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Are AI tools ready? 

AI can potentially give us more resilient, sustainable,

 and autonomous energy systems…



[Pei et al 2017]



[Pei et al 2017]

→



• Agreed with physicians 41% of time

• 7% of answers deemed harmful by physicians

[Lee et al 2023]



Most algorithms are benchmarked on toy environments



Energy systems must deal with  

• physical constraints

• distribution shifts

• distributed, multi-agent control

Most algorithms are benchmarked on toy environments



Introducing Caltech/UCSD SustainGym 

Five environments (so far): 

1. Adaptive EV charging (local and multi-location)

2. Grid-scale battery storage management for price arbitrage

3. Data center dynamic capacity management (VCCs, local and global)

4. Cogeneration management of a plant producing steam and electricity

5. Smart building management to meet temperature requirements
  

Caltech/UCSD Collaboration led by Christopher Yeh with co-authors: 
Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen, 

Mohammad Hosseini, Azarang Golmohammadi, Yuanyuan Shi, Yisong Yue



Environments feature

• Focus on marginal carbon emissions 

• Real-world data and models from industry partners

• Distribution shifts in demand & environmental parameters

• Physical constraints

• Mix of discrete and continuous actions

• Multi-agent settings

Introducing Caltech/UCSD SustainGym 



An example: Carbon-first Data Centers



AI’s environmental footprint is enormous



Data centers use 50% more electricity than the UK

>

Data centers make up >20% electricity use in Ireland



~ 2x

~100 x to train

/ query

~ 33x  classic AI /query

[Luccioni, Jernite, Strubell]

[Patel & Ahmed]



…and utilities are just giving up!





Data centers must be adaptive & grid-integrated







But ML/AI tools are not in use in practice…

Can’t afford to “fail at scale”



Sim-to-real gap / Distribution shift
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Example: Capacity provisioning with on-site solar & storage
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Goal

Sim-to-real gap / Distribution shift

Optimization-based

Deep RL-based





An example: Adaptive electric vehicle charging





No
rm

al
iz

ed
 c

os
t

Deep-RL based

Optimization-based

Distribution shift

Example: EV charging at JPL with co-located solar generation
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• Robust/adversarial training [Ehlers 17], [Katz et al 17], 

[Maganti 17], [Dutta et al 18], [Tjeng et al 18], [Gehr 18,], [Salman 19], [Bak 20], 

[Fazlyab 19, 22], [Robey et al 21,22], [Eastwood et al 23]. …

• Post-training verification [Huang et al 17], [Kuper et al 18], 

[Ivanov et al 19], [Shukla et al 19],  [Matni et al 20],  [Fazlyab et al 22],  …

• Model-based RL in dynamical systems [Recht 19], 

[Kakade et al 20], [Simchowitz & Foster 20], [Lale et al 21], …

• Lyapunov-based policy learning [Chow et al 18], 

[Richards et al 18], [Chang et al 19], [Jin et al 20], [Shi et al 21], …

• Model-free policy search [Fazel et al 18], [Malik et al 18], [Bu 

et al 19], [Mohammadi et al 19], [Li et al 19], [Qu et al 20], …

• Safe/Robust RL [Garcia & Fernandez 15], [Fisac et al 19], [Taylor et al 

20], [Hewig et al 20],[Panaganti at al 21, 22],  [Shi et al 21, 22], …

Model-free

Model-based

=
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Learning-augmented algorithms
This talk:



AI/ML

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

Learning-augmented algorithms
This talk:

Treated as black boxes 

 Allows adoption of new AI tools by combining with current trusted approach



AI/ML

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

How should advice be used?

Switch between them? Combine them? Hedge? 

Learning-augmented algorithms
This talk:



(Nearly) Match the performance of the untrusted expert (AI tool), when it does well.

Always ensure a worst-case performance guarantee.

Goal 2: Robustness

Goal 1: Consistency

Use only as much advice as necessary to be robust and consistent.

Goal 4: Frugality / Succinctness

Trade off between robustness and consistency smoothly in prediction error.

