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Most algorithms are benchmarked on toy environments




Most algorithms are benchmarked on toy environments

L) Energy systems must deal with

* physical constraints
* distribution shifts
* distributed, multi-agent control



Introducing Caltech/UCSD SustainGym Q

Five environments (so far):

Adaptive EV charging (local and multi-location)

Grid-scale battery storage management for price arbitrage

Data center dynamic capacity management (VCCs, local and global)
Cogeneration management of a plant producing steam and electricity
Smart building management to meet temperature requirements

1 e NH

Caltech/UCSD Collaboration led by Christopher Yeh with co-authors:

Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen,
Mohammad Hosseini, Azarang Golmohammadi, Yuanyuan Shi, Yisong Yue




Introducing Caltech/UCSD SustainGym Q

Environments feature

* Focus on marginal carbon emissions

* Real-world data and models from industry partners

o Distribution shifts in demand & environmental parameters
* Physical constraints

* Mix of discrete and continuous actions

 Multi-agent settings




mple: Carbon-first Data Centers
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Data centers use 50% more electricity than the UK
Data centers make up >20% electricity use in Ireland
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GPT-3.5

@ ~33x classic Al /query

GPT-3.5

OpenAl .
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[Patel & Ahmed]
[Luccioni, Jernite, Strubell]



..and utilities are just giving up!



|nfrastructure > Data Centres
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Dominion Energy admits it can't meet
jemands in Virginia

The auth©
(DDA) say
data cent§

The high-voltage lines simpy cant handle more power. says the utility

luty 29. 2022 By: peter Judge O Have your say

Jorth American utility Dominion Energy says it may not be able to meet demands for power in Ashburn. Northern Virginia,
jelaying puilding projects in the world's fastest-grow‘mg data center hub by many years.

Yominion has told customers that it has power supplies. but can nO longer guaran\ee to deliver the quantity of electricity
-ustomers want via overhead power\ines. |f these warnings prove true, this could stall projects with billions invested. and
_oudoun County's tax revenue would take 3 severe hit if the hub of data centers in Ashburn stalls. For now. local authorities

ynd industry podies are struggling t© unders\and the sudden warning from Dominion.

Dominion supplies electricity in Virginia. North Carolina, and South
Carolina, as well as natural gas to parts of the US. In the data center-rich

counties of Loudoun. prince William. and Fauquier. most of the electricity 1S
carried by overhead powerlines marching along roads - a delivery method
that has led 0 protests.

Pror==="=

Loudoun County has 26 million square feet of data center space with 5

million more in deve\opment and many more projects p\annedA Data center
eauipment taxes provide one-third of the Countv's tax income. but has

(Image credit: Getty \mages)

Data centres around the world are facing pressure to become more susta'mab\e




Data centers must be adaptive & grid-integrated



e The Keyword Latest stories

DATA CENTERS AND INFRASTRUCTURE

Our data centers now work harder
when the sun shines and wind blows

Apr 22,2020 - 3min read
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Google Cloud Contact sales Get started for free

Solutions & technology v Ecosystem Vv Developers & Practitioners Transform with Google Cloud Q

Blog

Infrastructure

Supporting power grids with demand
response at Google data centers

October 3, 2023
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best of Next. other times and locations, without impacting the Google services you use
every day.
=
At Google, we work to run our data centers as efficiently as possible — and we've
taken ambitious actions to become an energy efficiency leader. We also aim to




DeepMind

But ML/AI,tooIs are not in use in practice...
(an't afford to “fail at scale”

BLOG POST
RESEARCH

DeepMind Al Reduces Google Data
Centre Cooling Bill by 40%

rom smartphone assistants to image recognition and translation, machine learning already helps us in our

weryday lives. But it can also help us to tackle some of the world's most challenging physical problems -
uch as energy consumption. Large-scale commercial and industrial systems like data centres consume a
5t of energy, and while much has been done to stem the growth of energy use. there remains a lot more to
lo given the world's increasing need for computing power.

