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An artificial-intelligence program called AlphaGo Zero has mastered the game of

Deep Reinforcement Learning achieves super-human performance!
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Deep Reinforcement Learning achieves super-human performance!

At what cost?

“Training AlphaGoZero to play Go took 72 hours, with over 4.9 million
matches played, and with each move during self-play using about 0.4
seconds of processing time, on a single machine with 4 TPUs (Google’s
special-purpose Tensor Processing Unit chips), plus additional
parameter updates powered by 64 GPUs and 19 CPUS.” [Silver et.al. 2017]

*does not include hyperparameter tuning!



Deep Reinforcement Learning achieves super-human performance!

At what cost? High computational/storage burdens, massive training
data requirements, sensitive to hyperparameter tuning

RL is not yet practical for settings where it is also critical to exhibit
» Data efficiency / efficient learning
 Low computational cost and time
* Low storage requirements / memory usage

In real-world systems, domain heuristics often outperform RL,
as RL ignores the known structure of the problem.



Central Research Question

How to design RL algorithms that provably and efficiently

exploit structure arising in real-world systems?

@ What types of structure are @ What type of information

reasonable and common? is commonly available?

@ How to exploit it to lead

to efficient learning?



Outline — dealing with large state/action MDPs

* Part I: Exploiting smoothness in continuous state/action MDPs
using adaptive discretization

Sean R. Sinclair, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Online Reinforcement Learning.”
Operations Research, 2022.

Sean R. Sinclair, Tianyu Wang, Gauri Jain, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Model-
Based Reinforcement Learning.” Neurips, 2020.

Sean R. Sinclair, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Episodic Reinforcement Learning in
Metric Spaces.” POMACS + ACM SIGMETRICS, 2019.

* Part Il: Exploiting latent low rank structure in action-value function
using matrix completion

Tyler Sam, Yudong Chen, Christina Lee Yu. “Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement
Learning with Latent Low-Rank Structure.” POMACS + ACM SIGMETRICS, 2023.



Part |: Exploiting smoothness in
continuous state/action space MDPs
using adaptive discretization

Joint work with Sid Banerjee, Gauri Jain, Sean Sinclair, Tianyu Wang




Episodic Reinforcement Learning

* Agent interacts with an unknown MDP over a length H horizon

e Agent Policy m, : S — A _—

* Model Parameters 7, : S X A — [0,1], Tp:S x A — A(S)
 Value Function V] (x) = E[Zf:h re(xe, mo(z0)) ‘ T = x}

- Q Function @ (z,a) =r(z,a) +E [V (2h41) | 2p = 7,05 = a

* Goal: minimize expected regret over K episodes of online interaction

optimal policy policy played by agent in episode k
R(K) = ey (Va]) — Vi 27))



Dealing with continuous state/action spaces

1) Parametric function approximation
* Approximate value function or policy with tractable function class
* Leverage techniques from supervised learning
* Sensitive to model mismatch

2) Discretization / Aggregation
e Approximate full MDP with a smaller tabular MDP
* Relies on smoothness assumptions with respect to known metric



Discretization for Continuous MDPs

* Compact continuous state space S, 4, with known metric
* Assume that MDP (Q*, 7, T) is Lipschitz continuous wrt known metric

* Naive discretization approach [ continuous /\ e
MDP Uniform e-net MDP
(S, 4) discretization (Se, A4¢)

* Choose € to balance approx error and regret from tabular MDP
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Discretization for Continuous MDPs

* Compact continuous state space S, 4, with known metric
* Assume that MDP (Q*, 7, T) is Lipschitz continuous wrt known metric

* Naive discretization approach [ continuous /\ e
MDP Uniform e-net MDP
(S, 4) discretization (Se, A4¢)
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Discretization for Continuous MDPs

* Compact continuous state space S, 4, with known metric
* Assume that MDP (Q*, 7, T) is Lipschitz continuous wrt known metric

* Naive discretization approach [ continuous /\ e
MDP Uniform e-net MDP
(S, 4) discretization (Se, A4¢)

* Choose € to balance approx error and regret from tabular MDP
* Could be very expensive in both memory and sample complexity
* Can we reduce memory requirements while preserving performance?



Adaptive Discretization

e Assume Lipschitz assumptions on model with respect to metric space
* Only refine discretization on an “as needed” basis

Continuous Tabular Tabular Tabular
MDP MDP(1) MDP(2) MDP(3)

* Is there an optimal sequence of approximating MDPs?

