
Multiplayer Bandit Learning
Simina Branzei

Purdue University

Toulouse Workshop on Learning in Games 
July 2024



One player 
bandit learning

THANKS

Will start with one decision maker that 

has to pick between different actions.



THANKS

Example – gold mining

Alice has 𝑛𝑛 gold mines and a gold-mining machine. 

Each day she must assign the machine to one of the mines. When the 

machine is assigned to mine 𝑖𝑖, there is a probability 𝑝𝑝𝑖𝑖 that it extracts a 

proportion 𝑞𝑞𝑖𝑖 of the gold left in the mine and a probability 1 − 𝑝𝑝𝑖𝑖 that it 

extracts no gold and breaks down permanently.

Question: to what sequence of mines

ahould the machine be assigned 

before it breaks down? 
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THANKS

Example – search

An object is hidden in one of 𝑛𝑛 boxes. The probability that a search in box 𝑖𝑖 

finds the object (assuming it is in box 𝑖𝑖) is 𝑞𝑞𝑖𝑖. The probability that the object 

is in box 𝑖𝑖 is 𝑝𝑝𝑖𝑖 and changes by Bayes’ Theorem as successive boxes are 

searched. The cost of a single search of box 𝑖𝑖 is 𝑐𝑐𝑖𝑖. 

Question: in what sequence should the boxes be searched to minimize the 

expected cost of finding                                                                                          

the object?
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Example – medical treatments

There are 𝑛𝑛 treatments (arms) that must be pulled (allocated to patients) in 
some order. Each pull results in a success or a failure. 

The sequence of successes and failures from                                                             
pulling arm 𝑖𝑖 forms a Bernoulli process with                                                            
unknown success probability Θ𝑖𝑖. 
• A success at the 𝑡𝑡-th pull yields reward 1,                                                         

while a failure yields reward zero.                                  

• At time 𝑡𝑡 = 0, each Θ𝑖𝑖 has a beta prior                                                      
distribution; the distributions are independent for different arms. 

The prior distributions are converted by Bayes’ theorem to successive 
posterior distributions as arms are pulled (Note the posterior distributions are 
beta distributions too).

Question: in what order should the arms be pulled to maximize total expected 
(discounted) reward from an infinite sequence of pulls?
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Example – medical treatments

In this case the solution is obvious: at each step, pull the arm with highest 
expected value of Θ𝑖𝑖 currently. 

E.g., if the current distribution for Θ𝑖𝑖 is 𝐵𝐵𝐵𝐵𝑡𝑡𝐵𝐵 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 , for 𝑖𝑖 =  1, … ,𝑛𝑛, pull next 
arm 𝑗𝑗 such that 

𝛼𝛼𝑗𝑗
𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗

= max
𝑖𝑖=1,…,𝑛𝑛

𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖

.

This policy is intuitive, but not always optimal.

Why? Suppose 𝑛𝑛 = 2 and 𝛼𝛼1
𝛼𝛼1+𝛽𝛽1

= 𝛼𝛼2
𝛼𝛼2+𝛽𝛽2

. Then the policy suggests that pulling 

either arm in the next step is optimal. 

But suppose  𝛼𝛼2 + 𝛽𝛽2 ≫ 𝛼𝛼1 + 𝛽𝛽1. Then the variance at arm 1 is much greater 
than at arm 2: even a few pulls can change 𝛼𝛼1

𝛼𝛼1+𝛽𝛽1
 by a lot. 

Thus an optimal strategy should pull arm 1 next, since the immediate expected 
rewards from the two arms are the same, but there is more info to be gained 
from pulling arm 1.
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Multi-armed bandit model with one player

A gambler/player can play any of 𝑛𝑛 one-armed bandit machines. The set of 

bandits is [𝑛𝑛]  =  {1, … ,𝑛𝑛}; each bandit is a Markov process.

The goal of the gambler is to maximize its expected total discounted reward.

The state of bandit 𝑗𝑗 at time 𝑡𝑡 ∈ {0,1, … } is denoted 𝑥𝑥𝑗𝑗(𝑡𝑡). 