\educing energy usage has been a major focus for us over the past 10 years: we have built our own SUper-

fficient servers at Google, invented more efficient ways to cool our data centres and invested heavily in

reen energy sources, with the goal of being powered 100 p

ercent by renewable energy. Compared to five

ears ago, we now get around 3.5 times the computing power out of the same amount of energy: and we

ontinue to make many improvements each year.
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Example: Capacity provisioning with on-site solar & storage
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Average cost

3500 A

3000 A

2500 A

2000 A

1500 A

Example: Capacity provisioning with on-site solar & storage

Deep RL-based

Goal

Optimization-based

~1.0 ~0.5 0.0 0.5 1.0
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Normalized cost

Example: EV charging at JPL with co-located solar generation
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Performance

Model-free

Robustness/Safety
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Performance

Model-free

I Black=bex Al/ML
*

°~J

Robust/adversarial training revers171, fatzetal 171

[Maganti17], [Duttaet al 18], [Tjeng et al 18], [Gehr 18,], [Salman 19], [Bak 20],
[Fazlyab19, 22], [Robey et al 21,22], [Eastwood et al 23]. ...

Post-training verification puangetal17], [tuperetal 18],
[Ivanovet al 19], [Shuklaet al 19], [Matnietal 20], [Fazlyabetal 22], ..

Model-based RL in dynamical systems frec o1,

[Kakade et al 20], [Simchowitz & Foster 20], [Lale etal 21], ...

Lyapunov-based policy learning ouetaizs),
[Richards et al 18], [Chang et al 19], [Jinetal 20], [Shietal 21], ...

Model-free policy search fraeetolzs) [woiietais], [

etal19], [Mohammadi et al 19], [Lietal19], [Quetal 20], ...

SafE/ RObUSt RL [Garcia & Fernandez 15], [Fisac et al 19], [Taylor et al

20], [Hewig et al 20], [Panagantiat al 21, 22], [Shietal21,22], ..

\ 4 Robustness/Safety



Performance

Untrusted Expert
1

This talk:
Learning-augmented algorithms

\ 4 Robustness/Safety



(Trammg DD This talk:
Learning-augmented algorithms
\\Untrusted Advice . f

;' AI/ML |
Input / - o |
. \ Meta Algorithm Action :
E Online  |Trufed Advice |
'. Algorithm - | :'

______________

Treated as black boxes
Allows adoption of new Al tools by combining with current trusted approach



(Tralmng DD This talk:
Learning-augmented algorithms

AUML JUntrusted Advice . f

Input

< Meta Algorithm

Online Trusted Advice
Algorithm

________________________________________________

How should advice be used?
Switch between them? Combine them? Hedge?



/Goal 1: Consistency

(Nearly) Match the performance of the untrusted expert (Al tool), when it does well.
Cost(Alg) < (1 + 6)Cost(Untrusted)

Goal 2: Robustness
Always ensure a worst-case performance guarantee.

KC 0st(Alg) < Vaig Cost(Opt), wherey,y 4 is “closeto” vy sted

bicompetitive guarantee
N

r N\
Goal 3: Smoothness
Trade off between robustness and consistency smoothly in prediction error.
SRip for
Goal 4: Frugality / Succinctness today
Use only as much advice as necessary to be robust and consistent.
\ J



The study of learning augmented algorithms with untrusted advice is exploding

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, studied in a wide variety of settings:

« skirental [Purohit et al 18] [Angelopoulos etal e« data center capacity [Rutten & Mukherjee 21]
19] [Bamas et al 20] [Wei & Zhang 20], ... demand response [Lee et al 21]

bloom filters [Mitzenmacher 18] online optimization [Christianson et al 21]
online set cover [Bamas et al 20] online conversion problems [Sun et al 21]
online matching [Antoniadis et al 20] convex body chasing [Christianson et al 21]
metrical task systems [Antoniadis et al 20] linear quadratic control [Li et al 21]
Scheduling [Scully et al 22] Online knapsack [Sun et al 22]

Bibliography of 200+ papers at https://algorithms-with-predictions.github.io/



The study of learning augmented algorithms with untrusted advice is exploding

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, studied in a wide variety of settings:

