

The Role of Transparency in Repeated 1st-Price Auctions with Unknown Valuations*

Workshop on Learning in Games July 1-3, 2024

Repeated First-Price Auctions

We study repeated first-price auctions:

An online learning framework

Repeated First-Price Auctions

We study repeated first-price auctions:

- An online learning framework
- From the bidder's perspective

Repeated First-Price Auctions

We study repeated first-price auctions:

- An online learning framework
- From the bidder's perspective
- The valuation is unknown

https://www.facebook.com				
Ad space				

https://www.facebook.com				
I'm loving it!				

How do advertisers quantify value?

- Metric 1: Click-through rate
- Metric 2: Conversion of curiosity to sales
- Metric 3: Time spent on a page

How do advertisers quantify value?

- Metric 1: Click-through rate
- Metric 2: Conversion of curiosity to sales
- Metric 3: Time spent on a page

All happening only if the auction is won!

• The environment privately generates V_t and M_t in [0,1]

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

The bidder receive some feedback

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

The bidder receive some feedback (transparency)

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

The bidder receive some feedback (transparency)

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

• The bidder receive some feedback (transparency)

- The environment privately generates V_t and M_t in [0,1]
- The bidder bids $B_t \in [0,1]$ (without knowing V_t and M_t)
- A first-price auction takes place, and the bidder receives utility

$$\mathrm{Util}_t(B_t) \coloneqq (V_t - B_t) \cdot \mathbb{I}\{B_t \ge M_t\}$$

The bidder receive some feedback (transparency)

Goal: minimize the regret

$$R_T \coloneqq \max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(b) \right] - \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(B_t) \right]$$

Goal: minimize the regret

$$R_T \coloneqq \max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(b) \right] - \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(B_t) \right]$$

• We want R_T to grow sublinearly in the time horizon T

Goal: minimize the regret

$$R_T \coloneqq \max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(b) \right] - \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(B_t) \right]$$

- We want R_T to grow sublinearly in the time horizon T
- The per-round utility $Util_t \in [-1,1]$

Goal: minimize the regret

$$R_T \coloneqq \max_{b \in [0,1]} \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(b) \right] - \mathbb{E} \left[\sum_{t=1}^T \mathrm{Util}_t(B_t) \right]$$

- We want R_T to grow sublinearly in the time horizon T
- The per-round utility $Util_t \in [-1,1]$

Our contribution: We fully characterize the minimax regret rate for various feedback and data generation models

	$\boldsymbol{M_t}$	\overline{V}_t
Full	Always observed	Always observed

	$\boldsymbol{M_t}$	V_t
Full	Always observed	Always observed
Transparent	Always observed	Observed if auction is won

Transparent Feedback

The following bidders participated to the auction:

- Anonimous 1 bid \$ 0.79 and won the auction
- Anonimous 2 bid \$ 0.75
- Anonimous 3 bid \$ 0.73
- Anonimous 4 bid \$ 0.34
- Anonimous 5 bid \$ 0.12

	$\boldsymbol{M_t}$	V_t
Full	Always observed	Always observed
Transparent	Always observed	Observed if auction is won
Semi-Transparent	Observed if auction is lost	Observed if auction is won

Semi-Transparent Feedback

Feedback Models

N.B. The feedback on M_t depends on the platform's transparency

	$\boldsymbol{M_t}$	V_t
Full	Always observed	Always observed
Transparent	Always observed	Observed if auction is won
Semi-Transparent	Observed if auction is lost	Observed if auction is won
Bandit	Never observed	Observed if auction is won

Semi-Transparent Feedback

Feedback Models

N.B. The feedback on M_t depends on the platform's transparency

	$\boldsymbol{M_t}$	V_t
Full	Always observed	Always observed
Transparent	Always observed	Observed if auction is won
Semi-Transparent	Observed if auction is lost	Observed if auction is won
Bandit	Never observed	Observed if auction is won

Environments

Environments

- Stochastic model: (V_t, M_t) drawn i.i.d. from a fixed but unknown distribution
- Aversarial model: (V_t, M_t) generated by an oblivious adversary

