Learning efficient equilibria in repeated games

Sam Jindani National University of Singapore

Institut de Mathématiques de Toulouse Workshop on learning in games 3 July 2024

Motivation

The folk theorem for infinitely repeated games creates a problem of indeterminacy:

- Many payoff profiles are possible
- *•* For a given payoff profile, many strategy profiles are possible

→ What is a reasonable prediction?

Motivation

An infinitely repeated prisoner's dilemma:

Motivation

An infinitely repeated asymmetric prisoner's dilemma:

Literature References

Learning stage-game actions: Well-known selection results for:

- *•* risk-dominant equilibria: Kandori, Mailath and Rob 1993; Young 1993
- *•* efficient equilibria: Robson and Vega-Redondo 1996; Arieli and Babichenko 2012; Pradelski and Young 2012; Juang and Sabourian 2021

Learning repeated-game strategies:

- *• Bayesian learning:* Kalai and Lehrer 1993; Jordan 1995; Nachbar 1997; Nyarko 1998; Sandroni 1998; Nachbar 2005; Norman 2021
- *• Hypothesis testing:* Foster and Young 2003.

→ Suggest that players may converge to an equilibrium, but are silent on selection between equilibria.

This paper

A model of learning in two-player, infinitely repeated games.

Players act according to a non-Bayesian heuristic (Foster and Young 2003):

- *•* form beliefs based on evidence and reject them if conflict with observed behaviour
- *•* usually best-respond to their beliefs

The heuristic is uncoupled (Hart and Mas-Colell 2003) and uses bounded-memory strategies (Aumann and Sorin 1989)

The model selects a subgame-perfect equilibrium with efficient payoffs.

→ Provides a rationale for equilibrium selection in a learning framework

Learning and bargaining

This problem is reminiscent of a bargaining problem

→ Intuitive specifications of the learning rule select two important bargaining solutions (the Kalai–Smorodinsky and maxmin bargaining solutions)

Stage game

Stage game: $\mathscr{G} = \langle \{1, 2\}, (A_i), (u_i) \rangle$

Probability distributions on A_i : Δ_i

Feasible payoff profiles: *V*

Pure minmax payoffs: $w_i = \min_i$ *aj∈A^j* max *ai∈Aⁱ* $u_i(a_i, a_j)$

Individually rational payoff profiles: $V^* = \{v \in V : v \gg (w_1, w_2)\}\$

Example

Repeated game

Repeated game *H*, discount factor $\delta \in (0, 1)$

Players use memory-*m* strategies

- *•* For any two histories whose *m* most recent action profiles are the same, the strategy prescribes the same (mixed) action
- *•* Defined by a map from *m*-tuples of action profiles to ∆*ⁱ* .

Set of memory-*m* strategies: $\Sigma_i = \Delta_i^{|A|^m}$

Set of strategy profiles: $\Sigma = \Sigma_1 \times \Sigma_2$

Overview

Players follow a non-Bayesian heuristic related to Foster and Young's learning by hypothesis testing (2003)

- *•* Players do not update their beliefs each period but test them periodically
- *→* Inertia makes the model tractable (Foster and Young 2003; Young 2009; Arieli and Babichenko 2012; Pradelski and Young 2012)

Learning rule

Set of strategies with probability at least ν' on each action at every *m*-tuple: Σ_i^{ν}

noisiness

Corresponding set of strategy profiles: $\Sigma^{\nu} = \Sigma_1^{\nu} \times \Sigma_2^{\nu}$

In any period, player *i* has

- A model $\hat{\sigma}_j \in \Sigma_j^{\nu}$ of her opponent's behaviour
- A response $\sigma_i \in \Sigma_i^{\nu}$

Each period, each player not currently testing starts a test with probability 1*/n*

Testing (1/2)

Suppose player *i* is conducting a test

- Model: $\hat{\sigma}_j \in \Sigma_j^{\nu}$
- Sample: $h = (a^1, a^2, \dots, a^n) \in A^n$