« skirental [Purohit et al 18] [Angelopoulos etal e« data center capacity [Rutten & Mukherjee 21]
19] [Bamas et al 20] [Wei & Zhang 20], ... demand response [Lee et al 21]

bloom filters [Mitzenmacher 18] online optimization [Christianson et al 21]
online set cover [Bamas et al 20] online conversion problems [Sun et al 21]
online matching [Antoniadis et al 20] convex body chasing [Christianson et al 21]
metrical task systems [Antoniadis et al 20] linear quadratic control [Li et al 21]
Scheduling [Scully et al 22] Online knapsack [Sun et al 22]

Real applications in industry have emerged:
video streaming, co-generation management, data center capacity management,
robotic manipulation, drone trajectory planning, ...



This talk: Algorithm design & fundamental limits on the
use of learning-augmented algorithms.

Examples:
1. Appetizer:

Convex Body Chasing = (arbon-aware data centers

2. Main Course:
MDPs - Adaptive EV charging
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How do you decide where to move
without Rnowing the future?



Convex body chasing has a long history & many applications

Applications to data centers, video streaming, robotics, drone trajectory tracking, “learning to
control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], ...

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an
0 (min (d, Jd log(T)))-competitive ratio. Any online algorithmsis Q(v/d).

dimension of action space



Convex body chasing has a long history & many applications

Applications to data centers, video streaming, robotics, drone trajectory tracking, “learning to
control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et
al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], ...

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an
0 (min (d, Jd log(T)))-competitive ratio. Any online algorithmsis Q(v/d).

Choices of algorithm are quite conservative. Advice can help.






Trusted Advice (e.g. Steiner point)

’ """ 'L— Untrusted Advice (e.g. Al prediction)

X0



Trusted Advice (e.g. Steiner point)

*
*
*
*
*
*
*
’O
*

Untrusted Advice (e.g. Al prediction)



Untrusted Advice
(e.g. Al prediction)

Trusted Advice (e.g. Steiner point)



But the advice could have been bad...



But the advice could have been bad...



A primer on learning-augmented algorithm design



Treats advice as
black boxes.



Attempt 1: A Switching Algorithm

1. Follow the untrusted advice until total distance trave
2. Follow the trusted advice until total distance traveleg s 7.
3.5etr « 2randrepeat.

Optimize to bias
toward consistency

o the switching algorithmis
rem. For nested convex body chasing,
e (1+ §)-consistent & O (dD/&)-robust.

VWRLRO
\ h:.- !
»“‘. -
e
e
o )

diameter of action space




Attempt 1: A Switching Algorithm

;. Eo::ow tne untrusted advice until total distance trave

. Follow the trusted advice until total distance tr '
avel

3.5etr « 2randrepeat. N

Optimize to bias
toward consistency

Theorem. Fof nesteqgonvex body chasing, the switching algorithmis
¥ &)-consistent & 0 (dD/&)-robust. ;
<

E—p—
“Best of both worlds”: Black-box Al/ML imbued with robustness guarantee.
Constant factor loss in robustness yields near-optimal consistency.




Theorem. For general convex body chasing, any switching
algorithm that is robust must be at least 3-consistent.

A Fundamental Limit

o the switching algorithmis
rem. Fof nestedgonvex body chasing,
e T 6)-consistent 8 O (dD/&)-robust.




A Fundamental Limit Tthem. For ggneral convex body chasing, any s.witching
algorithm that is robust must be at least 3-consistent.

Theorem. For general convex body chasing, any
memoryless algorithm that is robust cannot have

non-trivial consistency.

Consistency better than if advice
had been ignored




Attempt 2: A Bandit Algorithm
Apply multiplicative weights a la [Blum & Burch 2000]

B,

Multiplicative Weights [Blum & Burch 2000]

Update weights for each expert

t+1 _ .t Costy +(ALG;)/D
WilG, = Whrg, - (1 — B)costett 2

Update probability of following each expert

wa G
pit+1 =" /ZWALGi
Switch to other expert with probability proportional to

mass transferred from pj; . to pﬂ};}.




