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Decision Making under
Uncertainty

Decision Maker = Choose between different Lotteries

probability ‘N 0.2 0.15 0.1 0.25 0.2
outcome 10 5 2 0 -1 -3
probability 0.15 0.05 0.6 0.2
Lo
outcome 8 5 -1 -2

Ly
||




Expected Utility Theory (EUT)

(Von Neumann-Morgenstern 1947)

Lottery

02 015 01 025 0.2

5 2 0 1 3
[ utility
u(x)
Expected utility of lottery L
U(L) = 0.1u(10) + 0.2u(5) + 0.15u(2) + 0.1u(0) Outiome
+0.25u(—1) + 0.2u(—3)

Lottery with higher Expected Utility is preferred. Utility function
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Allais Paradox
(1953)

Allais
Experiment 1 Experiment 2
Gamble 1A Gamble 1B Gamble 2A Gamble 2B
Winnings Chance Winnings Chance Winnings Chance Winnings Chance
$1 million | 100% | $1 million 89% Nothing | 89% Nothing  90%
Nothing 1% $1 million | 11%
$5 million  10% $5 million  10%

People often do NOT follow EUT!



Behavioral Aspects




Cumulative Prospect
Theory (CPT)

Kahneman - Tversky Cumulative Prospect Theory (1992)

Reference Point
reR

Gains : Outcomes > r

Losses: Outcomes < r

Kahneman Tversky



Cumulative Prospect
Theory (CPT)

Kahneman Tversky

Kahneman - Tversky Cumulative Prospect Theory (1992)
Reference Point
re R
Gains : Outcomes > r
Losses: Outcomes < r
valuev 4 Gains

Value Function

v: R —R
1. v(x) is continuous in x - .
Outcome
2. v(r)=0
Losses

3. Itis strictly increasing in @

reference point



Cumulative Prospect
Theory (CPT)

Kahneman - Tversky Cumulative Prospect Theory (1992)

Kahneman Tversky

weighted prcibability

A w

Probability Weighting Functions 1
wt :[0,1] — [0, 1] w™ :10,1] = [0,1]
Gains Losses
. they are continuous

1
2. they are strictly increasing
3. wT(0)=0 and wT(1)=1

probability
»P




Cumulative Prospect

Suppose 7 = 0 Gains Losses
7 — geerlglivA 0.1 0.2 015 0.1 | 025 0.2
outcome 10 ) 2 0] -1 -3

CPT Value of Lottery L
V(L) = V9" (L) 4+ V'os5(L)
VIun (L) = v(10)[w™ (0.1)] + v(5)[w™ (0.1 4+ 0.2) — w™(0.1)]
+ v(2)[w™ (0.1 4+ 0.2+ 0.15) — w™ (0.1 + 0.2)]

Vioss(L) = v(=3)[w™ (0.2)] + v(=1)[w™ (0.2 + 0.25) — w ™ (0.2)]



Allais Paradox Resolved

Experiment 1

Chance
89%
1%

Gamble 1A Gamble 1B
Winnings Chance Winnings
$1 million | 100% $1 million
Nothing
$5 million

Suppose r = $1 million

V(Lottery 1A) =0

V(Lottery 1B) = v(4)w+(0.10) + v(-1)wr(0.01) vt

10%

V(Lottery 2A) = v(-1)uw-(0.89)

V(Lottery 2B) = v(4)w+(0.1) + v(-1)u-(0.90)

Experiment 2
Gamble 2A Gamble 2B
Winnings | Chance Winnings Chance
Nothing | 89% Nothing  90%
$1 million | 11%
$5 million | 10%

A
Value Function

< >

Weighting Function




Why CPT?

®* Accommodates several empirically observed behavioral features
®* Mathematically tractable

® Generalization of EUT

“... there is no good scientific reason why it (prospect
theory) should not replace expected utility in current
research, and be given prominent space in economics
textbooks.”