For any $h' \in A^m$ be observed in *h*:

- Distribution over A_j implied by *i*'s model: $\hat{\sigma}_j(h') \in \Delta_j$
- Empirical distribution observed in the sample: $\bar{\sigma}_j(h') \in \Delta_j$

Player *i* rejects her model if there exists some $h' \in A^m$ observed in *h* such that $||\hat{\sigma}_j(h') - \bar{\sigma}_j(h')|| > \tau$. tolerance

Testing (2/2)

Additionally, *i* may experiment

Average undiscounted payoff received in *h*: $v_i^h = \frac{1}{n}$ $\frac{1}{n} \sum_{t=1}^{n} u_i(a^t)$

Even if the model matches the observed distribution, *i* rejects her model with $\text{probability } \varepsilon^{f_i(v_i^h)}$

- *• fⁱ* is strictly positive, strictly increasing, and continuous
- *•* A player who received lower payoffs is more likely to experiment
- *•* Consistent with experimental evidence about deviations from optimal behaviour (Lim and Neary 2016; Mäs and Nax 2016)

Updating

If *i* rejects, a new model and response are chosen according to some measure $\mu_i(h)$ on Σ *ν*

- **•** Assume $\mu_i(h)$ is diffuse: the measure of any *ζ*-ball in Σ^{ν} is at least $\mu_*(\zeta)$, where $\mu_*(\zeta) > 0$ depends only on ζ
- Interpret $\mu_i(h)$ as
	- *•* placing most of the weight on models that are more likely given *j*'s actions in *h*
	- placing most of the weight on responses that are approximate best responses to the chosen model

Definitions

Strategy profile $\sigma \in \Sigma$ is *η*-close to being a subgame-perfect equilibrium if there exists some subgame-perfect equilibrium $\sigma' \in \Sigma$ such that $||\sigma - \sigma'|| \leq \eta$

Any fully mixed $\sigma \in \text{int}(\Sigma)$ implies a unique limiting distribution on *A*

 \rightarrow Average (undiscounted) payoff under this distribution: $v_i(\sigma)$

Result

Theorem 1. *Suppose that* $f_1(x_1) = f_2(x_2)$ *for some strongly Pareto efficient* $x \in V^*$ *. For any* $\eta \in (0,1)$ *, if* τ *is small enough (given* η *), if* m *and* δ *are large enough and* ν *is small enough (given* η *and* τ), *if* ε *is small enough (given* η *,* τ , m, δ , and ν), and if n is large enough (given η , τ , m , δ , ν , and ε), then, *at least* 1 *− η of the time, players act according to strategies that*

1. *are η-close to being a subgame-perfect equilibrium and*

2. *yield average payoffs within η of x.*

 $x \in V^*$ is strongly Pareto efficient and satisfies $f_1(x_1) = f_2(x_2)$

Since each f_i is strictly increasing, x is unique.

Two natural specifications:

- $f_i(x_i) = x_i$ for each $i \implies x^*$ is the maxmin bargaining solution
- $f_i(x_i) = x_i/\bar{v}_i$ for each $i \Rightarrow x^*$ is the Kalai–Smorodinsky bargaining solution

Example

This establishes a novel noncooperative foundation for two important bargaining solutions.

