

"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

June 2024

"Calibeating": Beating Forecasters at Their Own Game

Sergiu Hart

Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem

hart@huji.ac.il
http://www.ma.huji.ac.il/hart

Joint work with

Dean P. Foster

University of Pennsylvania & Amazon Research NY

Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021] www.ma.huji.ac.il/hart/publ.html#calib-minmax

- Sergiu Hart "Calibration: The Minimax Proof", 1995 [2021] www.ma.huji.ac.il/hart/publ.html#calib-minmax
- Dean P. Foster and Sergiu Hart "Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics" Games and Economic Behavior 2018 www.ma.huji.ac.il/hart/publ.html#calib-eq

Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration" Journal of Political Economy 2021

www.ma.huji.ac.il/hart/publ.html#calib-int

- Dean P. Foster and Sergiu Hart "Forecast Hedging and Calibration" *Journal of Political Economy* 2021 www.ma.huji.ac.il/hart/publ.html#calib-int
- Dean P. Foster and Sergiu Hart " 'Calibeating': Beating Forecasters at Their Own Game" *Theoretical Economics* 2023

www.ma.huji.ac.il/hart/publ.html#calib-beat

Calibration

•		

Forecaster says: "The probability of rain tomorrow is p"

Forecaster says: "The probability of rain tomorrow is p"

Forecaster is CALIBRATED if

- Forecaster says: "The probability of rain tomorrow is p"
- Forecaster is CALIBRATED if
 - for every forecast p: in the days when the forecast was p, the proportion of rainy days equals p

- Forecaster says: "The probability of rain tomorrow is p"
- Forecaster is CALIBRATED if
 - for every forecast p: in the days when the forecast was p, the proportion of rainy days equals p (or: is close to p in the long run)

Calibration

•		

Calibration						
	CALIBRATION can be guaranteed (no matter what the weather will be)					
Foster and Vohra 1994 [publ 1998]						

Calibration				
CALIBRATION can be guaranteed (no matter what the weather will be)				
 Foster and Vohra 1994 [publ 1998] Hart 1995: proof by Minimax Theorem 				

I

Foster 1999: simple procedure

- Foster 1999: simple procedure
- Foster and Hart 2016 [publ 2021]: simplest procedure, by "Forecast Hedging"

Forecast-Hedging

Forecast-Hedging

Forecast-Hedging

Forecast-Hedging

Forecast-Hedging

Calibration in Practice

•		

Calibration in Practice

What we forecasted

Calibration plots of FiveThirtyEight.com (as of June 2019)

Calibration in Practice

Calibration plot of ElectionBettingOdds.com (2016 – 2018)

Example

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	

Example

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
time	1	2	3	4	5	6	•••
------	------	-----	------	-----	------	-----	-----
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

F1: CALIBRATION = 0

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: CALIBRATION = 0
- F2: CALIBRATION = 0

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: CALIBRATION = 0 IN-BIN VARIANCE = 0
- F2: CALIBRATION = 0

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: CALIBRATION = 0 IN-BIN VARIANCE = 0
- F2: CALIBRATION = 0

IN-BIN VARIANCE = $\frac{1}{4}$

• $a_t = action at time t$

- $a_t = action at time t$
- $\mathbf{s} \mathbf{c}_t =$ forecast at time t

- $a_t = action at time t$
- $c_t =$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_T(x) = \text{average of the actions in all}$ periods where the forecast was x

- \bullet a_t = action at time t
- $c_t = \text{forecast at time } t$
- $\bar{a}(x) \equiv \bar{a}_T(x) = \text{average of the actions in all}$ periods where the forecast was x

$$ar{a}(x) = rac{\sum_{t=1}^T \mathbf{1}_x(oldsymbol{c}_t) \, a_t}{\sum_{t=1}^T \mathbf{1}_x(oldsymbol{c}_t)}$$

- $a_t = action at time t$
- $c_t =$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_T(x) = \text{average of the actions in all}$ periods where the forecast was x