Attempt 2: A Bandit Algorithm
Apply multiplicative weights a la [Blum & Burch 2000]

31 20201. For general convex body chasing,

Theorem [Antoniadis et

multiplicative weights has cost

(1 + &) - 4nCost(Untrusted) + 0(D/8) [Consistency]

and
(1+6): O(d)Cost(Opt) + 0

\

(D/6) [Robustness]

Aggregate prediction quality of
untrusted advice




Attempt 2: A Bandit Algorithm
Apply multiplicative weights a la [Blum & Burch 2000]

31 20201. For general convex body chasing,

Theorem [Antoniadis et

multiplicative weights has cost

(1 + §) - 4nCost(Untrusted) + 0(D/¥) [Consistency]

and
(1+06)- O(d)Cost(Opt) + 0

(D/6) [Robustness]

Multiplicative Weights has been used to incorporate untrusted advice broadly.
(This result extends to metrical task systems, MTS. )



Attempt 2: A Bandit Algorithm
Apply multiplicative weights a la [Blum & Burch 2000]

Theorem | Antomadls et al 2020]. For general convex body chasing,

ts has cost

and
(d)Cost(Opt) + 0(D)/8) [Robustness]

Diameter dependence



Attempt 3: Exploiting Convexity
Adaptively choose a convex combination of the two advice points.

Bt+1



Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points.

B t+1
Bicompetitive Line Chasing
If Costy¢(x)>8 - Costy (%)

then follow X,
Else, take a greedy step from X, ; toward x;,
with a series of radial projections depending on
1 Cost, (X)) and dist (X, x¢).




Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points

asing, the interpolation algorithmis

Theorem, For general convex body ch
(V2 +56 )-consistent & O (d/5%)-robust.

Dependence on the diameter D is gone!



Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points

5l convex body chasing, the interpolation algorithm is
(V2 + 6 \nsistent & O (d /6)-robust.

Adding robustness means sacrificing performance of black-box Al.
Is this a fundamental limit?

Theore




A Fundamental Limit | Iheorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/9) C-robust.




A Fundamental Limit | Iheorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/9) C-robust.

B,, diameter 2°¢



A Fundamental Limit | Iheorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/9) C-robust.

X
®

Xt = Xt+1
D

| | Bt+1
B,, diameter 2° diameter 21




A Fundamental Limit | Iheorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/9) C-robust.

Xt
e rr :
*e..]. Distance 2°
Xt m— xt+1 ............
@ T dey
Xt+1
| | Btyq -
B,, diameter 2¢ diameter 2

Key Property: Costg ¢4 (X) = dist(X1, X¢41)
(Note: L1 distance, not Euclidean distance.)



A Fundamental Limit | Iheorem. For general convex body chasing, givena C-
competitive algorithm, any (1 + &)-consistent

algorithm is 22(1/9) C-robust.

Xt
- — .
*e..]. Distance 2°
Xt = Xegp1 | e,
L D
Xt+1
| | Btyq -
B,, diameter 2¢ diameter 2

1. Any consistent algorithm must start following ;.
2. No algorithm can move more than & /2 probability to x; in any round.

S0,at T = 1/4, only Y2 probability can be on x,
which means the total cost is at least 27 = 21/9,



An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

DART

If Costy¢(x)>6/4 - Costy (%)
then follow X,

Else, update probability of follow;

(Wasserstein-1) for pj; ;. — Pﬂaj




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 291/ 0 (d)-robust.




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 291/ 0 (d)-robust.

Theorem. For convex body chasing with bounded diameter
DARTis (1 + &)-consistentand O (1/&)-robust withan
additve O (D /) .

Theorem. For metrical task systems DARTis (1 + 6)-
consistent and2°(1/9) 0 (log? n)-robust.

Theorem. For k-server, DART is (1 4 &)-consistent and
O (k/&)-robust.

Theorem. For k-function chasingin IR, DARTis (1 + 6)-
consistentand O (k /&)-robust.




An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

Theorem. For general convex body chasing, DART is
(1 + &)-consistent and 291/ 0 (d)-robust.