Goal 3: Smoothness

Skip for

today

𝐶𝑜𝑠𝑡 𝐴𝑙𝑔 ≤ 1 + 𝛿 𝐶𝑜𝑠𝑡(𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑)

𝐶𝑜𝑠𝑡 𝐴𝑙𝑔 ≤ 𝛾𝐴𝑙𝑔 𝐶𝑜𝑠𝑡 𝑂𝑝𝑡 , where 𝛾𝐴𝑙𝑔 is “close to” 𝛾𝑡𝑟𝑢𝑠𝑡𝑒𝑑
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The study of learning augmented algorithms with untrusted advice is exploding 

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, studied in a wide variety of settings:

 • ski rental [Purohit et al 18] [Angelopoulos et al 

19] [Bamas et al 20] [Wei & Zhang 20], … 

• bloom filters [Mitzenmacher 18]

• online set cover [Bamas et al 20]

• online matching [Antoniadis et al 20]

• metrical task systems [Antoniadis et al 20]

• Scheduling [Scully et al 22]

• data center capacity [Rutten & Mukherjee 21]

• demand response [Lee et al 21]

• online optimization [Christianson et al 21] 

• online conversion problems [Sun et al 21]

• convex body chasing [Christianson et al 21]

• linear quadratic control [Li et al 21]

• Online knapsack [Sun et al 22]

Bibliography of 200+ papers at https://algorithms-with-predictions.github.io/



The study of learning augmented algorithms with untrusted advice is exploding 

Introduced by [Lykouris & Vassilvitskii, 2018] in the context of online caching

Since then, studied in a wide variety of settings:

 • ski rental [Purohit et al 18] [Angelopoulos et al 

19] [Bamas et al 20] [Wei & Zhang 20], … 

• bloom filters [Mitzenmacher 18]

• online set cover [Bamas et al 20]

• online matching [Antoniadis et al 20]

• metrical task systems [Antoniadis et al 20]

• Scheduling [Scully et al 22]

• data center capacity [Rutten & Mukherjee 21]

• demand response [Lee et al 21]

• online optimization [Christianson et al 21] 

• online conversion problems [Sun et al 21]

• convex body chasing [Christianson et al 21]

• linear quadratic control [Li et al 21]

• Online knapsack [Sun et al 22]

Real applications in industry have emerged: 
video streaming, co-generation management, data center capacity management, 

robotic manipulation, drone trajectory planning, …



This talk: Algorithm design & fundamental limits on the 

use of learning-augmented algorithms. 

Examples: 

1. Appetizer: 

Convex Body Chasing → Carbon-aware data centers

2. Main Course:

MDPs → Adaptive EV charging
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How do you decide where to move 

without knowing the future?

𝑥0



Convex body chasing has a long history & many applications

Applications to data centers, video streaming, robotics, drone trajectory tracking, “learning to 

control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et 

al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], …

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an 

𝑂 min 𝑑, 𝑑 log 𝑇 -competitive ratio.  Any online algorithms is Ω 𝑑 . 

dimension of action space



Choices of algorithm are quite conservative. Advice can help.

Convex body chasing has a long history & many applications

Applications to data centers, video streaming, robotics, drone trajectory tracking, “learning to 

control” and “safe control”, among others.

Exciting algorithmic progress in recent years [Antoniadis et al 16], [Bansal et al 20], [Bubeck et 

al 19], [Sellke 20], [Argue 20], [Bubeck et al 20], [Argue 21], …

Theorem [Bubeck et al 20]. Moving to the Steiner point of the body each round obtains an 

𝑂 min 𝑑, 𝑑 log 𝑇 -competitive ratio.  Any online algorithms is Ω 𝑑 . 



𝐵1

𝑥0



𝑥1

𝐵1

ො𝑥1

𝑥0

Untrusted Advice (e.g. AI prediction)

Trusted Advice (e.g. Steiner point)
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But the advice could have been bad…
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A primer on learning-augmented algorithm design



Attempt 1: A Switching Algorithm

1. Follow the untrusted advice until total distance traveled is 𝑟.  

2. Follow the trusted advice until total distance traveled is 𝑟.

3. Set 𝑟 ← 2𝑟 and repeat.  Treats advice as

black boxes.
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Optimize to bias

toward consistency

diameter of action space



Attempt 1: A Switching Algorithm

1. Follow the untrusted advice until total distance traveled is 𝑟.  

2. Follow the trusted advice until total distance traveled is 𝑟.

3. Set 𝑟 ← 2𝑟 and repeat.  

Optimize to bias

toward consistency



A Fundamental Limit Theorem. For general convex body chasing, any switching 

algorithm that is robust must be at least 3-consistent.