Intuition

A state is a pair $(\sigma, \hat{\sigma}) \in \Sigma^{\nu} \times \Sigma^{\nu}$

In the asymmetric prisoner's dilemma, suppose $f_i(x_i) = x_i/\bar{v}_i$

- *•* Consider a state in which the players' models are approximately correct and the responses yield average payoffs close to (2*,* 2)
	- If *n* is large, the probability of a model being rejected by a test is small
	- $\bar{v}_1 = 4$ and $\bar{v}_2 = 8/3$, so the probabilities of experimenting are approximately $\varepsilon^{2/4} = \varepsilon^{0.5}$ and $\varepsilon^{2/(8/3)} = \varepsilon^{3/4}$
	- *•* If *ε* is small, the former is (relatively) much larger, so it 'dominates'
- Consider a state in which the players' models are approximately correct and the responses yield average payoffs close to (2*.*4*,* 1*.*6)
	- The probability of experimenting is approximately $\varepsilon^{2.4/4} = \varepsilon^{0.6}$ and $\varepsilon^{1.6/(8/3)} = \varepsilon^{0.6}$
	- If ε is small, $\varepsilon^{0.5}$ is (relatively) much larger than $\varepsilon^{0.6}$
- *→* A state that doesn't equalise the probabilities that players update their models is 'unstable'

Strategies

The learning rule selects strategies that are forgiving

In the asymmetric prisoner's dilemma, suppose $m = 1$ and $f_i(x_i) = x_i$

- *•* Consider a state in which the models are approximately correct and the responses are perturbed grim triggers:
	- *•* Each period, with probability *ν* play an action at random
	- *•* Otherwise, play *C* iff the most recent action profile is (*C, C*)
- *•* The possible states of the process are *{CC, CD, DC, DD}*, with stationary distribution \rightarrow $(0, 0, 0, 1)$ as $\nu \rightarrow 0$
	- *•* Intuitively, going from *CC* to *DD* takes one experimentation but the other direction takes two
	- \rightarrow If ν is small and *n* large, the average payoffs are close to 0
- *→* A non-forgiving equilibrium is 'unstable'

Proof outline (1/4)

A state is bad if, for some player *i*,

- for some $h \in A^m$, $||\sigma_i(h) \hat{\sigma}_i(h)|| > 2\tau$ or
- $v_i(\sigma) < x_i 2\alpha$

Choose τ and α small enough that if a state is not bad, then it is *η*-close to being a subgame-perfect equilibrium

A state is good if, for each player *i*,

- *•* for all $h \in A^m$, $||\sigma_i(h) \hat{\sigma}_i(h)|| < \tau/2$ and
- $v_i(\sigma) > x_i \beta/2$.

Choose $\beta < \alpha$ such that $f^* = \min_{i=1,2} f_i(x_i - \beta) > \max_{i=1,2} f_i(x_i - \alpha) = f^*$

 \rightarrow Show that when ε is small and *n* large, the probability of going from a bad to a good state is arbitrarily higher than the probability of leaving a good state.

Proof outline (2/4)

2. Lemma. For any $\varepsilon \in (0,1)$, there exists n_1 such that, for any $n \geq n_1$, if (*i*) the state is bad for some player *i*, (*ii*) no player is conducting a test at t . *and* (*iii*) *i begins a test at t, then the probability that the model is rejected is at least* ε^{f*} .

- *•* If *i*'s model is bad, the law of large numbers implies that, for *n* large, the observed distribution $\bar{\sigma}_i$ will be far from the model $\hat{\sigma}_i$ with high probability
- *•* If *i*'s payoff is bad, the law of large numbers implies that, for *n* large, the sample average payoff \bar{v}_i^h will be less than $x_i - \alpha$ with high probability
- In either case, the probability of rejecting the model is at least $\varepsilon^{f_i(x_i-\alpha)} \geq \varepsilon^{f_*}$

3. Lemma. For any $\varepsilon \in (0,1)$, there exists n_3 such that, for any $n \geq n_3$, if (*i*) the state in some period t is good, (*ii*) no player is conducting a test at t . *and* (*iii*) *some player i begins a test at t, then the probability that the model is rejected is at most* ε^{f^*} .