When playing bandit 𝑗𝑗, the player receives reward 𝑅𝑅𝑗𝑗(𝑥𝑥𝑗𝑗(𝑡𝑡)) and the state of 

bandit 𝑗𝑗 changes in a known Markov                                                                           

fashion, while the states of the other                                                                                       

bandits remain unchanged.
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When playing bandit 𝑗𝑗, the player receives reward 𝑅𝑅𝑗𝑗(𝑥𝑥𝑗𝑗(𝑡𝑡)) and the state of 

bandit 𝑗𝑗 changes in a known Markov                                                                           

fashion, while the states of the other                                                                                       

bandits remain unchanged.
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Multi-armed bandit model with one player

A policy states which bandit to play next, given the history of play and the 

rewards obtained so far. Given policy 𝜋𝜋, let 𝑗𝑗(𝑡𝑡) denote the bandit played at 

time 𝑡𝑡. 

The goal is to find a policy that maximizes the expected discounted reward:

𝑉𝑉𝜋𝜋 𝑥𝑥 = E𝜋𝜋( �
𝑡𝑡=0

∞

𝛽𝛽𝑡𝑡 ⋅ 𝑅𝑅𝑗𝑗 𝑡𝑡 𝑥𝑥𝑗𝑗 𝑡𝑡 𝑡𝑡 𝑥𝑥 0 = 𝑥𝑥  

where 𝛽𝛽 is a discount factor and 𝑥𝑥 0 = 𝑥𝑥1 0 , … , 𝑥𝑥𝑛𝑛 0  is the vector of 

initial states. 

Question: what is the optimal policy? 
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The Gittins index

The optimal policy is described by functions 𝐺𝐺𝑗𝑗, which are known as Gittins 

indices. Every function 𝐺𝐺𝑗𝑗 only depends on the state of bandit 𝑗𝑗.

Gittins and Jones (‘74) showed that playing bandit 𝑗𝑗 at time 𝑡𝑡 is optimal if and if 

𝐺𝐺𝑗𝑗 𝑥𝑥𝑗𝑗(𝑡𝑡) = max
𝑖𝑖=1,…,𝑛𝑛

𝐺𝐺𝑖𝑖 𝑥𝑥𝑖𝑖 𝑡𝑡 .

That is, at each time step, compute the Gittins index of each arm and pull the 

arm with the highest index at that point in time. This strategy is deterministic 

and represents independence of irrelevant alternatives.
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𝐺𝐺𝑖𝑖 𝑥𝑥𝑖𝑖 𝑡𝑡 . 

Interpretation as retirement value: Suppose at every step the gambler can 

• retire and receive a payment 𝑝𝑝 every round from now onwards; or 

• pull arm 𝑗𝑗, receive the current reward at arm 𝑗𝑗, while keeping the option to 

retire at any point in the future. 

Given that arm 𝑗𝑗 is currently at state 𝑥𝑥𝑗𝑗, the Gittins index G(𝑥𝑥𝑗𝑗) is the infimum 

of the values 𝑝𝑝 for which retirement now is preferable.
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Special case: Bernoulli bandits
In the setting of Bernoulli bandits, the rewards are 1 (success) or 0 (failure).

Arm 𝑗𝑗 has known prior 𝜇𝜇𝑗𝑗0 on [0,1]; the success probability Θ𝑗𝑗 of the arm is 

unknown to the player and drawn from 𝜇𝜇𝑗𝑗0.

The state of arm 𝑗𝑗 at time 𝑡𝑡 is described by a pair 𝑠𝑠𝑗𝑗 𝑡𝑡 ,𝑓𝑓𝑗𝑗 𝑡𝑡 , where 𝑠𝑠𝑗𝑗(𝑡𝑡) 

and 𝑓𝑓𝑗𝑗(𝑡𝑡) are the number of successes and failures, respectively, obtained at 

arm 𝑗𝑗 until time 𝑡𝑡.

Bayesian updating is used to obtain posterior distribution 𝜇𝜇𝑗𝑗𝑡𝑡  of the success 

probability Θ𝑗𝑗 after 𝑡𝑡 steps; i.e. for any Borel set 𝐴𝐴 ⊆ [0,1], its density is given 

by 
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In the setting of Bernoulli bandits, the rewards are 1 (success) or 0 (failure).