A Fundamental Limit Theorem. For general convex body chasing, any switching 

algorithm that is robust must be at least 3-consistent.

Theorem. For general convex body chasing, any 

memoryless algorithm that is robust cannot have 

non-trivial consistency. 

Consistency better than if advice 

had been ignored



Attempt 2: A Bandit Algorithm

𝐵1

𝑥𝑡

𝑥𝑡+1

ො𝑥𝑡+1

Apply multiplicative weights a la [Blum & Burch 2000]

Multiplicative Weights [Blum & Burch 2000]

Update weights for each expert

      𝑤𝐴𝐿𝐺𝑖

𝑡+1 = 𝑤𝐴𝐿𝐺𝑖

𝑡 ⋅ 1 − 𝛽 𝐶𝑜𝑠𝑡𝑡,𝑡(𝐴𝐿𝐺𝑖)/𝐷

Update probability of following each expert

       𝑝𝑖
𝑡+1 = ൗ

𝑤𝐴𝐿𝐺𝑖
∑𝑤𝐴𝐿𝐺𝑖

Switch to other expert with probability proportional to 

mass transferred from 𝑝𝐴𝐿𝐺𝑖

𝑡  to 𝑝𝐴𝐿𝐺𝑗

𝑡+1



Attempt 2: A Bandit Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]

Aggregate prediction quality of 

untrusted advice



Attempt 2: A Bandit Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]



Attempt 2: A Bandit Algorithm

Apply multiplicative weights a la [Blum & Burch 2000]

Diameter dependence



Attempt 3: Exploiting Convexity

Adaptively choose a convex combination of the two advice points.

𝐵𝑡+1

𝑥𝑡

𝑥𝑡+1

ො𝑥𝑡+1



𝐵𝑡+1

𝑥𝑡

𝑥𝑡+1

ො𝑥𝑡+1

Adaptively choose a convex combination of the two advice points.

Bicompetitive Line Chasing
If 𝐶𝑜𝑠𝑡0,𝑡 𝑥  > 𝛿 ⋅ 𝐶𝑜𝑠𝑡0,𝑡( ො𝑥)

          then follow ො𝑥𝑡+1

Else, take a greedy step from ො𝑥𝑡+1 toward 𝑥𝑡+1

          with  a series of radial projections depending on 

          𝐶𝑜𝑠𝑡𝑡,𝑡( ො𝑥) and 𝑑𝑖𝑠𝑡( ො𝑥𝑡 , 𝑥𝑡).

Attempt 3: Exploiting Convexity



Adaptively choose a convex combination of the two advice points.

Attempt 3: Exploiting Convexity



Adaptively choose a convex combination of the two advice points.

Attempt 3: Exploiting Convexity



A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-

competitive algorithm, any (1 + 𝛿)-consistent 

algorithm is 2Ω( Τ1 𝛿)𝐶-robust.
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A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-

competitive algorithm, any (1 + 𝛿)-consistent 

algorithm is 2Ω( Τ1 𝛿)𝐶-robust.

𝐵𝑡+1

ො𝑥𝑡

ො𝑥𝑡+1

Distance 2𝑡

, diameter 2𝑡 diameter 2𝑡+1

Key Property: 𝐶𝑜𝑠𝑡0,𝑡+1 ො𝑥 = 𝑑𝑖𝑠𝑡 ො𝑥𝑡+1, 𝑥𝑡+1

(Note: 𝐿1 distance, not Euclidean distance.)

𝐵𝑡

𝑥𝑡 = 𝑥𝑡+1 



A Fundamental Limit Theorem. For general convex body chasing, given a 𝐶-

competitive algorithm, any (1 + 𝛿)-consistent 

algorithm is 2Ω( Τ1 𝛿)𝐶-robust.

