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Motivation

The folk theorem for infinitely repeated games creates a problem of indeterminacy:
• Many payoff profiles are possible
• For a given payoff profile, many strategy profiles are possible

→ What is a reasonable prediction?
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Motivation

An infinitely repeated prisoner’s dilemma:
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Motivation

An infinitely repeated asymmetric prisoner’s dilemma:

C D

C 2, 2 −1, 3

D 5,−1 0, 0

(5,−1)

(−1, 3)

(0, 0)

(2, 2)

v1

v2

?
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Literature References

Learning stage-game actions: Well-known selection results for:
• risk-dominant equilibria: Kandori, Mailath and Rob 1993; Young 1993
• efficient equilibria: Robson and Vega-Redondo 1996; Arieli and Babichenko

2012; Pradelski and Young 2012; Juang and Sabourian 2021

Learning repeated-game strategies:
• Bayesian learning: Kalai and Lehrer 1993; Jordan 1995; Nachbar 1997;

Nyarko 1998; Sandroni 1998; Nachbar 2005; Norman 2021
• Hypothesis testing: Foster and Young 2003.

→ Suggest that players may converge to an equilibrium, but are silent on selection
between equilibria.
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This paper

A model of learning in two-player, infinitely repeated games.

Players act according to a non-Bayesian heuristic (Foster and Young 2003):
• form beliefs based on evidence and reject them if conflict with observed

behaviour
• usually best-respond to their beliefs

The heuristic is uncoupled (Hart and Mas-Colell 2003) and uses bounded-memory
strategies (Aumann and Sorin 1989)

The model selects a subgame-perfect equilibrium with efficient payoffs.
→ Provides a rationale for equilibrium selection in a learning framework
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Learning and bargaining

C D

C 2, 2 −1, 3

D 5,−1 0, 0

(5,−1)
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(2, 2)

v1

v2

?

This problem is reminiscent of a bargaining problem

→ Intuitive specifications of the learning rule select two important bargaining
solutions (the Kalai–Smorodinsky and maxmin bargaining solutions)
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Stage game

Stage game: G = ⟨{1, 2}, (Ai), (ui)⟩

Probability distributions on Ai: ∆i

Feasible payoff profiles: V

Pure minmax payoffs: wi = min
aj∈Aj

max
ai∈Ai

ui(ai, aj)

Individually rational payoff profiles: V ∗ = {v ∈ V : v ≫ (w1, w2)}

7/25



Example

C D

C 2, 2 −1, 3

D 5,−1 0, 0

(5,−1)

(−1, 3)

w = (0, 0)

(2, 2)

v1

v2

V ∗
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Repeated game

Repeated game H , discount factor δ ∈ (0, 1)

Players use memory-m strategies
• For any two histories whose m most recent action profiles are the same, the

strategy prescribes the same (mixed) action
• Defined by a map from m-tuples of action profiles to ∆i.

Set of memory-m strategies: Σi = ∆
|A|m
i

Set of strategy profiles: Σ = Σ1 × Σ2
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Overview
Players follow a non-Bayesian heuristic related to Foster and Young’s learning by
hypothesis testing (2003)

• Players do not update their beliefs each period but test them periodically
→ Inertia makes the model tractable (Foster and Young 2003; Young 2009; Arieli

and Babichenko 2012; Pradelski and Young 2012)

Not testing Testing

• Has a fixed
model and
response

• Both are noisy
(fully mixed)

• Gathers data for n
periods and tests
model

• May experiment

With some probability
each period

If the model
was rejected,

adopts a new one

sample size
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Learning rule

Set of strategies with probability at least ν on each action at every m-tuple: Σν
i

Corresponding set of strategy profiles: Σν = Σν
1 × Σν

2

In any period, player i has
• A model σ̂j ∈ Σν

j of her opponent’s behaviour
• A response σi ∈ Σν

i

Each period, each player not currently testing starts a test with probability 1/n

noisiness
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Testing (1/2)