Environments

- Stochastic model: (V_t, M_t) drawn i.i.d. from a fixed but unknown distribution
- Aversarial model: (V_t, M_t) generated by an oblivious adversary

We might want to avoid "atoms"

Definition (σ -smoothness)

A measure μ on $[0,1]^2$ is σ -smooth if it admits a density (w.r.t. Lebesgue) bounded by $1/\sigma$

The quality of the feedback

• Transparency regulates the ability to reconstruct counterfactual information

The quality of the feedback

• Transparency regulates the ability to reconstruct counterfactual information

The size and structure of the action space

We typically know how to handle finite action spaces

The quality of the feedback

Transparency regulates the ability to reconstruct counterfactual information

The size and structure of the action space

- We typically know how to handle finite action spaces
- We typically know how to handle regular objectives

The Utility Function

Recall that the utility as a function of the bid *b* is

$$\mathrm{Util}_t(b) \coloneqq (V_t - b) \cdot \mathbb{I}\{b \ge M_t\}$$

The Utility Function

Recall that the utility as a function of the bid *b* is

The Utility Function

Recall that the utility as a function of the bid *b* is

It is not (one-sided) Lipschitz nor (semi) continuous!

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full				
Transparent				
Semi-Transparent				
Bandit				

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full				$\Omega(T)$
Transparent				
Semi-Transparent				
Bandit				

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full				$\Omega(T)$
Transparent			$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent				
Bandit			$\mathcal{O}(T^{2/3})$	

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full				$\Omega(T)$
Transparent		$\mathcal{O}ig(\sqrt{T}ig)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent		$\tilde{\mathcal{O}}\left(T^{2/3}\right)$		
Bandit			$\mathcal{O}(T^{2/3})$	

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full	$\Omegaig(\sqrt{T}ig)$			$\Omega(T)$
Transparent		$\mathcal{O}ig(\sqrt{T}ig)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent	$\Omega(T^{2/3})$	$\tilde{\mathcal{O}}\left(T^{2/3}\right)$		
Bandit			$\mathcal{O}(T^{2/3})$	

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full	$\Omegaig(\sqrt{T}ig)$			$\Omega(T)$
Transparent		$\mathcal{O}\!\left(\sqrt{T}\;\right)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent	$\Omega(T^{2/3})$	$\tilde{\mathcal{O}}\!\left(T^{2/3}\right)$		
Bandit			$\mathcal{O}\!\left(T^{2/3}\right)$	

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full	$\Omegaig(\sqrt{T}ig)$			$\Omega(T)$
Transparent		$\mathcal{O}ig(\sqrt{T}ig)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent	$\Omega(T^{2/3})$	$\tilde{\mathcal{O}}\left(T^{2/3}\right)$		
Bandit		$\Omega(T)$	$\mathcal{O}(T^{2/3})$	

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full	$\Omegaig(\sqrt{T}ig)$			$\Omega(T)$
Transparent		$\mathcal{O}ig(\sqrt{T}ig)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent	$\Omega(T^{2/3})$	$\tilde{\mathcal{O}}\left(T^{2/3}\right)$		
Bandit		$\Omega(T)$	$\mathcal{O}(T^{2/3})$	

- THM 1. Adversarial and bandit settings are unlearnable without smoothness
- THM 2. Beyond that, revealing the winning bid avoids pathologies
- THM 3. In particular, revealing all bids drastically improves learnability (to full-info levels)

	Stochastic i.i.d.		Adversarial	
	Smooth	General	Smooth	General
Full	$\Omegaig(\sqrt{T}ig)$			$\Omega(T)$
Transparent		$\mathcal{O}ig(\sqrt{T}ig)$	$ ilde{\mathcal{O}}ig(\sqrt{T}ig)$	
Semi-Transparent	$\Omega(T^{2/3})$	$\tilde{\mathcal{O}}\!\left(T^{2/3} ight)$		
Bandit		$\Omega(T)$	$\mathcal{O}(T^{2/3})$	

- THM 1. Adversarial and bandit settings are unlearnable without smoothness
- THM 2. Beyond that, revealing the winning bid avoids pathologies
- THM 3. In particular, revealing all bids drastically improves learnability (to full-info levels)