Matches state of the art

15tw/o D dependence

Prior: 0 (1/8%~1)

15tw/o D dependence

Theorem. For convex body chasing with bounded diameter
DARTis (1 + &)-consistentand O (1/&)-robust withan
additve O (D /) .

Theorem. For metrical task systems DARTis (1 + 6)-
consistent and2°(1/9) 0 (log? n)-robust.

Theorem. For k-server, DART is (1 4 &)-consistent and
O (k/&)-robust.

Theorem. For k-function chasingin IR, DARTis (1 + 6)-
consistentand O (k /&)-robust.
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Average cost

Example: Capacity provisioning with on-site solar & storage

3500 A
3000 A
2500 A . 3
DeepRL | I gl ™ S
2000 - -
DART
1500 - Optimization based

-1.0 -0.5 0.0 0.5 1.0

Sim-to-real gap / Distribution shift



Exploiting convexity yields optimal robustness-consistency
tradeoffs in online convex body chasing.

Many open problems remain
What if there are long-term constraints on actions?
What if decisions need to be decentralized?

What if there are multiple predictions?
What about the stochastic model?



This talk: Algorithm design & fundamental limits on the
use of learning-augmented algorithms.

Examples:
1. Appetizer:

Convex Body Chasing = (arbon-aware data centers

2. Main Course:
MDPs - Adaptive EV charging



What if the learning

Untrusted Adv

isn't a black box?

ML/AI
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Online
Algorithm
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Meta Algorithm




What if the learning

isn't a black box?
(Tralmng DaD

Untrusted Advice . f
Q-value estimate

Value-based RL

e —

Input

< Meta Algorithm

Online Trusted Advice
Algorithm




Can untrusted Q-value advice improve upon black-box advice

in terms of robustness-consistency tradeoffs in MDPs?
First asked by [ Golowich, Moitra. Can Q-Learning be Improved with Advice? COLT 2022]



Markov Decision Processes
Finite-horizon Markov Decision Process (MDP) represented by (XC, U, T, P, ¢)

« X isthestate space, withnorm || - || 5 (continuous or finite)
« Uistheaction space, with norm || - ||, (continuous or finite)
* T isthehorizon

P isthetransition Rernel at step ¢

* ¢, isthe cost functionat step ¢

* Single trajectory (not episodic)

Environment

policy 1

Xe~Pe(c |xp—q, Up—1) Uy = e (X¢) \

solar generation, arrivals/departures, etc. cost: ¢ (x¢, ug)



Markov Decision Processes
Finite-horizon Markov Decision Process (MDP) represented by (XC, U, T, P, ¢)

Goal: minimize expected cost J(r) = Ep [ cp (xy, e ()]

Optimal Cost: /* = inf ] ()
T

Q-valve: Q7 (x,u) = infEp .| ?f:tl ¢ (g, ug)|xe = x,up = ul
T

Environment

9 ‘ policy T
Xe~Pe(c |xp—q, Up—1) Uy = e (X¢) \

solar generation, arrivals/departures, etc. cost: c¢ (e, ur)



Markov Decision Processes with Untrusted Advice

From a value-based policy, i.e.,
ii, = argmin, Q; (x;, v)

Black-boxadvice ~ vs.  Grey-box advice

Untrusted policy 77 Untrusted policy 77
suggests action i, suggests action i,

%' estimate Q, of long-term

cost impact of action

Standard model \> Gives information about the

of untrusted advice expected gain from the action!
(as in appetizer)



Markov Decision Processes with Untrusted Advice

Black-boxadvice ~ vs.  Grey-box advice

Untrusted policy 77 Untrusted policy 77
suggests action i, suggests action ii; &
estimate Q, of long-term
cost impact of action

" Sim-to-real translation Multi-task learning %




Markov Decision Processes with Untrusted Advice

Black-boxadvice ~ vs.  Grey-box advice

Untrusted policy 77 Untrusted policy 77
suggests action i, suggests action ii; &
estimate Q, of long-term
cost impact of action

J(m) <k-J for any MDP & perfect predictions.

: .1z is k-consistent if -
Consistency: 7 is fe-C ) < [ - J*forany MDP and any predictions.