— Colin F. Camerer
in “Prospect Theory in the wild: Evidence from the Field”, 1998



Outline

e CPT Equilibrium Concepts - Nash and Correlated
equilibrium



Game Setup
= (N, (Ai)ien, (Ti)ien)
N = {1,2, ...,n} Set of players
a; € A, Actions for player i

x; H A — R Payoff function for player i
a=(ai,...,0an) Action profile

a € A= H A; Set of Action profile

a_i € A= H 4; Set of Action profile of opponents



Game Setup (EUT)

N = {1727°'°7n} Set of players
a; € A; Actions for player i
T H A; — R Payoff function for player i

J .
For each player 1 € N

Utility function

()
|

Expected Utility
U;(L)



Game Setup (CPT)

N={1,2,...,n} Set of players
a; € A; Actions for player |

z; : | [ A; = R Payoff function for player |
J

For each player i € N

Reference point Value function Probability weighting
T3 V; () function
CPT value function

Vi(L)



Strategic Behavior in
Games

John Nash (1928-2015) Robert Aumann (b. 1930)
Nash Equilibrium Correlated Equilibrium



Correlated Equilibrium (CE)

Mediator

_ / ~3 S _-*/i/% a 1 R 4 | | -t |

Samples an action profile ;g - =
(A1y.eeyQiynnn,lp) f
from a distribution

pe A(A)



Correlated Equilibrium (CE)

Mediator

Samples an action profile g e =
(A1y.eeyQiynnn,lp)

- W

Faces a lottery

from a distribution . .
corresponding to each action
ue A(A) ( \
Li(,uaaiaai) = 9 (V(a—i)axi(&iaa—i)> ‘
L R(—/ Ja_.cA_,
,LL(CLQ;, a—i)




EUT Correlated Equilibrium
(EUT CE)

Definition (Aumann 1987)
A distribution p € A(A) is an (EUT) Correlated Equilibrium

If no player with EUT preferences has an incentive to
deviate from his signaled action, i.e.

UZ(L@(/% A, @z)) > UZ(LZ(M7 s CNLZ))

for all i, a;,a; such that u;(a;) >0




EUT Correlated Equilibrium
(EUT CE)

Definition (Aumann 1987)

A distribution p € A(A) is an (EUT) Correlated Equilibrium
If no player with EUT preferences has an incentive to
deviate from his signaled action, i.e.

Ui(Li(p, ai, a;)) 2 Ui (Li(p, @i, i)
for all i, a;,a; such that u;(a;) >0

Incentive Constraints



EUT Correlated Equilibrium
(EUT CE)

Definition (Aumann 1987)
A distribution p € A(A) is an (EUT) Correlated Equilibrium

If no player with EUT preferences has an incentive to
deviate from his signaled action, i.e.

Ui(Li(p, ai, a;)) 2 Ui (Li(p, @i, i)
for all i, a;,a; such that u;(a;) >0

Incentive Constraints

Denote the set of all correlated equilibria by Crur(I')



CPT Correlated Equilibrium
(CPT CE)

Definition (Keskin 2017)
A distribution p € A(A) is a CPT Correlated Equilibrium if

no player with CPT preferences has an incentive to deviate
from his signaled action, i.e.

Vil Li(ps asyai)) > Vi(Li(p, ai, a;))
for all 7, a;,a; such that u;(a;) > 0

Incentive Constraints

Denote the set of all CPT correlated equilibria by C(I')



Nash Equilibrium (NE)

pe AT (A)={peAld): pla) = pa(ar) X -+ X pplan) Vae A}

M1 2 Hn
LB
9. & &
W
,U—z':HMj
J70
Player i
s
&

—1



EUT Nash Equilibrium

(EUT NE)

Best response of player i to a product distribution p € A*(A)

BR; (1)

P= 3

f

\

X

%

pi € A(A)[supp(p;) C arg m

aX

cA;

Ui(Li(p—s, ai))

Assigns positive probability only to

optimal actions

\

/




EUT Nash Equilibrium
(EUT NE)

Best response of player i to a product distribution p € A*(A)

( A

BRi(p) = pi € A(A;)[supp(p;) C arg max Uy(Li(p—i, ai))

\ /

Definition (Nash 1951)
A product distribution p € A*(A) is EUT Nash equilibrium if

u* € BR;(i") for all 4




EUT Nash Equilibrium
(EUT NE)

Best response of player i to a product distribution p € A*(A)

f

BRi(p) = pi € A(A;)[supp(p;) C arg max Uy(Li(p—i, ai))

\

Definition (Nash 1951)
A product distribution p € A*(A) is EUT Nash equilibrium if

u* € BR;(i") for all 4

Existence guaranteed by Kakutani fixed point theorem

\

/




CPT Nash Equilibrium
(CPT NE)

Best response of player i to a product distribution p € A*(A)