* Overarching idea can be applied to convert any tabular RL algorithm
into an algorithm for continuous spaces



| nfO MMada ‘ Th eorem [SinclairBanerjeeYu2019] [SinclairWanglainBanerjeeYu2020]

me propose AdaQL (model free) and AdaMB (model based) that achieve \

zi; dependence on K matches minimax

.
ADAQL . H5/2K’z S lower bound from contextual bandits
z+dag—1
REGRET(K) << ADAMB : H3/2K +Fis dg > iJ
ADAMB: H32K52 dg <2

Qhere Z is zooming dim, dg is dim of state space. /
1

L analogous to instance specific bounds in the multi-arm bandit literature



| nfO MMada ‘ Th eorem [SinclairBanerjeeYu2019] [SinclairWanglainBanerjeeYu2020]

me propose AdaQL (model free) and AdaMB (model based) that achieve \

( z+1
ADAQL : H5/2KZ+2K can be improved for “simple” dynamics
z+dao—1
REGRET(K) < ADAMB : H3/2K *i5  dg > 2
ADAMB: H3?K52 dg <2

Qhere z is zooming dim, dg is dim of state space. /

* Assume compact metric spaces S, A
« AdaqQl: Lipschitz value functions Qy, and V;,
* AdaMB: Lipschitz rewards 13, and transitions T, in the 1-Wasserstein metric



Zooming Dimension

@}, function
|

GAPp(z,a) = V' (z) — Q7 (7, a)

Optimal policy

Action

X State



/ooming Dimension

., 05 function

O(¢) GAPp(x,a) =V, () — Q7 (z,a)

Zr. denote eH-near optimal set of state-action pairs

Action
N
=M

State



/ooming Dimension

function

« . 0Qp

O(eH) GAPp(x,a) =V, () — Q7 (z,a)

Zr. denote eH-near optimal set of state-action pairs

Action

Zooming dimension zp is min value s.t.
e-covering number of Z; = 0(e7%h)




Observed Reward

Comparison of Observed Rewards Comparison of Size of Partition Adaptive Discretization
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Adaptive discretization exploits structure in benign problem instances with low zooming
dimension; constructing a partition that follows the contours of the value function.
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Observed Reward

Comparison of Observed Rewards
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Adaptive discretization exploits structure in benign problem instances with low zooming
dimension; constructing a partition that follows the contours of the value function.



Main Format of Algorithm

* Maintain partition of state action space + corresponding estimates

* Given current partition, run original tabular RL algorithm
* Greedy selection rule w.r.t. optimistic estimates, 7h () = arg Igleaj( Qn(z,a)
* Can plug in model free or model based approximations for Bellman update

QZ* (x,a) =rp(z,a)+ E[Vhﬁjl(xhﬂ) | zp, = x,ap = a

* Subpartition a region B when it has been chosen “too often”,
BIAS(B) := diam(B) > \/1/n(B) =: CONF(B)




Model Free Q Learning Algorithm — AdaQL

* Directly estimate Q function and associated value function

€ By,

* Given observation (3, aj,, 17, X, +1), use Q-learning update

Qn(Bn) = (1 = at)Qu(Br) + oy (rn + Vg1 (ohi1) + BONUS)

Vip1(The1) = IIleajCQh+1($h+1a a) BIAS(B) + CONF(DB)
a

where t = is # of times action has been selected, ay = (H +1)/(H + t)



Model Based RL Algorithm — AdaMB

* Maintain empirical estimates for reward fn and transition kernel

* Plug in empirical estimates to the Bellman update equation
Q,(B) = #4(B) + E[Vhs1(z) | B]+ BONUS

Vi() = maxQ, (z, 0

* Want to approximate # and E without needing to store all datapoints



-
AdaMB: Model Based Adaptive Discretization

B * Maintain partition of the state-action space
* Keep empirical estimates 7 (B), Th(:|B)

Action

Induced State Partition



Action

AdaMB: Model Based Adaptive Discretization

B

State

Uniform State Discretization

* Maintain partition of the state-action space
* Keep empirical estimates 7n(B), Th(-| B)
e Estimate T3 (-|B) over a uniform discretization

of the state space at coarseness diam(B)

* Maintains necessary accuracy of estimate while
limiting storage complexity



AdaMB: Model Based Adaptive Discretization

‘ ‘  Maintain partition of the state-action space
; * Keep empirical estimates 74 (B), Th(+|B)
c Bh * Greedy Selection Rule
I an = argmax Qp (n. )

| acA

State

Xh

Induced State Partition



-
AdaMB: Model Based Adaptive Discretization

‘ ‘ * Maintain partition of the state-action space
* Keep empirical estimates 7 (B), Th(:|B)