- $a_t = action at time t$
- $c_t = \text{forecast at time } t$
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

- $a_t = action at time t$
- $c_t = \text{forecast at time } t$
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

$$\mathcal{K} = rac{1}{T}\sum_{t=1}^T \|oldsymbol{c}_t - ar{a}(oldsymbol{c}_t)\|^2$$

- $a_t = action at time t$
- $c_t = \text{forecast at time } t$
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$

- \bullet a_t = action at time t
- $c_t =$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

- $a_t = action at time t$
- $c_t = \text{forecast at time } t$
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

$$\mathcal{R} = rac{1}{T}\sum_{t=1}^T \|a_t - ar{a}(oldsymbol{c}_t)\|^2$$

- \bullet a_t = action at time t
- $c_t =$ forecast at time t
- $\bar{a}(x) \equiv \bar{a}_T(x) =$ average of the actions in all periods where the forecast was x
- $\mathcal{K} \equiv \mathcal{K}_T = \text{CALIBRATION}$ score = average distance between c_t and $\bar{a}(c_t)$
- $\mathcal{R} \equiv \mathcal{R}_T = \mathsf{REFINEMENT}$ score = average variance inside the bins

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER}$ (1950) score = average distance between a_t and c_t

• $\mathcal{B} \equiv \mathcal{B}_T = \mathbf{BRIER}$ (1950) score = average distance between a_t and c_t

$$\mathcal{B} = rac{1}{T}\sum_{t=1}^T \|a_t - oldsymbol{c}_t\|^2$$

• $\mathcal{B} \equiv \mathcal{B}_T = \mathsf{BRIER}$ (1950) score = average distance between a_t and c_t

• $\mathcal{B} \equiv \mathcal{B}_T = \mathbf{BRIER}$ (1950) score = average distance between a_t and c_t

$\mathcal{B} = \mathcal{R} + \mathcal{K}$

• $\mathcal{B} \equiv \mathcal{B}_T = \mathbf{BRIER}$ (1950) score = average distance between a_t and c_t

$\mathcal{B} = \mathcal{R} + \mathcal{K}$

BRIER = **REFINEMENT** + **CALIBRATION**

where c is a constant and X is a random variable with $ar{X} = \mathbb{E}[X]$

• $\mathcal{B} \equiv \mathcal{B}_T = \mathbf{BRIER}$ (1950) score = average distance between a_t and c_t

$\mathcal{B} = \mathcal{R} + \mathcal{K}$

BRIER = **REFINEMENT** + **CALIBRATION**

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: CALIBRATION = 0 IN-BIN VARIANCE = 0
- F2: CALIBRATION = 0 IN-BIN VARIANCE = $\frac{1}{4}$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: $\mathcal{K} = 0$ $\mathcal{R} = 0$
- F2: $\mathcal{K} = 0$ $\mathcal{R} = \frac{1}{4}$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
F1	100%	0%	100%	0%	100%	0%	
F2	50%	50%	50%	50%	50%	50%	

- F1: $\mathcal{K} = 0$ $\mathcal{R} = 0$ $\mathcal{B} = 0$
- F2: $\mathcal{K} = 0$ $\mathcal{R} = \frac{1}{4}$ $\mathcal{B} = \frac{1}{4}$

Testing experts: √ BRIER score

Recognize *patterns* and *regularities* in the data

- Recognize *patterns* and *regularities* in the data
- Sort the days into bins that consist of similar days

- Recognize *patterns* and *regularities* in the data
- Sort the days into bins that consist of similar days
- Make the binning as *refined* as possible

- Recognize *patterns* and *regularities* in the data
- Sort the days into bins that consist of similar days
- Make the binning as *refined* as possible

• CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run

- CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

• CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run

But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

Question:

Can one GAIN CALIBRATION without LOSING "EXPERTISE" ?

• CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run

But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

without LOSING "EXPERTISE" ?

• Can one get \mathcal{K} to 0 without increasing \mathcal{R} ?