BRZ(,U) — ,LL;k| SU.pp(,u;k) C arg ;{ﬂeaj(- ‘/; (LZ(/’LZ7CLZ))}

Definition (Keskin 2017)
A product distribution p € A*(A) is CPT Nash equilibrium if

u* € BR;(p") for all




CPT Nash Equilibrium

Best response

BRZ(/L) T= <

(CPT NE)

of player i to a product distribution p € A*(A)

pi | supp(p;) C arg max Vi (Ly(p—i. ai))}

Definition (Keskin 2017)

A product d

istribution p € A*(A) is CPT Nash equilibrium if
u* € BR;(p") for all

Existence guaranteed by Kakutani fixed point theorem



Outline

Cumulative Prospect Theory (CPT)

CPT Equilibrium Concepts - Nash and Correlated
equilibrium

Results on the Geometry of CPT Equilibrium
Notions

Learning in CPT Games



Geometric Properties
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Correlated
Equilibrium

Product
Distributions

Representative picture for 2x2 games Coordination 2x2 game
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Geometric Properties
of Equilibria

NEpur(T) = A*(A) N Cpyr(T)
NEcpr(T) = A*(A) N C(T)

Correlated
Equilibrium

Product
Distributions

Representative picture for 2x2 games

Coordination 2x2 game



Under EUT, Linearity In
Probability helps!

Expanding Incentive Constraints using Ui(L) = Z ui(x)pi
> pla) (i (zi(ai, a—g)) — ug (23(as, a—;))) >0
a_;,€EA_;

for all 2, a;,a; € A;
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The set Ceur(lN) is a convex polytope



Under EUT, Linearity In
Probability helps!

Expanding Incentive Constraints using Ui(L) = Z ui(x)pi

> @) (ui (@i, ay)) = ui (2i(@i,a-))) >0

a_;,€EA_;

for all 2, a;,a; € A;

The set Ceur(lN) is a convex polytope

What happens under CPT?



CPT Example with
Non-convex C(I')

Player 2

B =1/w(0.5) = 2.299

7“1:7“2:()

Player 1

26,1 pB+1,1 0,1 1,1 05
1.99,0 1.99,0 1.99,0 1.99,0 vi(2) = va(2) = 2

s

P re I e C 1 998 0.6 | :—00 //'

w:r (p) = exp{—(—1np)7i} J




CPT Example with
Non-convex C(IN)

Player 2

23,1 p+1,1 0,1 1,1
1.99,0 1.99,0 1.99,0 1.99,0

Player 1
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CPT Example with
Non-convex C(IN)

Player 2

23,1 p+1,1 0,1 1,1
1.99,0 1.99,0 1.99,0 1.99,0

Player 1

Hodd — (0.5, O, 0.5, O)

Action O is player 1’s Best Response to
piay P {un — (0,0.5,0,0.5)

Action 1 is player 1’s Best Response to  funif = (0.25,0.25,0.25,0.25)

The set C(I') is Non-convex!



CPT Example

Player 2

B =1/w{(0.5) = 2.299

7‘1:7“220

2B,1 pB+1,1 0,1 1,1 05 1
1.99,0 1.99,0 1.99,0 1.99,0 vi(z) = va(2) = 2

Player 1

Hodd = (0.5, O, 0.5, O)

Action O is player 1’s Best Response to
PIay P {un — (0,0.5,0,0.5)

Action 1 is player 1’s Best Response to  ftuniy = (0.25,0.25,0.25,0.25)

Vi(L1 (poad, 0)) = 2wy (0.5) = 2, Vi(L1(ftoda, 1)) = 1.99
Vl (Ll(:ue’venv O)) =1+ 5’(01'_(05) — 27 Vl (Ll(,uevena 1)) = 1.99



Our results on the
structure of CE (CPT)

Result (P., Anantharam 2017)
For any 2x2 game, the set C(I') is a convex polytope.




Our results on the
structure of CE (CPT)

Result (P., Anantharam 2017)
For any 2x2 game, the set C(I') is a convex polytope.

Result (P., Anantharam 2017)
We provide an example of a 3x3 game for which the set
C(I') is disconnected.




NE and CE (EUT)

NEEUT(F) — A*(A) M CEUT(F)

Theorem (Nau et al 2003)
The Nash equilibria all lie on the boundary of the correlated
equilibria polytope.
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NE and CE (EUT)

NEEUT(F) — A*(A) 0 CEUT(F)

Theorem (Nau et al 2003)
The Nash equilibria all lie on the boundary of the correlated

equilibria polytope.