Arm 𝑗𝑗 has known prior 𝜇𝜇𝑗𝑗0 on [0,1]; the success probability Θ𝑗𝑗 of the arm is 

unknown to the player and drawn from 𝜇𝜇𝑗𝑗0.

The state of arm 𝑗𝑗 at time 𝑡𝑡 is described by a pair 𝑠𝑠𝑗𝑗 𝑡𝑡 , 𝑓𝑓𝑗𝑗 𝑡𝑡 , where 𝑠𝑠𝑗𝑗(𝑡𝑡) 

and 𝑓𝑓𝑗𝑗(𝑡𝑡) are the number of successes and failures, respectively, obtained at 

arm 𝑗𝑗 until time 𝑡𝑡.

Note: If player pulls arm 𝑗𝑗 at time 𝑡𝑡 + 1, its expected reward given the history is

This expected reward is also the transition probability from state (𝑠𝑠𝑗𝑗(𝑡𝑡), 𝑓𝑓𝑗𝑗(𝑡𝑡)) 

to state (𝑠𝑠𝑗𝑗(𝑡𝑡) + 1, 𝑓𝑓𝑗𝑗(𝑡𝑡)).

Special case: Bernoulli bandits
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Gittins index is more than the mean of the arm
Lemma: Consider one arm with prior 𝜇𝜇. Then 𝑔𝑔(𝜇𝜇,𝛽𝛽)  ≥  𝑚𝑚 +  𝛽𝛽𝛽𝛽/2, where 
𝑚𝑚 is the mean, 𝑚𝑚1 = 1

𝑚𝑚
 ∫0

1 𝑥𝑥2 𝑑𝑑𝜇𝜇 the posterior mean at the right arm after 
observing 1 in round zero, and 𝛽𝛽 = ∫ 𝑥𝑥 −𝑚𝑚 2 𝑑𝑑𝜇𝜇 = 𝑚𝑚 ⋅ 𝑚𝑚1 −𝑚𝑚  is the 
variance of 𝜇𝜇.

Recall for discount factor 𝛽𝛽, the Gittins index 𝑔𝑔 = 𝑔𝑔(𝜇𝜇, 𝛽𝛽) of the right arm is 
defined as the infimum of the success probabilities 𝑝𝑝 where playing always left 
is optimal for a single player.
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𝑚𝑚 is the mean, 𝑚𝑚1 is the posterior mean at the right arm after observing 1 in 
round zero, and 𝛽𝛽 = 𝑚𝑚 ⋅ 𝑚𝑚1 − 𝑚𝑚  is the variance of 𝜇𝜇.

Proof sketch. Suppose the gambler (Alice) is playing the one-armed bandit 
game by herself where the right arm has distribution 𝜇𝜇 that is not a point mass 
and left arm has known probability 𝑝𝑝 = 𝑔𝑔 = 𝑔𝑔(𝜇𝜇, 𝛽𝛽). Consider the Alice strategy:

• Round zero: play right. 

• Round one: play left if 0 was observed in round zero, and right if 1 was 
observed. 

• Round two onwards: play left.

By definition of 𝑔𝑔, this Alice strategy is at most as good as retiring and receiving 
𝑔𝑔 forever. Thus 

Using 𝛽𝛽 = 𝑚𝑚 ⋅ 𝑚𝑚1 −𝑚𝑚  and rearranging        , we get 𝑔𝑔(𝜇𝜇,𝛽𝛽)  ≥  𝑚𝑚 +  𝛽𝛽𝛽𝛽/2. 
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Will summarize a framework on multiplayer bandit 

learning and results from “Multiplayer bandit 

learning, from competition to cooperation” (joint 

with Y. Peres, appeared in COLT ’21).

Multiplayer Model



• Alice and Bob play in a multi-armed bandit 

problem.

• One arm is safe (known probability p), the other is 

volatile (unknown probability of success 𝜃𝜃 with 

prior μ).

• In every round, each player

• pulls an arm

• gets the reward (0 or 1) from the arm they 

pulled, and

• observes the action of the other player but 

not their reward.