- CALIBRATION ($\mathcal{K} \approx 0$) can always be guaranteed in the long run
- But: CALIBRATION procedures ignore whatever "EXPERTISE" one has

- Can one get \mathcal{K} to 0 without increasing \mathcal{R} ?
- Can one decrease $\mathcal{B} = \mathcal{R} + \mathcal{K}$ by \mathcal{K} ?

• Can one decrease \mathcal{B} by \mathcal{K} ?

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$ $\Rightarrow \kappa' = 0$

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

 $\Rightarrow \mathcal{K}' = 0 \quad \mathcal{R}' = \mathcal{R}$

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast c with the corresponding bin average $\bar{a}(c)$

 $\Rightarrow \mathcal{K}' = 0 \quad \mathcal{R}' = \mathcal{R} \quad \mathcal{B}' = \mathcal{B} - \mathcal{K}$

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast *c* with the corresponding bin average $\bar{a}(c)$ $\Rightarrow \kappa' = 0$ $\mathcal{R}' = \mathcal{R}$ $\mathcal{B}' = \mathcal{B} - \mathcal{K}$
 - IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

- Can one decrease \mathcal{B} by \mathcal{K} ?
- Yes: Replace each forecast *c* with the corresponding bin average $\bar{a}(c)$ $\Rightarrow \kappa' = 0$ $\mathcal{R}' = \mathcal{R}$ $\mathcal{B}' = \mathcal{B} - \mathcal{K}$
 - IN RETROSPECT / OFFLINE (when the $\bar{a}(c)$ are known)

Question:

Can one do this **ONLINE** ?

• Consider a forecasting sequence b_t (in a [finite] set B)

• Consider a forecasting sequence b_t (in a [finite] set B)

• At each time t generate a forecast c_t

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - ONLINE: use only b_t and history

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

 $\mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b}$

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

 $\mathcal{B}_T^c \leq \mathcal{B}_T^b - \mathcal{K}_T^b + o(1) \text{ as } T \to \infty$ for ALL sequences a_t and b_t (uniformly)

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - ONLINE: use only b_t and history
 - such that

 $\mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b}$

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - **ONLINE**: use only b_t and history
 - such that

$$\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}} = \mathcal{R}^{\mathrm{b}}$$

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - **ONLINE**: use only b_t and history
 - such that

$$\left| \mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b} \right| = \mathcal{R}^{b}$$

c "BEATS" b by b's CALIBRATION score

- Consider a forecasting sequence b_t (in a [finite] set B)
- At each time t generate a forecast c_t
 - **Solution ONLINE**: use only b_t and history
 - such that

$$\left| \mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b} \right| = \mathcal{R}^{b}$$

c "BEATS" b by b's CALIBRATION score

GUARANTEED for ALL sequences of actions and forecasts

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	

b: $\mathcal{K}^{\mathrm{b}} = 0.1$ $\mathcal{R}^{\mathrm{b}} = 0$ $\mathcal{B}^{\mathrm{b}} = 0.1$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
С	100%	0%	100%	0%	100%	0%	

b: $\mathcal{K}^{\mathrm{b}} = 0.1$ $\mathcal{R}^{\mathrm{b}} = 0$ $\mathcal{B}^{\mathrm{b}} = 0.1$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
С	100%	0%	100%	0%	100%	0%	

- b: $\mathcal{K}^{\mathrm{b}} = 0.1$ $\mathcal{R}^{\mathrm{b}} = 0$ $\mathcal{B}^{\mathrm{b}} = 0.1$
- c: $\mathcal{K}^{c} = 0$ $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

time	1	2	3	4	5	6	•••
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
С	100%	0%	100%	0%	100%	0%	

- b: $\mathcal{K}^{\mathrm{b}} = 0.1$ $\mathcal{R}^{\mathrm{b}} = 0$ $\mathcal{B}^{\mathrm{b}} = 0.1$
- c: $\mathcal{K}^{c} = 0$ $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