𝐵𝑡

𝐵𝑡+1

𝑥𝑡 = 𝑥𝑡+1 

ො𝑥𝑡

ො𝑥𝑡+1

Distance 2𝑡

, diameter 2𝑡 diameter 2𝑡+1

1. Any consistent algorithm must start following ො𝑥𝑡.
2. No algorithm can move more than 𝛿/2 probability to 𝑥𝑡  in any round.

So, at 𝑇 = 1/𝛿, only ½ probability can be on 𝑥𝑇 , 

which means the total cost is at least 2𝑇 = 2 Τ1 𝛿 .



An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)

𝑥𝑡+1

ො𝑥𝑡+1

DART
If 𝐶𝑜𝑠𝑡0,𝑡 𝑥  > 𝛿/4 ⋅ 𝐶𝑜𝑠𝑡0,𝑡( ො𝑥)

          then follow ො𝑥𝑡+1

Else, update probability of following the advice

       𝑝𝐴𝐷𝑉
𝑡+1 = max 𝑝𝐴𝐷𝑉

𝑡 −
𝛿𝐶𝑜𝑠𝑡𝑡,𝑡 ො𝑥𝑡

4𝑑𝑖𝑠𝑡 ො𝑥𝑡,𝑥𝑡
, 0

Sample action through optimal transport plan 

(Wasserstein-1) for 𝑝𝐴𝐿𝐺𝑖

𝑡 → 𝑝𝐴𝐿𝐺𝑗

𝑡+1



Theorem. For general convex body chasing, DART is 

(1 + 𝛿)-consistent and 2O( Τ1 𝛿)𝑂 𝑑 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



Theorem. For convex body chasing with bounded diameter 

DART is (1 + 𝛿)-consistent and 𝑂( Τ1 𝛿)-robust with an 

additive 𝑂( Τ𝐷 𝛿) .

Theorem. For metrical task systems DART is (1 + 𝛿)-

consistent and2O( Τ1 𝛿)𝑂 log2 𝑛 -robust.

Theorem. For 𝑘-server, DART is (1 + 𝛿)-consistent and 

𝑂( Τ𝑘 𝛿)-robust.

Theorem. For 𝑘-function chasing in ℝ, DART is (1 + 𝛿)-

consistent and 𝑂( Τ𝑘 𝛿)-robust.

Theorem. For general convex body chasing, DART is 

(1 + 𝛿)-consistent and 2O( Τ1 𝛿)𝑂 𝑑 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



Theorem. For convex body chasing with bounded diameter 

DART is (1 + 𝛿)-consistent and 𝑂( Τ1 𝛿)-robust with an 

additive 𝑂( Τ𝐷 𝛿) .

Theorem. For metrical task systems DART is (1 + 𝛿)-

consistent and2O( Τ1 𝛿)𝑂 log2 𝑛 -robust.

Theorem. For 𝑘-server, DART is (1 + 𝛿)-consistent and 

𝑂( Τ𝑘 𝛿)-robust.

Theorem. For 𝑘-function chasing in ℝ, DART is (1 + 𝛿)-

consistent and 𝑂( Τ𝑘 𝛿)-robust.

Matches state of the art 

1st w/o 𝐷 dependence

Prior: 𝑂( Τ1 𝛿𝑘−1)

1st w/o 𝐷 dependence

Theorem. For general convex body chasing, DART is 

(1 + 𝛿)-consistent and 2O( Τ1 𝛿)𝑂 𝑑 -robust.

An Optimal Algorithm: Distance-Adaptive Robust weight Transport (DART)



An example: Carbon-First Data Centers
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Sim-to-real gap / Distribution shift



Exploiting convexity yields optimal robustness-consistency 

tradeoffs in online convex body chasing. 

Many open problems remain
• What if there are long-term constraints on actions?

• What if decisions need to be decentralized?

• What if there are multiple predictions?

• What about the stochastic model? 

…

 



This talk: Algorithm design & fundamental limits on the 

use of learning-augmented algorithms. 

Examples: 

1. Appetizer: 

Convex Body Chasing → Carbon-aware data centers

2. Main Course:

MDPs → Adaptive EV charging
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isn’t a black box?



Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

Value-based RL
𝑄-value estimate

What if the learning 

isn’t a black box?



