# **Beyond Equilibrium Learning**

Chi Jin

Princeton University.

# **Problems of Interests**



Games / strategic decision making against one or more adaptive opponents.

# Normal-Form Games (NFGs)

Represent games as matrices (tensors):



In general, specify utility  $u_i(a_1, \ldots, a_n)$  for  $i \in [n]$ .

Sequential games can be represented as big NFGs, where actions in NFGs ⇔ policies in sequential games.

### **Overview**

### 1. Standard game theory:

- equilibrium and learning algorithms

### 2. Beyond equilibrium learning I:

- rationalizability

### 3. Beyond equilibrium learning II:

- symmetry and equal share

### 4. Conclusion

# Standard Game Theory — equilibrium and learning algorithms

# **Optimal Strategy**

#### What is the optimal strategy?



The strategies of games may not have a linear relation (i.e. cyclic structure)  $strategy \; A > strategy \; B > strategy \; C > strategy \; A$ 

### Nash Equilibrium

A (mixed) strategy  $\pi_i$  for the *i*<sup>th</sup> player is a probability over action set  $A_i$ .

**Nash equilibrium** (NE): a *product* policy  $\pi = \pi_1 \times \cdots \times \pi_m$ , where no player can gain by deviating from her own policy while fixing other players' policies.



E.g., in rock-paper-scissor, an NE is  $\pi_1 = \pi_2 = \text{Uniform}(\mathcal{A})$ .

# **Correlated Strategy**

Nash equilibrium assumes each agents play independently.

In general-sum games, we may prefer correlated strategies (win-win):

| P2<br>P1 | R       | Ρ       | S       |
|----------|---------|---------|---------|
| R        | (1, 1)  | (-1, 1) | (1, -1) |
| Р        | (1, -1) | (1, 1)  | (-1, 1) |
| S        | (-1, 1) | (1, -1) | (1, 1)  |

Table 1: Modified rock-paper-scissor

| P2<br>P1 | R   | Ρ   | S   |
|----------|-----|-----|-----|
| R        | 1/3 | 0   | 0   |
| Р        | 0   | 1/3 | 0   |
| S        | 0   | 0   | 1/3 |

Table 2: A correlated strategy thatcan be realized by shared random bits

**Correlated equilibrium** (CE): a **correlated** policy  $\pi$ , where no player can gain by deviating her own policy while fixing other players' policies, if the deviator can still see the shared random bits from the correlated policy.

**Coarse correlated equilibirum** (CCE): a correlated policy  $\pi$ , where ..., if the deviator can no longer see the shared random bits.

Table 2 is a CCE but not a CE. In general, NE  $\subset$  CE  $\subset$  CCE.

# **No-regret Learning**

Originally for adversarial bandits. A powerful tool for learning equilibrium.



Each round: player chooses a mixed strategy  $\mu_t$ , environment chooses an adversarial loss  $\ell_t$ . Regret is measured against the best action in hindsight.

$$\mathsf{Regret}(T) = \sum_{t=1}^{T} \langle \mu_t, \ell_t \rangle - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \langle a, \ell_t \rangle \leq o(T)$$

Hedge algorithm: performs exponential weight updates:

$$\mu^{t+1}(a) \propto \mu^t(a) e^{-\eta_t \ell_t(a)}, \quad ext{for} \quad orall a \in \mathcal{A}.$$

where  $\eta_t$  is the learning rate. Hedge achieves  $\tilde{O}(\sqrt{T})$  regret.

All players run no-regret algorithms independently, the average policy

$$\frac{1}{T}\sum_{t=1}^{T}\mu_1^t\times\cdots\times\mu_n^t\to\mathsf{CCE}$$

**2p0s**: marginalize CCE  $\rightarrow$  NE; **General**: finding NE is **PPAD-hard**.

# Beyond Equilibrium Learning I: — rationalizability

# **Collaborators**



Yuanhao Wang Princeton



Dingwen Kong MIT



Yu Bai Salesforce

# Rationalizability

A rational agent should not play dominated actions, which is strictly worse than another strategy no matter what opponent plays

| P2<br>P1 | B1     | B2     |
|----------|--------|--------|
| A1       | (1, 3) | (2, 2) |
| A2       | (2, 2) | (1, 1) |

## **Iterative Dominance Elimination**

Eliminating dominated actions iteratively



define rationalizable  $\Leftrightarrow$  play iteratively un-dominated actions.

An action is  $\Delta$ -rationalizable if it remains after iteratively eliminating  $\Delta$ -dominated actions.

### Rationalizability vs Equilibrium

- NEs and CEs are rationalizable.
- $\epsilon$ -CE can be entirely supported on iteratively dominated actions, unless  $\epsilon = O(2^{-A})$  [Wu et al., 2021]
- CCEs are not necessarily rationalizable [Viossat & Zapechelnyuk 2013].



### **Main Question**

#### Can we efficiently learn equilibria that are also rationalizable?

Bandit feedback: not knowing game rule; at each round, player *i* only observes a random payoff  $U_i(a_1, \ldots, a_n)$ .