Comments:

1. Boundary of the correlated equilibrium set when it is viewed as a subset of
A(A).

2. |If the set of correlated equilibria is not “full dimensional” then the statement
IS trivial.

3. The statement cannot be strengthened because in the case of less than full
dimensional C(I'), Nash equilibria can lie in the relative interior of this convex
polytope.



NE and CE (EUT)

Theorem (Nau et al 2003)
The Nash equilibria all lie on the boundary of the correlated

equilibria polytope.

Proof sketch:

A Nash equilibria renders every player indifferent among all of her own
strategies, hence it satisfies all of the incentive constraints with equality, at
least one of which is non trivial if the game is non trivial, and hence lies on one

of the faces of the convex polytope CEgyr.

> 1) (wilhi(siy 5-45)) — wi(hi(diy s-3))) > 0,

S_,ES5_;
for all ¢ and for all s;,d; € S;



NE and CE (CPT)
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NEcpr(I') = A*(A) N C(T)

Theorem (P., Anantharam 2017)
The CPT Nash equilibria all lie on the boundary of the CPT
correlated equilibria set.
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1. Only need to focus on completely mixed CPT NE.

2. CPT Nash equilibrium satisfies all of the incentive constraints with equality.

3. There exists a direction in the probability space along which at least one
Incentive constraint is violated.



NE and CE (CPT)

NEcpr(I') = A*(A) N C(T)

Theorem (P., Anantharam 2017)
The CPT Nash equilibria all lie on the boundary of the CPT
correlated equilibria set.

Proof sketch

1. Only need to focus on completely mixed CPT NE.

2. CPT Nash equilibrium satisfies all of the incentive constraints with equality.

3. There exists a direction in the probability space along which at least one
Incentive constraint is violated.

4. Thus CPT Nash equilibria cannot have a ball around it that is completely
contained inside the set of CPT correlated equilibria.



A Useful Lemma

Two distinct lotteries (let p;> 0 for j=1,...,1)
probability E4S! P2 : : : Dt
Ly =
outcome I L2 : : : Lt
probability g4l P2 . : . Dt
outcome R Y2 : : : Yt

that satisfy either of the two properties
1. they are not similarly ranked or

2. neither of them dominates the other

Lo =

then 3 a direction 6 = (64, ..., 6n), Z 6i= 0 such that
Vip+edx)—V(p+ed,y) <V(p,x)—V(p,y)
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* Neoclassical economics:
 hyper-rational players,
 completely understand the structure of the game,
e have a coherent model of others’ behavior,
* make rational calculations of infinite complexity,
* and all of this is common knowledge



Learning in Games

e Neoclassical economics:

hyper-rational players,

completely understand the structure of the game,
have a coherent model of others’ behavior,

make rational calculations of infinite complexity,
and all of this is common knowledge

* Learning in Games:

boundedly-rational players,
players make decisions on limited data,

 and use simple predictive models



Learning in Games
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e (Classical solution concepts (like NE and CE) can be
“recovered” via this route.
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 Calibrated learning, Adaptive heuristics, Follow the
perturbed leader: Correlated Equilibrium



Learning in Games

e (Classical solution concepts (like NE and CE) can be
“recovered” via this route.

e Examples:

e Fictitious play: Nash Equilibrium in zero sum games,
potential games, 2x2 games

 Calibrated learning, Adaptive heuristics, Follow the
perturbed leader: Correlated Equilibrium

 Question: What if the players behave according to
CPT?



Repeated games

e A Game is played repeatedly at each stept=1,2,...

» Player i’s action sequence: a;, a;,

o Action profile at step t: a* = (a%,...,al)

e History at step t: H! = (al,a2, . -aat_l)

* Randomized strategy sequence for player i at step t:
Uf - HY — A(Az')

 Empirical distribution at step t: ft

~ #action profile a appears in H*

£(a) = o




Foster Vohra
result

Foster

* At every step t, each player i predicts a distribution ,ut_i - A(A—i)
on the action profile of the other players.

 Based on this prediction she plays a best EUT response af



Foster Vohra
result

on the action profile of the other players.