 $c \text{ calibeats } b: \ \mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$

time	1	2	3	4	5	6	
rain	1	0	1	0	1	0	
b	80%	40%	80%	40%	80%	40%	
c	100%	0%	100%	0%	100%	0%	

- b: $\mathcal{K}^{\mathrm{b}} = 0.1$ $\mathcal{R}^{\mathrm{b}} = 0$ $\mathcal{B}^{\mathrm{b}} = 0.1$
- c: $\mathcal{K}^{c} = 0$ $\mathcal{R}^{c} = 0$ $\mathcal{B}^{c} = 0$

c calibeats b: $\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}} = \mathcal{R}^{\mathrm{b}}$

(that was easy ...)

(that was easy ...)

Can one CALIBEAT in general, non-stationary, situations ?

(that was easy ...)

Can one CALIBEAT in general, non-stationary, situations ?

Weather is arbitrary and not stationary

(that was easy ...)

- Weather is arbitrary and not stationary
- **Forecasts of** *b* are arbitrary

(that was easy ...)

- Weather is arbitrary and not stationary
- **Forecasts of** *b* are arbitrary
- **Binning of** *b* is not perfect ($\mathcal{R}^{b} > 0$)

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** *b* is not perfect ($\mathcal{R}^{b} > 0$)
- Bin averages do not converge

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** *b* is not perfect ($\mathcal{R}^{b} > 0$)
- Bin averages do not converge
- ONLINE

(that was easy ...)

- Weather is arbitrary and not stationary
- Forecasts of b are arbitrary
- **Binning of** *b* is not perfect ($\mathcal{R}^{b} > 0$)
- Bin averages do not converge
- ONLINE
- GUARANTEED (even against adversary)

There exists a **CALIBEATING** procedure

A Way to Calibeat

A Simple Way to Calibeat

Forecast the average action of the current *b*-forecast

$$\mathbb{V} \mathrm{ar} \; = \; rac{1}{T} \sum_{t=1}^T \|x_t - ar{x}_T\|^2$$

$$egin{array}{rll} \mathbb{V}\mathrm{ar} &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \end{array}$$

$$\begin{aligned} \mathbb{V} \text{ar} &= \frac{1}{T} \sum_{t=1}^{T} \|x_t - \bar{x}_T\|^2 \\ &= \frac{1}{T} \sum_{t=1}^{T} \left(1 - \frac{1}{t}\right) \|x_t - \bar{x}_{t-1}\|^2 \end{aligned}$$

$$egin{array}{rll} \mathbb{V}\mathrm{ar} &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \end{array}$$

$$egin{array}{rll} \mathbb{V}\mathrm{ar} &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

$$egin{array}{rll} \mathbb{V}\mathrm{ar} &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

(*)
$$o(1) = O\left(\frac{1}{T}\sum_{t=1}^{T}\frac{1}{t}\right) = O\left(\frac{\log T}{T}\right)$$

$$egin{array}{rll} \mathbb{V}\mathrm{ar} &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_T\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \left(1 - rac{1}{t}
ight) \|x_t - ar{x}_{t-1}\|^2 \ &=& rac{1}{T}\sum_{t=1}^T \|x_t - ar{x}_{t-1}\|^2 - \mathrm{o}(1) \end{array}$$

Proof: "Online Variance"

Proof: "Online Variance"

$$\operatorname{Var} = \widetilde{\operatorname{Var}} - \mathrm{o}(1)$$

Proof: "Online Refinement"

$$\operatorname{\mathbb{V}ar} = \widetilde{\operatorname{\mathbb{V}ar}} - o(1)$$
$$\mathcal{R}^{b} = \widetilde{\mathcal{R}}^{b} - o(1)$$

Proof: "Online Refinement"

$$egin{array}{rcl} \mathbb{V}\mathrm{ar} &=& \widetilde{\mathbb{V}\mathrm{ar}} - \mathrm{o}(1) \ \mathcal{R}^\mathrm{b} &=& \widetilde{\mathcal{R}}^\mathrm{b} - \mathrm{o}(1) \ &=& rac{1}{T}\sum_{t=1}^T \|a_t - ar{a}_{t-1}(b_t)\|^2 - \mathrm{o}(1) \end{array}$$