Multiplayer Model
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Utilities
𝛄𝛄𝐀𝐀 𝐭𝐭  is the random variable corresponding to Alice’s 

reward in round 𝑡𝑡; similarly 𝛄𝛄𝑩𝑩 𝐭𝐭  for Bob

Alice’s utility is: 𝚪𝚪𝑨𝑨 + 𝝀𝝀 ⋅ 𝚪𝚪𝑩𝑩, and similarly for Bob, 

where

•  𝚪𝚪𝐀𝐀 = ∑𝐭𝐭=𝟎𝟎∞ 𝛄𝛄𝐀𝐀 𝐭𝐭 ⋅ 𝛃𝛃𝐭𝐭 and 𝚪𝚪𝐁𝐁 = ∑𝐭𝐭=𝟎𝟎∞ 𝛄𝛄𝐁𝐁 𝐭𝐭 ⋅ 𝛃𝛃𝐭𝐭 

are Alice and Bob’s discounted rewards, 

respectively

• 𝛃𝛃 is the discount factor: the game stops with 

probability 1 − 𝛽𝛽 in each round (or one dollar 

today is worth 𝛽𝛽 dollars tomorrow).
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are Alice and Bob’s discounted rewards, 

respectively

• 𝛃𝛃 is the discount factor: the game stops with 

probability 1 − 𝛽𝛽 in each round (or one dollar 

today is worth 𝛽𝛽 dollars tomorrow).

Similar definition for finite horizon: 𝚪𝚪𝐀𝐀 = ∑𝐭𝐭=𝟎𝟎𝐓𝐓 𝛄𝛄𝐀𝐀 𝐭𝐭 , i.e. sum of rewards. 

Will focus on discounted game; similar statements hold for finite horizon.



Competitive setting: 
zero sum game

• 𝝀𝝀 = −𝟏𝟏: Alice’s utility is: Γ𝐴𝐴 − Γ𝐵𝐵 and Bob’s is 

Γ𝐵𝐵 − Γ𝐴𝐴 (E.g., animals competing for food or 

phone companies competing for users in a 

saturated market)



Neutral setting

• 𝝀𝝀 = 𝟎𝟎: Each player’s utility 

is their own rewards. 

• So Alice’s utility is Γ𝐴𝐴 and 

Bob’s utility is Γ𝐵𝐵 .



Cooperative setting

• 𝝀𝝀 = 𝟏𝟏: Both Alice and Bob have utility Γ𝐴𝐴 + Γ𝐵𝐵 

players are aligned, maximize total rewards 

collected     (e.g. genetically identical organisms)



Partly cooperative setting

𝝀𝝀 = 𝟏𝟏
𝟐𝟐

: Alice has utility Γ𝐴𝐴 + 1
2
⋅ Γ𝐵𝐵 ⇒ players are partly aligned (e.g. siblings – share 

½ of the genes)



History and pure  strategies

• Public history at time 𝒕𝒕: sequence of past 

actions of both players until the end of round 

𝑡𝑡 − 1.

• Private history of a player 𝒊𝒊 at time 𝒕𝒕: bits 

observed by player 𝑖𝑖 until the end of round 

𝑡𝑡 − 1. 

• Pure strategy: map that tells a player what 

action to play at each point given the public 

and private history



Randomized Strategies

Mixed Strategy: probability distribution over pure strategies

Equivalent to behavioral strategies:

• Given by map that tells at each node, what probability 

mixture to play over the actions available at that node

Expected utility: computed using the player’s beliefs about 

the private information of the other player.



Multiplayer learning in the collision model 

• players are pulling arms independently.

• cooperating—trying to maximize the sum of rewards—and can agree on a protocol 

before play, but cannot communicate during the game. 

• whenever there is a collision at some arm, then no player that selected that arm 

receives any reward.

Multiplayer bandits literature



Multiplayer learning in the collision model 

• players are pulling arms independently.

• cooperating—trying to maximize the sum of rewards—and can agree on a protocol 

before play, but cannot communicate during the game. 

• whenever there is a collision at some arm, then no player that selected that arm 

receives any reward.