 Based on this prediction she plays a best EUT response af

Theorem (Foster, Vohra 1997)
If each players’ predictions are calibrated, then the
Empirical Distribution of play convergence to the set of

correlated equilibria. ,
3 lim d(¢", Cpor(I') =0
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Calibrated Prediction

Nature vs Forecaster

o Sep 1.2 3 4 5 6 7 8 .
e o 1 1 0o o 0 1 0 ..

‘IO% /0% 80% 30% 10% 10% 80% 30%

Nature: y1,y2, ... € S.
Forecaster: 91,02, ... € A(S).

N (q,t) = # Forecaster predicts q up to step ¢

#Forecaster predicts ¢ and Nature plays y up to step ¢
N(q,1)

N(q,t)

p(q,y,t) =

lim > |p(g, y,t) — q(y)|

t— 00
qgeQ?

= 0 for all y € S,




Example of CPT calibrated
learning

Player 2/Player 3

23,1 p+1,1 0,1 1,1
1.99,0 1.99,0 1.99,0 1.99,0

Player 1

e |f Player 2 Action # Player 3 Action then all players
receive a payoff of -1.

e |f Player 2 action = player 3 action then Player 1 receives
first payoff shown in table and players 2 and 3 each
receive the second payoff.



Non convergence of Calibrated

learning to CPT correlated equilibrium
Hodd = (0.5,0,0.5,0)

Action 0 is player 1’s Best Response to
play P {Mn — (0,0.5,0,0.5)

Action 1 is player 1’s Best Response to  /tunit = (0.25,0.25,0.25,0.25)

Player 1 Action 0

Player 2 Action I 1 1l 1V I Il
Player 3 Action I Il 1 \Y I 1
Player 1 Forecast Modd Meven Modd Meven Modd Meven

0.25 0.25 0.25 0.25
0 0 0 0




Structure of CE:
Non-convexity Is the issue

C(I',i,a;) C A(A_;): distributions for which action a; is
player i’'s Best Response
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Structure of CE:
Non-convexity Is the issue

C(I',i,a;) C A(A_;): distributions for which action a; is
player i’'s Best Response

C(T,i) :={p € A(A)|u(-|a;) € C(I',4,a;), Va; € supp () |

Distributions for which player i has no incentive to deviate

C(F) — mz’Ech(Fv Z)

D(I') = Nienco(C(T, 7))
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a; € A; Actions for player |

z; : | [ A; = R Payoff function for player |
J



Mediated Games

N =4{1,2,...,n} Set of players
a; € A; Actions for player |

z; : | [ A; = R Payoff function for player |
J

b; € B; Signal set for player |
b= (b1,...,bn) Signal profile
B = H B; Set of Signal profiles

o B — A(A;) Strategy of player i



Mediated Games

Mediator

Samples an signal profile 'a
(bl,...,bi,...,bn)

from a distribution

v € A(B)



Mediated Games

Mediator

Samples an signal profile ¢ ,a ﬁ
(bfh e 7d[_)’i{ b 'tg b’n) Faces a lottery
rom a distribution corresponding to each action

Li(,b;,a;) :=
———

v
filailb)) == Y w_i(b_ilbi) ] o;(b)(a;)

b_;€B_; JEN\1



Mediated CPT NE

Best response of player |

BR;(¢,0) := {af . B" — A(A;)| for all b; € B;

supp(o; (b;)) C arg meaj? Vi (Li(v, b, a4)) }

*

o’ (b;) Assigns positive probability only to
optimal actions



Mediated CPT NE

Best response of player |

BR;(¢,0) := {Uf . B" — A(A;)| for all b; € B;

supp(o; (b;)) C arg meajf Vi (Li(v, b, a4)) }

Definition (P., Anantharam 2018)
A randomized strategy profile o is CPT Mediated Nash
equilibrium if

0,; © BR/L(w,O') for all 2




Mediated CPT CE

Distribution induced by 1 and strategy profile o on the set of action profiles

(¥, o)(a) == ) 1(b) H oi(bi)(ai)

beB



Mediated CPT CE

Distribution induced by 1 and strategy profile o on the set of action profiles

(¥, o)(a) == > () || oi(bs)(a:)

beB €N

Definition (P., Anantharam 2018)

A distribution py € A(A) is a mediated CPT correlated
equilibrium iff there exists a signal system Bi, a mediator

distribution ¥ and a mediated CPT Nash equilibrium ¢
with respect to them such that

n,o) = p




Mediated CPT CE

Theorem (P., Anantharam 2018)
The set of all Mediated CPT correlated equilibria is

D(I') = Njenco(C(T', 7))

Corollary 1

For EUT games, D(I') = C(I).