Proof: "Online Refinement"

$$\begin{aligned} \mathbb{V}\operatorname{ar} &= \widetilde{\mathbb{V}\operatorname{ar}} - \operatorname{o}(1) \\ \mathcal{R}^{\mathrm{b}} &= \widetilde{\mathcal{R}}^{\mathrm{b}} - \operatorname{o}(1) \\ &= \frac{1}{T} \sum_{t=1}^{T} \|a_t - \bar{a}_{t-1}(b_t)\|^2 - \operatorname{o}(1) \\ &= \mathcal{B}^{\mathrm{c}} \qquad - \operatorname{o}(1) \end{aligned}$$

$$egin{aligned} oldsymbol{c}_t &= ar{a}_{t-1}^{ ext{b}}(b_t) \end{aligned}$$

GUARANTEES b-CALIBEATING: $\mathcal{B}^{c} \leq \mathcal{B}^{b} - \mathcal{K}^{b}$

$$egin{aligned} oldsymbol{c}_t &= ar{a}_{t-1}^{ ext{b}}(b_t) \end{aligned}$$

GUARANTEES b-CALIBEATING:

$\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$

Theorem

$$egin{aligned} oldsymbol{c}_t = ar{a}_{t-1}^{ ext{c}}(oldsymbol{c}_t) \end{aligned}$$

GUARANTEES c-CALIBEATING:

 $\mathcal{B}^{c} \leq \mathcal{B}^{c} - \mathcal{K}^{c}$

$$egin{aligned} oldsymbol{c}_t &= ar{a}_{t-1}^{ ext{b}}(b_t) \end{aligned}$$

GUARANTEES b-CALIBEATING:

$\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$

Theorem

$$egin{aligned} oldsymbol{c}_t = ar{oldsymbol{a}}_{t-1}^{ ext{c}}(oldsymbol{c}_t) \end{aligned}$$

GUARANTEES c-CALIBEATING:

 $egin{aligned} \mathcal{B}^{\mathrm{c}} &\leq \mathcal{B}^{\mathrm{c}} - \mathcal{K}^{\mathrm{c}} \ &\Leftrightarrow \ \mathcal{K}^{\mathrm{c}} &= 0 \end{aligned}$

Self-Calibeating = Calibrating

Theorem

$$egin{aligned} oldsymbol{c}_t &= ar{a}_{t-1}^{ ext{b}}(b_t) \end{aligned}$$

GUARANTEES b-CALIBEATING:

$\mathcal{B}^{\mathrm{c}} \leq \mathcal{B}^{\mathrm{b}} - \mathcal{K}^{\mathrm{b}}$

Theorem

$$egin{aligned} oldsymbol{c}_t = ar{oldsymbol{a}}_{t-1}^{ ext{c}}(oldsymbol{c}_t) \end{aligned}$$

GUARANTEES CALIBRATION:

$$egin{aligned} \mathcal{B}^{\mathrm{c}} &\leq \mathcal{B}^{\mathrm{c}} - \mathcal{K}^{\mathrm{c}} \ & oldsymbol{\mathcal{K}}^{\mathrm{c}} &= 0 \end{aligned}$$

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

"Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D
 ightarrow \mathbb{R}^m$ arbitrary function

"Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D \to \mathbb{R}^m$ arbitrary function

<u>Theorem</u> There exists a probability distribution P on the δ -grid D of C such that

"Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D \to \mathbb{R}^m$ arbitrary function

<u>Theorem</u> There exists a probability distribution P on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| v - \boldsymbol{x}
ight\|^2 - \left\| v - g(\boldsymbol{x})
ight\|^2
ight] \leq \delta^2 \quad orall v \in C$$

Stochastic "Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D \to \mathbb{R}^m$ arbitrary function

<u>**Theorem</u>** There exists a probability distribution P on the δ -grid D of C such that</u>