Suppose player i is conducting a test
• Model: σ̂j ∈ Σν

j

• Sample: h = (a1, a2, . . . , an) ∈ An

For any h′ ∈ Am be observed in h:
• Distribution over Aj implied by i’s model: σ̂j(h

′) ∈ ∆j

• Empirical distribution observed in the sample: σ̄j(h
′) ∈ ∆j

Player i rejects her model if there exists some h′ ∈ Am observed in h such that
||σ̂j(h′)− σ̄j(h

′)|| > τ .

tolerance
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Testing (2/2)

Additionally, i may experiment

Average undiscounted payoff received in h: vhi = 1
n

∑n
t=1 ui(a

t)

Even if the model matches the observed distribution, i rejects her model with
probability εfi(v

h
i )

• fi is strictly positive, strictly increasing, and continuous
• A player who received lower payoffs is more likely to experiment
• Consistent with experimental evidence about deviations from optimal

behaviour (Lim and Neary 2016; Mäs and Nax 2016)
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Updating

If i rejects, a new model and response are chosen according to some measure µi(h)
on Σν

• Assume µi(h) is diffuse: the measure of any ζ-ball in Σν is at least µ∗(ζ),
where µ∗(ζ) > 0 depends only on ζ

• Interpret µi(h) as
• placing most of the weight on models that are more likely given j’s actions in h
• placing most of the weight on responses that are approximate best responses to

the chosen model
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Definitions

Strategy profile σ ∈ Σ is η-close to being a subgame-perfect equilibrium if there
exists some subgame-perfect equilibrium σ′ ∈ Σ such that ||σ − σ′|| ≤ η

Any fully mixed σ ∈ int(Σ) implies a unique limiting distribution on A

→ Average (undiscounted) payoff under this distribution: vi(σ)
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Result

Theorem 1. Suppose that f1(x1) = f2(x2) for some strongly Pareto efficient
x ∈ V ∗. For any η ∈ (0, 1), if τ is small enough (given η), if m and δ are large
enough and ν is small enough (given η and τ), if ε is small enough (given η,
τ , m, δ, and ν), and if n is large enough (given η, τ , m, δ, ν, and ε), then,
at least 1− η of the time, players act according to strategies that

1. are η-close to being a subgame-perfect equilibrium and
2. yield average payoffs within η of x.
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Payoffs

x ∈ V ∗ is strongly Pareto efficient and satisfies f1(x1) = f2(x2)

Since each fi is strictly increasing, x is unique.

Two natural specifications:
• fi(xi) = xi for each i ⇒ x∗ is the maxmin bargaining solution
• fi(xi) = xi/v̄i for each i ⇒ x∗ is the Kalai–Smorodinsky bargaining solution
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Example

C D

C 2, 2 −1, 3

D 5,−1 0, 0

(5,−1)

(−1, 3)

(0, 0)

xM = (2, 2)

xKS =
(2.4, 1.6)

v1

v2

This establishes a novel noncooperative foundation for two important bargaining
solutions.
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Intuition
A state is a pair (σ, σ̂) ∈ Σν × Σν

In the asymmetric prisoner’s dilemma, suppose fi(xi) = xi/v̄i
• Consider a state in which the players’ models are approximately correct and

the responses yield average payoffs close to (2, 2)
• If n is large, the probability of a model being rejected by a test is small
• v̄1 = 4 and v̄2 = 8/3, so the probabilities of experimenting are approximately

ε2/4 = ε0.5 and ε2/(8/3) = ε3/4

• If ε is small, the former is (relatively) much larger, so it ‘dominates’
• Consider a state in which the players’ models are approximately correct and

the responses yield average payoffs close to (2.4, 1.6)
• The probability of experimenting is approximately ε2.4/4 = ε0.6 and

ε1.6/(8/3) = ε0.6

• If ε is small, ε0.5 is (relatively) much larger than ε0.6

→ A state that doesn’t equalise the probabilities that players update their
models is ‘unstable’
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Strategies