# A Naive Approach

A direct two-stage approach to learn rationalizable equilibria:

- 1. identify the set of all  $\Delta$ -rationalizable actions
- 2. learn equilibria in the subgame restricted to these rationalizable actions

This incurs  $\Omega(A^n)$  sample complexity, where *n* is the number of players.

Verifying action dominance requires the enumeration of the joint action space of other players, which is exponentially large.

# **Our Algorithm**

#### Rationalizable Hedge

Find a rationalizable action profile and initialize joint policy  $\{\theta_i^{(0)}\}_{i=1}^n$  there. for t = 1, ..., T, estimate loss by  $\ell_i^{(t)}(a)$  by playing  $\theta^{(t)}$  for M times. perform Hedge update  $\mu_i^{t+1}(a) \propto \mu_i^t(a)e^{-\eta_t \ell_i^{(t)}(a)}$ output: policy  $\mu_i^T$  after eliminating small probability actions & renormalizing.

- Identifying whether one action is rationalizable is hard, but finding one rationalizable action is not hard.
- Our algorithm guarantees that the policy {μ<sup>t</sup><sub>i</sub>} is always mostly supported on rationalizable actions across all iterates.

### **Theoretical Guarantees**

#### Theorem [Wang, Kong, Bai, Jin, 2023]

Rationalizable Hedge finds  $\Delta$ -rationalizable  $\epsilon$ -CCEs within sample complexity:

$$\tilde{\mathcal{O}}\left(rac{LNA}{\Delta^2}+rac{NA}{\epsilon^2}
ight)$$

L < NA is the minimum elimination length.

#### First polynomial sample algorithms for learning rationalizable equilibria!

We extend it to find rationalizable CEs by no-swap-regret.

Beyond Equilibrium Learning II: — symmetry and equal share

# **Collaborators**



Jiawei Ge Princeton



Yuanhao Wang Princeton



Wenzhe Li Princeton

# Symmetric Games and Equal Share

Many games are designed to be fair and symmetric to all players:



Suppose the game is constant-sum with total payoff C per game.

**Baseline:** achieve at least equal share! i.e., payoff C/n per game.

Focus on symmetric zero-sum games.

### Equal Share vs Equilibrium

#### Two-player zero-sum games:

- Nash is \*unique.
- A Nash strategy is non-exploitable achieve at least 0 payoff (equal share) no matter what the opponent plays!

### Multi-player (n > 2) zero-sum games:

- Nash/CE/CCEs are all non-unique.
- Nash does not guarantee equal share (even against fixed opponents)!

Consider three-player majority vote games: action set  $\{0, 1\}$ , majority gets 1 while minority gets -2. Both (1, 1, 1) and (0, 0, 0) are Nash.

# **Prior Algorithms**

#### Self-play

```
for t = 1, ..., T,
all agents play policy \theta_t.
the main agent perform updates to obtain new policy \theta_{t+1}.
```

- main ingradient for SOTA systems for Poker, Mahjoon, Diplomacy, etc.
- can use gradient updates, Hedge updates, ....

**Claim**: self-play from scratch does not guarantee equal share. Again, consider three-player majority vote games.

## **Main Questions**

What is the right solution concept to achieve equal share?

Can we design provably efficient algorithms for achieving equal share?

**Observation 1**: If opponents are permitted to adopt different strategies, there are games agent can't obtain equal share no matter what she does.

Consider three-player minority vote games: action set  $\{0,1\}$ , majority gets -2 while minority gets -1. Two opponents play 0 and 1 separately.

**Takeaway**: Must consider settings opponents deploy identical strategies, — not bad in games with a large player base.

$$\max_{x_1} \min_{x_2, \cdots, x_n} U_1(x_1, \cdots, x_n) \leq \min_{x_2, \cdots, x_n} \max_{x_1} U_1(x_1, \cdots, x_n) \leq \min_{x} \max_{x_1} U_1(x_1, x^{\otimes n-1})$$

# Solution Concept II

**Observation 2**: There are games where no non-exploitable strategies do not exist even after restricting all opponents to play identical strategy.

Takeaway: to achieve equal share, the agent has to model opponents.

$$\max_{x_1} \min_{x} U_1(x_1, x^{\otimes n-1}) \le \min_{x} \max_{x_1} U_1(x_1, x^{\otimes n-1}) = 0.$$

Stationary opponents (with identical strategies):

- The best response can achieve equal share.
- Run no-regret algorithms.

Adaptive (but slowly changing) opponents:

• Run no-dynamic-regret algorithms.

### **Experiments**

We can construct

- symmetric zero-sum games
- stationary and identical policies for opponents

that robustly breaks all meta-algorithms in prior SOTA systems.

| SDG            | $SP\_scratch \ / \ SP\_BC \ / \ SP\_BC\_reg$ | BR_BC  |
|----------------|----------------------------------------------|--------|
| Utility        | -12.67                                       | 1.00   |
| Exploitability | -29.00                                       | -29.00 |

# Summary

### Standard game theory:

- Nash, CE, CCEs
- no-regret learning algorithms

### Rationalizability

- limitation of applying standard game theory
- Rationalizable Hedge

### Equal Share in Symmetric Games

- identify the right solution concepts
- develop efficient algorithms