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x}
ight\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x})
ight\|^2
ight] \leq \delta^2 \quad orall v \in C$$

Stochastic "Fixed Point"

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D \to \mathbb{R}^m$ arbitrary function

<u>**Theorem</u>** There exists a probability distribution P on the δ -grid D of C such that</u>

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| v - \boldsymbol{x}
ight\|^2 - \left\| v - \boldsymbol{g}(\boldsymbol{x})
ight\|^2
ight] \leq \delta^2 \quad orall v \in C$$

Obtained by solving a Minimax problem (LP)

Outgoing Minimax (FH)

How do we get c_t "close to" $\bar{a}_{t-1}(c_t)$?

- $C \subset \mathbb{R}^m$ compact convex
- $D \subset C$ finite δ -grid of C (for $\delta > 0$)
- $g: D \to \mathbb{R}^m$ arbitrary function

<u>**Theorem</u>** There exists a probability distribution P on the δ -grid D of C such that</u>

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| v - \boldsymbol{x}
ight\|^2 - \left\| v - \boldsymbol{g}(\boldsymbol{x})
ight\|^2
ight] \leq \delta^2 \quad orall v \in C$$

Obtained by solving a Minimax problem (LP)

Stochastic "Fixed Point" (FH)

<u>Theorem</u> There exists a probability distribution \underline{P} on the δ -grid D of C such that

$$\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| v - \boldsymbol{x} \right\|^2 - \left\| v - g(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall v \in C$$

 Obtained by solving a MINIMAX problem (LP)
Stochastic "Fixed Point" (FH)

<u>Theorem</u> There exists a probability distribution \underline{P} on the δ -grid D of C such that

 $\mathbb{E}_{\boldsymbol{x} \sim \boldsymbol{P}} \left[\left\| \boldsymbol{v} - \boldsymbol{x} \right\|^2 - \left\| \boldsymbol{v} - \boldsymbol{g}(\boldsymbol{x}) \right\|^2 \right] \leq \delta^2 \quad \forall \boldsymbol{v} \in C$

 Obtained by solving a MINIMAX problem (LP)

• Moreover: solving a **FIXED POINT** problem yields a probability distribution η that is **ALMOST DETERMINISTIC**: its support is included in a ball of size δ

Calibrating

Theorem

There is a stochastic procedure

that **GUARANTEES CALIBRATION**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBRATION**

Proof. Self-calibeating + Outgoing Minimax

Theorem

There is a stochastic procedure that **GUARANTEES CALIBRATION**

Proof. Self-calibeating + Outgoing Minimax

Note. δ -CALIBRATION

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING** and **CALIBRATION**

Theorem

There is a stochastic procedure that **GUARANTEES CALIBEATING** and **CALIBRATION**

Proof. Calibeat the joint binning of b and c, by the Outgoing Minimax theorem

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING**

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING** and **CONTINUOUS CALIBRATION**

Theorem

There is a *deterministic* procedure that **GUARANTEES CALIBEATING** and **CONTINUOUS CALIBRATION**

Proof. Calibeat the joint binning of b and c, by the Outgoing Fixed Point theorem

Theorem

There is a *deterministic* procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

Theorem

There is a *stochastic* procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

and **CALIBRATION**

Theorem

There is a *stochastic* procedure that **GUARANTEES**

simultaneous CALIBEATING of several forecasters

and **CALIBRATION**

Proof. Calibeat the joint binning

In all the results above:

In all the results above:

	CALIBRATION	
Obtained by	Minimax	
Procedure	stochastic	

... and Continuous Calibration

In all the results above:

	CALIBRATION	CONTINUOUS CALIBRATION
Obtained by	Minimax	Fixed Point
Procedure	stochastic	deterministic

TAKING PRIDE IN OUR RECORD

TAKING PRIDE IN OUR RECORD "We have correctly forecasted 8 of the last 5 recessions"

TAKING PRIDE IN OUR RECORD

"We have correctly forecasted 8 of the last 5 recessions"