• Adversarial setting: Alatur et al (2019), Bubeck et al (2019); stochastic setting: 

Kalathil et al (14), Lugosi and Mehrabian (18), Bistritz and and Leshem (18)

• May receive input about collision or not (Avner and Mannor [AM14], Rosenski, 

Shamir, and Szlak [RSS16], Bonnefoi et al [BBM+17], Boursier and Perchet [BP18])

Multiplayer bandits literature



Multiplayer bandit learning in the same feedback model

• Aoyagi (98, 11) – with two risky arms where priors have discrete support

• Rosenberg et al (13) – same model but decision to switch to the safe arm is 

irreversible

Interplay between competition and innovation modeled with bandit learning in 

R&D (D’Aspremont and Jackquemi (88), Besanko and Wu (13)

Multiplayer bandits literature



Multiplayer bandit learning, same setting except feedback is immediate (everyone 

can observe all the past actions and all past rewards) 

• Bolton and Harris (99) – free rider effect and encouragement effect: a player may 

explore more in order to encourage further exploration from others

• Cripps, Keller, and Rady (05) - characterize the unique Markovian equilibrium of the 

game 

• Heidhues, Rady, and Strack (15) - study the discrete version of this model and 

establish that in any Nash equilibrium, players stop experimenting once the 

common belief falls below a single-agent cutoff

Multiplayer bandits literature



Incentivizing exploration 

• Kremer et al (13), Frazier et al (14), Mansour et al (15) - principal wants to explore 

a set of arms, but exploration is done by stream of myopic agents

• Aridor et al (19) - empirically study the interplay between exploration and 

competition in a model where multiple firms are competing for the same market 

of usersand each firm commits to a multi-armed bandit algorithm

• Braverman et al (19) - each arm receives a reward for being pulled and the goal of 

the principal is to incentivize the arms to pass on as much of their private rewards 

as possible to the principle.

Multiplayer bandits literature



Survey on multiplayer bandits:

Boursier-Perchet 2024 summarize these various models and results.

Multiplayer bandits literature



Evolutionary biology

• How cooperation evolved in insects (ants, bees) – Hamilton (64), Anderson (84), 

Boomsma (07)

Related literature in biology



Competitive setting



Competitive setting

Zero-sum game has a value by Sion’s minimax 

theorem.

How do competing players behave?

Different hypotheses possible: they play as one 

player would (pulling the arm with the highest Gittins 

index in each round), or they both play the same arm 

in every round, or on the contrary they randomize…



Competitive setting

Zero-sum game has a value by Sion’s minimax theorem.

Theorem 1 (Competing players explore less). Suppose the safe arm has known 

probability p and the risky arm has i.i.d. rewards with unknown success probability 

with prior μ (which is not a point mass). Assume Alice and Bob are playing optimally 

in the zero sum game with discount factor β. 
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Then there exists a threshold 𝒑𝒑∗ < 𝒈𝒈, where 𝑔𝑔 = 𝑔𝑔(𝜇𝜇,𝛽𝛽) is the Gittins index of the 

risky arm, such that for all 𝒑𝒑 > 𝒑𝒑∗, with probability 1 the players will not explore the 

risky arm. 

More precisely, 𝑝𝑝∗ ≤ 𝑚𝑚⋅𝛽𝛽+𝑔𝑔
1+𝛽𝛽

, where 𝑚𝑚 is the mean of 𝜇𝜇. 
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Proof of Theorem 1 (Competing players explore less). 

Recall Lemma: 𝑔𝑔 𝜇𝜇,𝛽𝛽 ≥ 𝑚𝑚 + 𝛽𝛽𝛽𝛽 
2

, where 𝑚𝑚 = ∫0
1 𝑥𝑥 𝑑𝑑𝜇𝜇(𝑥𝑥) is the mean of the risky 

arm, 𝛽𝛽 is the discount factor, and 𝛽𝛽 = ∫0
1 𝑥𝑥 − 𝑚𝑚 2𝑑𝑑𝜇𝜇(𝑥𝑥) > 0 is the variance of 𝜇𝜇.

Suppose 𝑆𝑆𝐴𝐴∗ 𝑆𝑆𝐵𝐵∗  is a pair of optimal strategies. If 𝑝𝑝 >  𝑔𝑔, it’s easy to see neither 
player explores. So we can assume 𝑝𝑝 ≤ 𝑔𝑔. 

Consider the following Bob strategy 𝑆𝑆𝐵𝐵: 
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Competitive setting

• Play the safe arm until Alice plays the risky one, say in some round k. 