Corollary 2
For 2x2 CPT games, D(I") = C(I').




Convergence of Calibrated
learning

e At every step t, each player i predicts a distribution ,ut_i - A(A—i)
on the action profile of the other players.

e Based on this prediction she plays a best CPT response af
Theorem (P., Anantharam 2018)
If each players’ predictions are calibrated, then the

Empirical Distribution of play convergence to the set of

mediated CPT correlated equilibria.
lim d(¢', D(T)) =0

t— 00




Converse

Theorem
| If the sets C (T, i, a;) do not have any isolated points, then for

any u € D(I') there exists a sequence of play and corresponding
assessments that are calibrated such that the Empirical

Distribution converges to U.

Such games are Generic



KeIIy Ne}yj
A \

Kelly (1997) - Charging and rate control for elastic traffic

ork Setup




Kelly Network setup




Kelly Network setup

L1 L2 L3 Lj L  Allocation

User

2 n




Kelly Network setup

L1 L2 L3 Lj L  Allocation

User

2 n




Kelly Network setup

337;>O

Ln  Allocation

User

n
L

Link Constraints



System problem in the Kelly model

SYSTEM(U, A, C)
Maximize .
Z Ui(x;)
i=1
subject to

Z r; < Cj, V],
i€R;

vV
=

<

<

Li



User problem in the Kelly model

USER; (U;, \;)

Maximize

subject to

w;: Amount per unit time that user ¢ is willing to pay

A;: charge per unit flow that the network presents to user @



Network problem in the Kelly model

NETWORK (A, C; w)

Maximize
i
subject to
Z r; < Cj, Vj,
i€R;
z; > 0, Vi

Since w; = A\;z; having found x; the network can present \; to user 7



Lottery Allocation

Lott
L = L, Lo ; L, Aliocation
n] = 1 2 3 1 n User
m| = 1 2 J m
c = C1 C2 Cj Cm

T probability A 0.3 025 0.35
'I: J—
allocation 10 5 3 6




Implementable Allocation
Schemes

User 1

Alternative




Implementable Allocation
Schemes

User 1

Uniformly
0.25 Distributed

Alternative




Alternative

permutations and decision
weights

User 1

Alternative




System Problem

SYS|z, m; h,v, A, |

Maximize Z Vi(L;)

Subject to Z yi(l) < ¢;, V9,1
ER;



System Problem

SYS|z, m; h,v, A, |

n k
Maximize Y Y hi(l)vi(zi(1))

1=1 [=1

Subject to Z yi(l) < ¢;, V9,1
ER;



System Problem

SYS[Z, T, h, v, A, c]

Maximize Y Y hi(l)vi(zi(1))

Subject to Z zi(mi(l)) < ¢;,V5,1



Fixed permutation problem

Maximize > » hi(Dvi(zi(1))

1=1 [=1

Subject to Z zi(mi(l)) < ¢, V5,1

iERj

m € Sk, Vi



Fixed permutation problem

Maximize > » hi(Dvi(zi(1))

1=1 [=1

Subject to Z zi(mi(l)) < ¢, V5,1
iERj |

Fix w; € Sk, Vi



Fixed permutation problem

SYS_FIX|z; 7, h,v, A, ]

.
Maximize > > i (zi(1

1=1 [=1
Convex
o _ : Optimization
Subject to Z zi(mi(1)) < Cj, V7,1
iERj

Zi(l) > 2z (L +1),Vi,1



User pricing through menu
of rates

Menu of Vector of Incremental Lottery
Rates Budgets Allocation Allocation




User problem

USER[mZ, T, hz‘, Uz']

k

Maximize Z h; (1)v; (Z Zz((ss))) _ Z m; (1)

s=l|

Subject to m;(l) > 0,VI



Network Problem

 Eisenberg, Gale (1959) - Consensus of subjective probabilities: the pari-

mutuel method
- Kelly (1998) - Rate control for communication networks: shadow prices,

proportional fairness and stability
- Jain, Vazirani (2010) - Eisenberg-Gale markets: Algorithms and Game

Theoretic properties



Theorem

rates
ri (1)

such that

For any fixed permutation, there exist equilibrium

—_—_——n

Equilibrium

budgets incremental allocation  lottery allocations

m; (1) 0; (1) 2 (1)

(/ 1

) = 0; (ri (1)

— () — 27 (L + 1)

solves the fixed permutation system problem

SYS_FIX|z;m, h,v, A, c]




lterative Process

NET|6;m,w, A, |

AP A
r | N\
A W
'¢"m1 2 : m2 Tn
User 1 User 2

USER[mZ, T, hi, fUi]

A
. My,
.