Can untrusted 𝑸-value advice improve upon black-box advice

 in terms of robustness-consistency tradeoffs in MDPs? 
First asked by [Golowich, Moitra. Can Q-Learning be Improved with Advice? COLT 2022]



Markov Decision Processes

Finite-horizon Markov Decision Process (MDP) represented by (𝒳, 𝒰, 𝑇, 𝑃, 𝑐)

• 𝒳 is the state space, with norm ‖ ⋅ ‖𝒳  (continuous or finite) 

• 𝒰 is the action space, with norm ‖ ⋅ ‖𝒰  (continuous or finite)

• 𝑇 is the horizon 

• 𝑃𝑡 is the transition kernel at step 𝑡
• 𝑐𝑡  is the cost function at step 𝑡
• Single trajectory (not episodic)

𝑥𝑡

𝑢𝑡 = 𝜋𝑡(𝑥𝑡)

policy 𝜋

cost:  𝑐𝑡(𝑥𝑡 , 𝑢𝑡)
𝑥𝑡~𝑃𝑡 ⋅ 𝑥𝑡−1, 𝑢𝑡−1

solar generation, arrivals/departures, etc.

Environment



Markov Decision Processes

Finite-horizon Markov Decision Process (MDP) represented by (𝒳, 𝒰, 𝑇, 𝑃, 𝑐)

𝑥𝑡

𝑢𝑡 = 𝜋𝑡(𝑥𝑡)

policy 𝜋

cost:  𝑐𝑡(𝑥𝑡 , 𝑢𝑡)

Environment

Goal: minimize expected cost  𝐽 𝜋 =  𝔼𝑃,𝜋 ∑𝑡 𝑐𝑡(𝑥𝑡 , 𝜋𝑡 𝑥𝑡 )

Optimal Cost: 𝐽∗ = inf
𝜋

𝐽(𝜋)

𝑄-value: 𝑄𝑡
∗ 𝑥, 𝑢 = inf

𝜋
𝔼𝑃,𝜋 ∑𝜏=𝑡 

𝑇−1 𝑐𝜏 𝑥𝜏, 𝑢𝜏 |𝑥𝑡 = 𝑥, 𝑢𝑡 = 𝑢

𝑥𝑡~𝑃𝑡 ⋅ 𝑥𝑡−1, 𝑢𝑡−1

solar generation, arrivals/departures, etc.



Gives information about the

expected gain from the action!

Markov Decision Processes with Untrusted Advice

Black-box advice Grey-box advicevs.

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡  & 

estimate ෨𝑄𝑡  of long-term 

cost impact of action 

Standard model

of untrusted advice

(as in appetizer)

From a value-based policy, i.e., 
෤𝑢𝑡 = argmin𝑣

෨𝑄𝑡(𝑥𝑡, 𝑣)



Markov Decision Processes with Untrusted Advice

Black-box advice Grey-box advicevs.

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡  & 

estimate ෨𝑄𝑡  of long-term 

cost impact of action 

Sim-to-real translation Multi-task learning



Markov Decision Processes with Untrusted Advice

Black-box advice Grey-box advicevs.

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡  

Untrusted policy ෤𝜋 

suggests action ෤𝑢𝑡  & 

estimate ෨𝑄𝑡  of long-term 

cost impact of action 



How do learning-augmented algorithms work? 

Four typical designs

1. Switching algorithms

2. Bandit Algorithms (randomized switching)

3. (Fixed) Convex Combination

4. Adaptive Convex Combination

a.k.a. Projection-based algorithms

Given trusted advice ( ത𝑢𝑡) and untrusted advice ( ෤𝑢𝑡), 

how do we determine the action 𝑢𝑡?

We saw these 

in the appetizer



How do learning-augmented algorithms work? 

Four typical designs

1. Switching algorithms

2. Bandit Algorithms (randomized switching)

3. (Fixed) Convex Combination

4. Adaptive Convex Combination

a.k.a. Projection-based algorithms

Given trusted advice ( ത𝑢𝑡) and untrusted advice ( ෤𝑢𝑡), 

how do we determine the action 𝑢𝑡?