• Then play the safe arm again in round k+1 and starting with round k + 2 copy 

Alice’s move from the previous round. 

(In particular, Bob never plays the risky arm first.)



Bob’s strategy: Play the safe arm until Alice plays the risky one, say in some round k. 
Then play the safe arm again in round k+1 and starting with round k+ 2 copy Alice’s 
move from the previous round. 

Fix an arbitrary pure strategy SA for Alice: 
• If SA never “explores” (i.e. plays the risky arm) first, then: done. 
• Else, suppose SA explores first in round 𝑘𝑘:

Alice’s total reward has expectation

 E[Γ𝐴𝐴] = Γ𝐴𝐴 𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵 = ∑𝑡𝑡=0𝑘𝑘−1 𝑝𝑝 ⋅ 𝛽𝛽𝑡𝑡 +∑𝑡𝑡=𝑘𝑘∞ 𝐸𝐸 𝛾𝛾𝐴𝐴 𝑡𝑡 ⋅ 𝛽𝛽𝑡𝑡 .

Bob’s total reward has expectation:

Proof of Theorem 1 (Competing players explore less). 
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Theorem 1 shows information is less valuable in the zero sum setting. Does it have 

any value?

Theorem 2 (Competing players are not completely myopic). In the same setting of 

Theorem 1, there exists a threshold �𝒑𝒑 > 𝒎𝒎, such that for all 𝒑𝒑 < �𝒑𝒑, with probability 

1 both players will explore the risky arm in the initial round of optimal play.                                                

More precisely, �𝑝𝑝 ≥ 𝑚𝑚 + 𝛽𝛽𝛽𝛽
4

, where 𝑚𝑚 is the mean of 𝜇𝜇 and w its variance. 
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safe arm has success probability p and the risky arm has prior distribution μ that is not 
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Theorem 3 (Cooperating players explore more). Suppose Alice and Bob are players 

with aligned interests playing a one armed bandit problem with discount factor β. The 

safe arm has success probability p and the risky arm has prior distribution μ that is not 

a point mass. 

Then there exists �𝒑𝒑 > 𝒈𝒈 = 𝒈𝒈 𝝁𝝁,𝜷𝜷 , so that for all 𝒑𝒑 < �𝒑𝒑, at least one of the players 

explores the risky arm with positive probability under any optimal strategy pair 

maximizing their total reward. 

Cooperative setting

Players aim to maximize the sum of their rewards; can agree on their strategies before 
play
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Neutral setting



Utility of each player is their own reward (selfish)

Solution concepts: Nash equilibrium and perfect Bayesian equilibrium.

Player 𝑖𝑖’s strategy 𝜎𝜎𝑖𝑖 is a best response to player 𝑗𝑗’s strategy 𝜎𝜎𝑗𝑗 if no strategy 𝜎𝜎𝑖𝑖′ 

achieves a higher expected utility against 𝜎𝜎𝑗𝑗.

A mixed strategy profile (𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗) is a Bayesian Nash equilibrium if 𝜎𝜎𝑖𝑖 is a best 

response for each player 𝑖𝑖.

Neutral setting



A Perfect Bayesian Equilibrium is the version of subgame perfect equilibrium for 

games with incomplete information. A pair of strategies (𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗) is a perfect 

Bayesian equilibrium if

• starting from any information set, subsequent play is optimal, and

• beliefs are updated consistently with Bayes’ rule on every path of play that 

occurs with positive probability. 

Note: Such equilibria are guaranteed to exist in this setting; unlike Nash equilibria, 

there cannot be non-credible threats.

Neutral setting



Does each neutral player play the one player optimum strategy? (i.e. pull the arm 

with highest Gittins index in each round)

Neutral setting
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Theorem 4 (Neutral players learn from each other). Let Alice and Bob be neutral 

players in a one armed bandit problem with discount factor β. The safe arm has 

success probability p and the risky arm has prior distribution μ that is not a point 

mass. Then in any Nash equilibrium:

1. For all 𝑝𝑝 < 𝑔𝑔(𝜇𝜇,𝛽𝛽), with probability 1 at least one player explores. Moreover, the 

probability that no player explores by time t decays exponentially in t.