Robustness: 7z is L-robust if ] (70




How do learning-augmented algorithms work?

Given trusted advice (2z,) and untrusted advice (i),
how do we determine the action u,?

Four typical designs
1. Switching algorithms
2. Bandit Algorithms (randomized switching)
3. (Fixed) Convex Combination
4. Adaptive Convex Combination
a.R.a. Projection-based algorithms

We saw these
in the appetizer



How do learning-augmented algorithms work?

Given trusted advice (2z,) and untrusted advice (i),
how do we determine the action u,?

€8 wop’
Four typical designs o tguafantee 5

o™ tati/ity LTy Syste
. . . o ms
7 Bamdit-Atgorithms-{randomized-switching)-

4. Adaptive Convex Combination
a.R.a. Projection-based algorithms




Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

2. How should radius R, be set?

trusted: u, 1. What is a trusted algorithm?

‘ ~
untrusted: 1i,

\> From a value-based policy, i.e.,

fi, = argmin, Q¢ (x., v)



Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

trusted: i, 1. What is a trusted algorithm?

Goal: Define “trust” for black box algorithms

. ~
untrusted: i,



Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

trusted: i, 1. What is a trusted algorithm?

We call an algorithm trusted if it is Wasserstein-robust

— WP (ptl:tz(p)’ptl:tz(p’))

—

. ~
untrusted: i,

|

Definition. r-locally p-Wasserstein-robust if forany t; < t. and pair of actions p, p” within Wasserstein
distance r, 17, (pt1:t2 (P), Pt,:t, (p’)) < s(t; — t1)W,(p, p") for some function s satisfying
Y. s(t) < C,foraconstant C.




Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

trusted: i, 1. What is a trusted algorithm?

We call an algorithm trusted if it is Wasserstein-robust

A form of perturbation stability satisfied by many

common policies (see paper), e.g.,

untrusted: i, - Robust MPCin LTV

* Discrete MDP: Any policy with regular Markov chain.

See [Lin et al 21,22,23] for a broader context.
Other applications in multi-agent RL, regret-optimal
control, adaptive control, policy selection, ...



Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

2. How should radius R, be set?
For black-box advice, information is limited.
Simpleidea: R, = A||ti; — ugl|,
where A € [0,1]isa “trust parameter’.

trusted: u, y
t

. ~
untrusted: i,



Theorem: PROP with black box predictions is
1+ 0((1 — A)D) consistent and
* ROB + O(AD) robust

K dlameter of action space

approximation ratio of the robust policy




Theorem: PROP with black box predictions is
1+ 0((1 — A)D) consistent and
* ROB + O(/AD) robust

Theorem: No projection-based algorithm with black box predictions can be
* 1+ o((1 — 2)D) consistent and
 ROB + o(/AD) robust.




Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

2. How should radius R ; be set?
For grey-box advice, extra information valuable.

|dea: Use the Temporal Difference (TD) error (&)
5. T=R; !

trusted: u, y
t

. ~
untrusted: i,



Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.
Set radius R; to ensure robustness-consistency tradeoff.

2. How should radius R ; be set?
For grey-box advice, extra information valuable.

|dea: Use the Temporal Difference (TD) error (&)

B! ’
Rt - [”at o ﬂt” _ L_E 5s(xs: xs—llus—l)
o Q s=1

untrusted: i, where L, is the Lipschitz coefficientfof Q &
(3 is a trust parameter

trusted: u,

Approximate TD error

Cs—l(xs—lius—l) + igfés(x:s: V) — Qs—l(xs—li Us_q)



Theorem: PROP with black box predictions is
1+ 0((1 — 2A)D) consistent and
* ROB + O(AD) robust

Theorem: No projection-based algorithm with black box predictions can be
* 1+ o((1 — 2)D) consistent and
* ROB + o(AD) robust.

Significant improvement from Q-value predictions!

Theorem: PROP with grey-box predictionsand 8 = 1is
* 1-consistent and
* ROB + o(1) robust.




