-regret learning
	Normal form games
	Markov games

	Conclusions
	Appendix
	Non-strictly monotone games