2. Suppose 𝒑𝒑 ∈ (𝒑𝒑∗,𝒈𝒈), where p∗ is the threshold above which competing players 

do not explore. If the equilibrium is furthermore perfect Bayesian, then every 

(neutral) player has expected reward strictly higher than a single player using an 

optimal strategy.
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Long term 
behavior

What do strategies look like in 

the long term?



The 
Rothschild 
conjecture 

• Rothschild [1974] studies a single-person two-

armed bandit, and shows that the player ends up with 

the wrong arm with positive probability. Rothschild  

conjectures that two players observing each other's 

actions may settle on different arms. 

• High level reasoning: When a single player plays a 

two-armed bandit, he settles on the wrong arm with 

positive probability because he will give up the right 

arm if he happens to have bad draws on that arm. 

Even if there are two players, therefore, they may 

settle on different arms both thinking it is the other 

player who is playing the wrong arm after having had 

bad draws on the right arm. [Discussion Ayoyagi ‘98]

• Ayoyagi [98, 01] proves convergence in discrete 

case.
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The 
Rothschild 
conjecture 

Rothschild  writes

• ``... One could well ask whether they (stores) 

would be content charging the prices that they 

think are best while observing that other stores 

presumably rational are charging different prices. I 

do not think this is a particularly compelling point. 

• Unless store A has access to store B's books, the 

mere fact that store B is charging a price different 

from A's and not going bankrupt is not conclusive 

evidence that A is doing the wrong thing. Who is to 

say A's experience is not a better guide to the true 

state of affairs than B's?''



Aumann’s agreement theorem (1976): 

rational players with common knowledge of 

each other's beliefs cannot agree to 

disagree.



Aumann’s agreement theorem (1976): 

rational players with common knowledge of 

each other's beliefs cannot agree to 

disagree.

But the bandit setting has elements not found in the setting of 

Aumann’s theorem: players keep getting different information.



Long term 
behavior

• When λ = 1 there are Nash equilibria where 

(aligned) players do not settle on the same arm; 

one player alternates infinitely often between the 

two arms.

Example (Nash equilibria where players do not 

converge, λ= 1). Suppose Alice and Bob are aligned 

players in a one-armed bandit problem with 

discount factor β, where the left arm has success 

probability p and the right arm has prior distribution 

μ that is a point mass at m > p. 

Then for every discount factor β >1/2, there is a 

Nash equilibrium in which Bob visits both arms 

infinitely often.
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Alice Bob



Long term 
behavior

Theorem 5 (Competing and neutral players 

settle on the same arm). 

Suppose Alice and Bob are playing a one-

armed bandit game, where the left arm has 

success probability p and the right arm has 

prior distribution μ such that μ(p) = 0. 

Then in any Nash equilibrium, in both the 

competing (λ=−1) and neutral (λ= 0) cases, 

the players eventually settle on the same 

arm with probability 1.



Long term 
behavior

Theorem 5 (Competing and neutral players 

settle on the same arm). 

Intuition: if both players explore finitely 

many times, then we are done. Otherwise, 

there is a player, say Alice, who explores 

infinitely many times. Then Alice will 

eventually know which arm is better, so if 

she continues exploring, then Θ > p.

So if Bob sees that Alice keeps exploring, he 

will eventually realize that Θ > p and will 

join her at the right arm. 

Challenge: Θ might be very close to p, 

which delays the time at which Alice 

determines the better arm.
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will eventually realize that Θ > p and will 

join her at the right arm. 

Challenge: Θ might be very close to p, 

which delays the time at which Alice 

determines the better arm.



Discussion and open questions
Do competing and neutral players always have optimal pure strategies or is 

randomization required sometimes?

With multiple risky arms: if there exist optimal pure strategies, can they be obtained 

from an index analogous to the Gittins index for a single player?

Is �𝑝𝑝 = 𝑝𝑝∗? (Monotonicity)

Patent protection: each player learns the other player’s rewards, but with a delay of k 

rounds, or is given a “patent” – the other player cannot explore for k rounds after its 

first exploration

When there are multiple risky arms, do neutral and competing players eventually 

settle with probability 1 on the same arm in every Nash equilibrium? For neutral 

players, this is Rotschild’s conjecture.

Computational issues – finite memory for players?
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