The learning rule selects strategies that are forgiving

In the asymmetric prisoner’s dilemma, suppose m = 1 and fi(xi) = xi
• Consider a state in which the models are approximately correct and the

responses are perturbed grim triggers:
• Each period, with probability ν play an action at random
• Otherwise, play C iff the most recent action profile is (C,C)

• The possible states of the process are {CC,CD,DC,DD}, with stationary
distribution → (0, 0, 0, 1) as ν → 0

• Intuitively, going from CC to DD takes one experimentation but the other
direction takes two

→ If ν is small and n large, the average payoffs are close to 0
→ A non-forgiving equilibrium is ‘unstable’
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Proof outline (1/4)
A state is bad if, for some player i,

• for some h ∈ Am, ||σi(h)− σ̂i(h)|| > 2τ or
• vi(σ) < xi − 2α

Choose τ and α small enough that if a state is not bad, then it is η-close to being a
subgame-perfect equilibrium

A state is good if, for each player i,
• for all h ∈ Am, ||σi(h)− σ̂i(h)|| ≤ τ/2 and
• vi(σ) ≥ xi − β/2.

Choose β < α such that f∗ = mini=1,2 fi(xi − β) > maxi=1,2 fi(xi − α) = f∗

→ Show that when ε is small and n large, the probability of going from a bad to a
good state is arbitrarily higher than the probability of leaving a good state.
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Proof outline (2/4)

2. Lemma. For any ε ∈ (0, 1), there exists n1 such that, for any n ≥ n1, if
(i) the state is bad for some player i, (ii) no player is conducting a test at t,
and (iii) i begins a test at t, then the probability that the model is rejected is
at least εf∗.

• If i’s model is bad, the law of large numbers implies that, for n large, the observed
distribution σ̄j will be far from the model σ̂j with high probability

• If i’s payoff is bad, the law of large numbers implies that, for n large, the sample
average payoff v̄hi will be less than xi − α with high probability

• In either case, the probability of rejecting the model is at least εfi(xi−α) ≥ εf∗
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Proof outline (3/4)

3. Lemma. For any ε ∈ (0, 1), there exists n3 such that, for any n ≥ n3, if
(i) the state in some period t is good, (ii) no player is conducting a test at t,
and (iii) some player i begins a test at t, then the probability that the model
is rejected is at most εf∗.

• If n is large, the observed distribution σ̄j will be close to the model σ̂j with high
probability

• If n is large, the sample average payoff v̄hi will be at least xi − β/2 with high
probability

• We can choose n so that the total probability of rejecting the model is at most
εfi(xi−β) ≤ εf

∗

23/25



Proof outline (4/4)

• If ε is small, εf∗ is (relatively) much larger than εf
∗

• We can choose ε and n such that the probability of going from a good to a
bad state is arbitrarily higher than the probability of leaving a good state

• We can use this to show that that the fraction of time spent in bad states is
arbitrarily small

• Note that just showing that going from a good state to a bad state is unlikely
would be insufficient

→ We also have to rule out going from a good state to a bad state indirectly via a
state that is neither good nor bad
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Conclusion

This paper studies repeated interactions in which players learn independently
• Existing work looks at convergence to equilibrium, but is silent on selection

between equilibria
→ This paper presents a learning rule that yields sharp predictions

The learning rule selects subgame-perfect equilibria with forgiving strategies and
efficient payoffs

• The exact payoffs selected depend on how players update their beliefs
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Additional slides



Example Back

C D

C 1, 1 0, 0

D 0, 0 2, 1

(1, 1) (2, 1)

(0, 0) v1

v2

If fi(vi) = vi, then at the unique strongly Pareto efficient point (2, 1), f1(2) ̸= f2(1)

• We can say that on the equilibrium path each player will get at least 1
• But we can’t say anything about beliefs or payoffs off the equilibrium path,

because it may take low-probability experiments to reach such a state
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