Projection Pursuit (PROP)

trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

1. What is a trusted algorithm?𝑢𝑡

2. How should radius 𝑹𝒕 be set?

From a value-based policy, i.e., 
෤𝑢𝑡 = argmin𝑣

෨𝑄𝑡(𝑥𝑡, 𝑣)



trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

𝑢𝑡

Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

1. What is a trusted algorithm?
Goal: Define “trust” for black box algorithms



Projection Pursuit (PROP)

trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

1. What is a trusted algorithm?𝑢𝑡
We call an algorithm trusted if it is Wasserstein-robust

Definition. 𝑟-locally 𝑝-Wasserstein-robust if for any 𝑡1 < 𝑡2 and pair of actions 𝜌, 𝜌′ within Wasserstein 

distance 𝑟, 𝑊𝑝 𝜌𝑡1:𝑡2
𝜌 , 𝜌𝑡1:𝑡2

𝜌′ ≤ 𝑠 𝑡2 − 𝑡1 𝑊𝑝 𝜌, 𝜌′  for some function 𝑠 satisfying 

∑𝑡 𝑠 𝑡 ≤ 𝐶, for a constant 𝐶.



Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

1. What is a trusted algorithm?

A form of perturbation stability satisfied by many

common policies (see paper), e.g., 

• Robust MPC in LTV 

• Discrete MDP: Any policy with regular Markov chain.

See [Lin et al 21,22,23] for a broader context.

Other applications in multi-agent RL, regret-optimal 

control, adaptive control, policy selection, …

We call an algorithm trusted if it is Wasserstein-robust

trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

𝑢𝑡



trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

𝑢𝑡

Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

2. How should radius 𝑹𝒕 be set?

For black-box advice, information is limited.

Simple idea: 𝑅𝑡 = 𝜆 ෤𝑢𝑡 − ത𝑢𝑡 , 
where 𝜆 ∈ [0,1] is a “trust parameter”.



Theorem: PROP with black box predictions is 

• 1 + 𝑂 1 − 𝜆 𝐷  consistent and 

• 𝑅𝑂𝐵 + 𝑂(𝜆𝐷) robust

diameter of action space

approximation ratio of the robust policy



Theorem: No projection-based algorithm with black box predictions can be

• 1 + 𝑜 1 − 𝜆 𝐷  consistent and

•  𝑅𝑂𝐵 + 𝑜(𝜆𝐷) robust.

Theorem: PROP with black box predictions is 

• 1 + 𝑂 1 − 𝜆 𝐷  consistent and 

• 𝑅𝑂𝐵 + 𝑂(𝜆𝐷) robust



trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

𝑢𝑡

Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

2. How should radius 𝑹𝒕  be set?

For grey-box advice, extra information valuable.
Idea: Use the Temporal Difference (TD) error (𝛿𝑠)

𝛿𝑠 ↑ ⇒ 𝑅𝑡 ↓



trusted: ത𝑢𝑡

untrusted:  ෤𝑢𝑡

𝑅𝑡

𝑢𝑡

Projection Pursuit (PROP)

Project untrusted advice onto ball around trusted advice.

Set radius 𝑅𝑡  to ensure robustness-consistency tradeoff.

2. How should radius 𝑹𝒕  be set?

For grey-box advice, extra information valuable.

𝑅𝑡 = ෤𝑢𝑡 − ത𝑢𝑡 −
𝛽

𝐿𝑄
෍

𝑠=1

𝑡

𝛿𝑠(𝑥𝑠, 𝑥𝑠−1, 𝑢𝑠−1)

+

Approximate TD error

where 𝐿𝑄  is the Lipschitz coefficient of 𝑄 & 

𝛽 is a trust parameter 

𝑐𝑠−1 𝑥𝑠−1, 𝑢𝑠−1 + inf
𝑣

෨𝑄𝑠 𝑥𝑠, 𝑣 − ෨𝑄𝑠−1(𝑥𝑠−1, 𝑢𝑠−1)

Idea: Use the Temporal Difference (TD) error (𝛿𝑠)



Theorem: PROP with black box predictions is 

• 1 + 𝑂 1 − 𝜆 𝐷  consistent and 

• 𝑅𝑂𝐵 + 𝑂(𝜆𝐷) robust

Theorem: No projection-based algorithm with black box predictions can be

• 1 + 𝑜 1 − 𝜆 𝐷  consistent and

•  𝑅𝑂𝐵 + 𝑜(𝜆𝐷) robust.