User n




Example

n = 10 Players m =1 link Link capacity c = 10
] pi’
’U/L(QZ'Z) = .CC,L-Z, i € [O, 1] wz(pz) — (p,yz n (1 Z_p)%-)l/%; Vi € (07 1]

10 T 1 T

0 1

Value function Probability weighting function
B; = 0.88 v = 0.61



Example

n = 10 Players m =1 link Link capacity c = 10
8, pi'
/U’L(x?/) — jSlj i € [Oa 1] wz(pz) — (p% 4 (1 _p)%)l/% s Vi € (07 1]

o ]

0 1

Value function Probability weighting function
B; = 0.88 v = 0.61

Deterministic Allocation
10



Example

n = 10 Players
() — P 3.
vi(z;) = 7", B; €0, 1]

o ]

Value function
B; = 0.88

Deterministic Allocation
10

m =1 link Link capacity c = 10
p;’
wz(pz) — (p% n (1 . p)%)l/% s Yi € (07 1]

0 1

Probability weighting function
Yi — 0.61

Lottery Allocation
14.17



Mechanism Design

Stage 1
Stage 2

PR Yl

Allocation

ﬁ Agent Signals Mapping

‘ Allocations

Agent System Operator
(Type)

Outcome
for Agent 1

Outcome
for Agent 2

\ Outcome

for Agent 3
Outcome

Mapping



Mechanism Design

Stage 1
Stage 2

PR Y

Allocation

H Truthful reporting Mapping

‘ Allocations

Agent System Operator
(Type)

Outcome
for Agent 1

Outcome
for Agent 2

\ Outcome

for Agent 3
Outcome

Mapping

Revelation Principle (under EUT)
* WLOG assume signal set = type set for each player
- restrict attention to direct truthful mechanisms




Mechanism Design

Outcome
Stage 1 for A t1
Stage 2 or Agen
# Outcome
# for Agent 2

_ Allocation
Truthful reporting Mapping \ Outcome
'ﬁ' for Agent 3
Outcome
‘ Mapping
Allocations
Agent System Operator
(Type)

Importance of truthful strategies
* Limits on information availability
e Computational and cognitive limitations
e Users with different levels of access to information

and computation.



Mechanism Design

Outcome

Stage 1 for A t1
g Stage 2 or Agen

# Outcome

* for Agent 2

_ Allocation
ﬁ Truthful reporting Mapping Outcome

for Agent 3

Outcome
‘ Mapping
Allocations

Agent System Operator
(Type)

Does not hold under CPT in second-price sealed-bid auctions
(Karni and Safra 1989)



Mediated Mechanism Design

Outcome
for A t
Stage 2 or Agent 1
# Outcome
# for Agent 2

Allocation \
Mapping Outcome

for Agent 3

‘ i I Outcome

Agent Signals Mapping
Stage 1 Allocations

Agent System Operator
(Type)



Mediated Mechanism Design

Stage 0
Mediator Messages

I ol o G

Stage 1
Truthful reporting

Allocations

Agent System Operator
(Type)

Outcome
for Agent 1

Outcome
for Agent 2

\ Outcome

for Agent 3

Outcome
Mapping

Revelation Principle (under CPT)
- WLOG assume signal set = type set for each player
» restrict attention to direct truthful mediated mechanisms




Concluding remarks

 CPT provides a more general framework than EUT.
« CPT seems to more accurately model human agents..
« CPT based designs seem to have tangible benefits.

o Some structural results in EUT continue to hold under
CPT in modified form (calibrated learning, mechanism
design).

« CPT models provide stronger robustness guarantees rel-
ative to the classical techniques of EUT.



Thank you!




No Regret Learning

Question: Does there exist a learning strategy that does
converge to C(IN)?