- If *n* is large, the observed distribution $\bar{\sigma}_i$ will be close to the model $\hat{\sigma}_i$ with high probability
- If *n* is large, the sample average payoff \bar{v}_i^h will be at least $x_i \beta/2$ with high probability
- We can choose *n* so that the total probability of rejecting the model is at most *ε ^fi*(*xi−β*) *≤ ε f ∗*

Proof outline (4/4)

- If ε is small, ε^{f*} is (relatively) much larger than ε^{f*}
- *•* We can choose *ε* and *n* such that the probability of going from a good to a bad state is arbitrarily higher than the probability of leaving a good state
- We can use this to show that that the fraction of time spent in bad states is arbitrarily small
	- Note that just showing that going from a good state to a bad state is unlikely would be insufficient
	- *→* We also have to rule out going from a good state to a bad state indirectly via a state that is neither good nor bad

Conclusion

This paper studies repeated interactions in which players learn independently

- Existing work looks at convergence to equilibrium, but is silent on selection between equilibria
- *→* This paper presents a learning rule that yields sharp predictions

The learning rule selects subgame-perfect equilibria with forgiving strategies and efficient payoffs

• The exact payoffs selected depend on how players update their beliefs

Additional slides

Example Back

If $f_i(v_i) = v_i$, then at the unique strongly Pareto efficient point $(2, 1)$, $f_1(2) \neq f_2(1)$

- *•* We can say that on the equilibrium path each player will get at least 1
- *•* But we can't say anything about beliefs or payoffs off the equilibrium path, because it may take low-probability experiments to reach such a state

References **Back**

- Arieli, I. and Y. Babichenko. 2012. 'Average testing and Pareto efficiency'. *Journal of Economic Theory* 147:2376–2398.
- Aumann, R. J. and S. Sorin. 1989. 'Cooperation and bounded recall'. *Games and Economic Behavior* 1:5–39.
- Foster, D. P. and H. P. Young. 2003. 'Learning, hypothesis testing, and Nash equilibrium'. *Games and Economic Behavior* 45:73–96.
- Hart, S. and A. Mas-Colell. 2003. 'Uncoupled dynamics do not lead to Nash equilibrium'. *American Economic Review* 93:1830–1836.
- Jordan, J. S. 1995. 'Bayesian learning in repeated games'. *Games and Economic Behavior* 9:8–20.
- Juang, W.-T. and H. Sabourian. 2021. 'Rules and mutation: A theory of how efficiency and Rawlsian egalitarianism/symmetry may emerge'. Working paper.

References **Back**

- Kalai, E. and E. Lehrer. 1993. 'Rational learning leads to Nash equilibrium'. *Econometrica* 61:1019–1045.
- Kandori, M., G. J. Mailath and R. Rob. 1993. 'Learning, mutation, and long run equilibria in games'. *Econometrica* 61:29–56.
- Lim, W. and P. R. Neary. 2016. 'An experimental investigation of stochastic adjustment dynamics'. *Games and Economic Behavior* 100:208–219.
- Mäs, M. and H. H. Nax. 2016. 'A behavioral study of "noise" in coordination games'. *Journal of Economic Theory* 162:195–208.
- Nachbar, J. H. 1997. 'Prediction, optimization, and learning in repeated games'. *Econometrica* 65:275–309.
	- . 2005. 'Beliefs in repeated games'. *Econometrica* 73:459–480.

References **Back**

- Norman, T. W. 2021. 'The possibility of Bayesian learning in repeated games'. Working paper.
- Nyarko, Y. 1998. 'Bayesian learning and convergence to Nash equilibria without common priors'. *Economic Theory* 11:643–655.
- Pradelski, B. S. R. and H. P. Young. 2012. 'Learning efficient Nash equilibria in distributed systems'. *Games and Economic Behavior* 75:882–897.
- Robson, A. J. and F. Vega-Redondo. 1996. 'Efficient equilibrium selection in evolutionary games with random matching'. *Journal of Economic Theory* 70:65–92.
- Sandroni, A. 1998. 'Necessary and sufficient conditions for convergence to Nash equilibrium: The almost absolute continuity hypothesis'. *Games and Economic Behavior* 22:121–147.

References \rightarrow Back

Young, H. P. 1993. 'The evolution of conventions'. *Econometrica* 61:57–84.

. 2009. 'Learning by trial and error'. *Games and Economic Behavior* 65:626–643.