Theorem: PROP with grey-box predictions and 𝛽 = 1 is

• 1-consistent and

•  𝑅𝑂𝐵 + 𝑜(1) robust.

Significant improvement from 𝑸-value predictions!



An example: Adaptive electric vehicle charging



battery dynamics

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑓𝑡(𝑥𝑡 , 𝑢𝑡)
uncertain 

residuals

Trusted algorithm ( ത𝜋): Robust MPC depends only on LTV battery dynamics

Untrusted algorithm ( ෤𝜋): RL can learn residuals better (if no distribution shift)

EV Charging at Caltech



big distribution shifts

Paid charging starts Stay at home order

Pre-COVID COVID Post-COVID



Post-COVIDPre-COVID



robust

untrusted

PROP

PROP exploits predictions while maintaining robustness to distribution shift

Time

Av
er

ag
e 

Re
w

ar
d



𝑸-value advice can improve upon black-box advice

 in terms of robustness-consistency tradeoffs in MDPs. 

Many open problems remain
• Improved lower bounds on grey-box or black-box advice?

• Improved algorithms?

• End to end analysis including sample complexity trade-offs?

• Other forms of “grey box” information? 

• Benefits from other forms of advice, e.g., predictions of 𝑃𝑡?
…

 



This is just the tip of the iceberg for 

understanding learning augmented algorithms…



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

How should advice be used?

Switch between them? Combine them? 



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What if the learning 

isn’t a black box?



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

Can we move beyond robustness & consistency?

Average-case? Smoothness? Frugality? Memory-dependence?



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What quantity should be predicted? 

Costs? Actions? 

What if there are multiple untrusted/trusted advisors?

What if you’re not sure which is the trusted advisor? 



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What is the value of uncertainty 

quantification of predictions?



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What if the ML model is trained online?



ML/AI

Online

Algorithm

Meta Algorithm

Untrusted Advice

Trusted Advice

ActionInput

Training Data

What if the model needs to be learned?



Adam Wierman, Caltech

• T Li, R Yang, G Qu, G Shi, C Yu, A Wierman, S Low. Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions. 

Sigmetrics 2022

• C Yeh, J Yu, Y Shi, A Wierman. Robust Online Voltage Control with an Unknown Grid Topology. E-Energy 2022.

• N Christianson, T Handina, A Wierman. Chasing Convex Bodies and Functions with Black-Box Advice. COLT 2022.

• Y Hu, G Qu, A Wierman. On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory. NeurIPS 2022.

• N Christianson, J Chen, A Wierman. Optimal Robustness-Consistency Tradeoffs for Learning-Augmented Metrical Task Systems. 

AIStats 2023.

• D Rutten, N Christianson, D Mukherjee, A Wierman. Online Non-convex Optimization with Untrusted Advice. Sigmetrics 2023.  

• J Yu, D Ho, A Wierman. Online Stabilization of Unknown Networked Systems with Communication Constraints. Sigmetrics 2023.

• T Li, R Yang, G Qu, Y Lin, A Wierman, S Low. Certifying Black-Box Policies with Stability for Nonlinear Control. IEEE J of Control Sys. 2023. 

• Y Lin, J Preiss, E Anand, Y Li, Y Yue, A Wierman. Online Adaptive Controller Selection in Time Varying Systems. NeurIPS 2023. 

• T Li, Y Lin, S Ren,  A Wierman, S Ren. Beyond Black-Box Advice: Learning-Augmented Algorithms for MDPs with Q-Value Predictions. 

NeurIPS 2023.

• B. Sun, J. Huang, N. Christianson, M. Hajiesmaili, A Wierman. Online Algorithms with Uncertainty-Quantified Predictions. ICML 2024.

• N Bhuyan, D Mukherjee, A Wierman. Best of both worlds: Stochastic and adversarial convex function chasing. ICML 2024

Learning-Augmented Algorithms for MDPs

Case studies done using SustainGym New(ish) book on 

heavy tails!
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