Related to the notion of No regret learning



= Outcome ¢ B+1 0

No Regret Learning

Player 1 imagines replacing his action 0 by action 1

Player 1

Player 2 |

Player 2 I 1 1l IV

Regret = (1/2)[V(L2) - V(L1)]

Ml EIJIIINA 2/3 1/3 0 0

= -‘J
Player 2 | 1 1l \Y; | 5- !
ooy 199 199 199 1.99 I
MO EINIVA 2/3  1/3 0 0 .




No Regret Learning

Player i imagines replacing his action @; by a;

K (as, 1) = €4(ay) [v;- ({(e"(arilar), @il a i)}m,)

—V ({(ft_i(&—i‘ai)a z;(a;, a—i))}ZJ }



No Regret Learning

Player i imagines replacing his action a; by a;
K (0s, ) = €0(a0) | Vi ({(€1 ladan), i@, a)F2)
Ve (€ anilad. mlan a1,
e Player i has no regret learning strategy if

her regrets tend to be arbitrarily small almost surely,
irrespective of other players’ strategies.



No Regret Learning

Player i imagines replacing his action @; by a;
K (0s, ) = €0(a0) | Vi ({(€1 ladan), i@, a)F2)
-V (€ aila (e a) ) |

e Player i has no regret learning strategy if
her regrets tend to be arbitrarily small almost surely,
irrespective of other players’ strategies.

 No regret learning is equivalent to convergence to empirical
distribution

limsup K} (a;,a;) < 0Va;,a; € A; & & — C(T,4)

t— 00



No Regret Learning

Player i imagines replacing his action @; by a;

K (as, 1) = €4(ay) [v;- ({(e"(arilar), @il a i)}m,)
V(€ sladdas), a(an, as))}) }

e Player i has no regret learning strategy if
her regrets tend to be arbitrarily small almost surely,
irrespective of other players’ strategies.

 No regret learning is equivalent to convergence to empirical
distribution
limsup K} (a;,a;) < 0Va;,a; € A; & & — C(T,4)
t— 00
e Question: Does there exists a no regret learning strategy?



Answer - No! Example

Player 2

23,1 p+1,1 0,1 1,1
1.99,0 1.99,0 1.99,0 1.99,0

Player 1

] _ Hodd = (0.5,0,0.5,0)
Action O is player 1’s Best Response to
even — (07 057 07 05)

Action 1 is player 1’s Best Response to  [tunit = (0.25,0.25,0.25,0.25)



Action O is player 1’s Best Response to {

Answer - No! Example

Hodd — (0.5, 0, 0.5, O)
leven = (0,0.5,0,0.5)

Action 1 is player 1’s Best Response to  /tunif = (0.25,0.25,0.25,0.25)

Strateqy for player 2

P

P
P
P

ay randomized strategy
ay randomized strategy
ay randomized strategy
ay randomized strategy

lodd at step 1,
leven at step 2,
lodd at step 2Tk <t < Tk+1,

leven at Step Tkl <« t < 2Tk+1,



Relaxations

System Prob. Relaxed System Prob.

SYS|z,m; h,v, A, c] SYS REL|z, M; h,v, A, (]

n k n k
Maximize Z Z hi(l)vi<zi (l)) Maximize Z Z hi(l)vi(zia))

i=1 I=1 =1 1=1

Subiect to Z zi(mi(l)) < ¢, 95,1 Subiect to Z Mizi < ¢;1,¥]

1€ER; 1ER;
zi(l) >z (1 4+ 1),Vi,1 zi(l) > z; (Il +1),Vi, VI
i € Sk, Vi M, Doubly Stoc.

Theorem: For any system problem,

Average System Prob.

SYS_AVG|z; h,v, A, |
n k

Maximize Z hi(l)vi(zi(l))

1=1 [=1

k
1 .
Subiect to > = > zi(l) < ¢,V

N
SH
/N
S~
N~—
'V
N
SH
/N
S~
_+_
—_
N——
<
\_,N'
<C
S~

Wps < Wpr — VWopa — Wda — Wdr — st



Observations

The Relaxed system problem and the Average system problem are convex
optimization problems.



Observations

The Relaxed system problem and the Average system problem are convex
optimization problems.

Theorem
The Primal System problem is NP Hard.




Observations

The Relaxed system problem and the Average system problem are convex
optimization problems.

Theorem
The Primal System problem is NP Hard.

Proof idea

Integer partition problem can be reduced to a primal system problem
and hence NP hard
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