An example Adaptlve electnc vehlcle charging

- ..-
- e -
- )
A ¥ T




Cging at alteh

Xev1 = Aexe + Brug + ft(xtﬂ{t)
battery dynamics  uncertain
residuals

Trusted algorithm (77 ): Robust MPC depends only on LTV battery dynamics
Untrusted algorithm (77): RL can learn residuals better (if no distribution shift)



big distribution shifts

Pai_d charging starts Stay at home order
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PROP exploits predictions while maintaining robustness to distribution shift



Q-value advice can improve upon black-box advice
in terms of robustness-consistency tradeoffs in MDPs.

Many open problems remain

* |Improved lower bounds on grey-box or black-box advice?

* |mproved algorithms?

* End to end analysis including sample complexity trade-offs?
e  (ther forms of “grey box" information?

* Benefits from other forms of advice, e.g., predictions of P, ?



This is just the tip of the iceberg for
understanding learning augmented algorithms...



(Tralnlng DaD

\\Untrusted Advice F
-

;' ML/A ‘} |
Input ! < - Action :
E Online  |Trusted Advice |
'. Algorithm :'
| 4
m, ; 9
Yai How should advice be used?

D,,

" Switch between them? Combine them?



What if the learning

Untrusted Adv

isn't a black box?

ML/AI
B—

Online
Algorithm

Trusted Advice

ice f
>

Meta Algorithm




(Tralnlng DaD

ML/A JUntrusted Advice | f

Input

< Meta Algorithm

Online Trusted Advice
Algorithm

Can we move beyond robustness & consistency?
Average-case? Smoothness? Frugality? Memory-dependence?



What quantity should be predicted?

(Tra,n,ng DD Costs? Actions?

ML/A JUntrusted Advice . f

< Meta Algorithm

Online Truste§Advice
Algorithm

________________________________________________

What if there are multiple untrusted/trusted advisors?
What if you're not sure which is the trusted advisor?



Input

What is the value of uncertainty
quantification of predictions?

(Tralmng DaD

ML/A JUntrusted Advice | f

\ Meta Algorithm

Online Trusted Advice
Algorithm




.

\\Untrusted Advice
>

Meta Algorithm

Trusted Advice

What if the ML model is trained online?



(Tralnlng DaD

\\Untrusted Advice
>

ML/AI
B—

Input

Online Trusted Advice

Algorithm

What if the model needs to be learned?

Meta Algorithm




Learning-Augmented Algorithms for MDPs

Adam Wierman, Caltech

TLi,RYang, G Qu, G Shi, C Yu, AWierman, S Low. Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions.
Sigmetrics 2022

CYeh, JYu, Y Shi, A Wierman. Robust Online Voltage Control with an Unknown Grid Topology. E-Energy 2022.

N Christianson, T Handina, A Wierman. Chasing Convex Bodies and Functions with Black-Box Advice. COLT 2022.

Y Hu, G Qu, A Wierman. On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. NeurIPS 2022.

N Christianson, J Chen, A Wierman. Optimal Robustness-Consistency Tradeoffs for Learning-Augmented Metrical Task Systems.
AlStats 2023.

D Rutten, N Christianson, D MuRherjee, A Wierman. Online Non-convex Optimization with Untrusted Advice. Sigmetrics 2023.

JYu, D Ho, A Wierman. Online Stabilization of Unknown Networked Systems with Communication Constraints. Sigmetrics 2023.
TLi,RYang, GQu, Y Lin, AWierman, S Low. Certifying Black-Box Policies with Stability for Nonlinear Control. IEEE J of Control Sys. 2023.
Y Lin, J Preiss, E Anand, Y Li, Y Yue, A Wierman. Online Adaptive Controller Selection in Time Varying Systems. NeurlPS 2023.

TLi, Y Lin, SRen, AWierman, S Ren. Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions.
NeurlPS 2023.

B. Sun, J. Huang, N. Christianson, M. Hajiesmaili, A Wierman. Online Algorithms with Uncertainty-Quantified Predictions. ICML 2024.
N Bhuyan, D MuRherjee, A Wierman. Best of both worlds: Stochastic and adversarial convex function chasing. ICML 2024

New(ish) book on

/ﬁ (Case studies done using SustainGym
A 6 ! heavy tails!
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