Bh * Greedy Selection Rule

Action

* Compute empirical Bellman update
Q,(B) = #4(B) + E[Vi1(z) | B]+ BONUS

Vh(x) = 15163} @h (z,a)

*h where BONUS = BIAS(B) + CONF(B)

I | | | concentration of T
may depend on dg

Induced State Partition



-
AdaMB: Model Based Adaptive Discretization

* Maintain partition of the state-action space
* Keep empirical estimates 7 (B), Th(:|B)

* Greedy Selection Rule

C
o
< * Compute empirical Bellman update
""""" e Subpartition region if bias > confidence radius
* New regions have half diameter of parent, inherit all
State estimates of reward, transition, and counts
I I I I *we don’t need to keep all samples; due to inherited estimates, # and T are

not standard empirical estimates; we need to account for this in the analysis
Induced State Partition



| nfO MMada ‘ Th eorem [SinclairBanerjeeYu2019] [SinclairWanglainBanerjeeYu2020]

~

We propose AdaQL (model free) and AdaMB (model based) that achieve

(ADAQL : HS2K 5
z+dg—1

REGRET(K) < { ADAMB : H3/2K #¥ds  dg > 2
ADAMB: H32K#3  dg <2

where z is zooming dim, d is dim of state space.




Proof Sketch — Zooming Dimension Analysis

* Instance specific analysis for finite armed bandits

GAP(a) =r(a”) — r(a)

actions




Proof Sketch — Zooming Dimension Analysis

* Instance specific analysis for finite armed bandits

GAP(a) = r(a”) — r(a)

—m7(a) T(a) = #(a) + CONF(a)

. NF(a)
r(a”) i(j:(a)% _____ %——- 0 <7(a) —r(a) < 2CONF(a) ~ /1/n(a)

By optimistic selection, a is never chosen again once

2CONF(a) < GAP(a) = 7(a) < 7(a™) < 7(a™)

implies that n(a) < 1/GAP(a)?

actions



Proof Sketch — Zooming Dimension Analysis

* For contextual bandits with adaptive discretization

Arm (Action)

x Context (State)

Arm (Action)



Proof Sketch — Zooming Dimension Analysis

* For contextual bandits with adaptive discretization

GAP(x,a) =7r(x,a”) —r(z,a)

= min GAP(z,a)
(x,a)€B

Action



Proof Sketch — Zooming Dimension Analysis

* For contextual bandits with adaptive discretization

GAP(x,a) =7r(x,a”) —r(z,a)

GAP(B) = (xI%IGlB GAP(x,a)

(B) = #(B) 4+ BIAS(B) + CONF(B)

=3

0<7(B)—r(xr,a) < 2BIAS(B) + 2CONF(B)

Action



Proof Sketch — Zooming Dimension Analysis

* For contextual bandits with adaptive discretization
0<7(B)—r(zr,a) < 2BIAS(B) + 2CONF(B)

Region B is never chosen again once it is either
e Subpartitioned, i.e. BIAS(B) > CONF(DB)

e Suboptimal, i.e. 2BIAS(B) 4+ 2CONF(B) < GAP(B)
— 7(B) < r(x,a") <7(B")

Action



Proof Sketch — Zooming Dimension Analysis

* For contextual bandits with adaptive discretization
0 <7(B)—r(zr,a) < 2BIAS(B) + 2CONF(B)

Region B is never chosen again once it is either
e Subpartitioned, i.e. BIAS(B) > CONF(DB)

* Suboptimal, i.e. 2BIAS(B) 4+ 2CONF(B) < GAP(B)

Implies that n(B) < min (1/diam(B)2, 1/GAP(B)2)

Action



Proof Sketch — Zooming Dimension Analysis

* Property that “suboptimal regions are not selected often” relies on
0 <7(B)—r(x,a) < 2BIAS(B) 4+ 2CONF(B)
—> GAP(B;) < 2BIAS(B;) + 2CONF(B;) < diam(B)
* Regret is bounded by sum of gap terms over “regions”
* Number of regions is bounded by zooming dimension

REGRET < Z Z \GAP(B)n(B}—I— roK
r>ro B:diam(B)=r Y4

[(car(B) < diam(B))
diam(B)

241 <
< K =z+2 ~

Y




Proof Sketch — Zooming Dimension Analysis

* In reinforcement learning we sample from Q,’Af(x, a), which does not
give an unbiased estimate for Q; (x, a)

0<Qu(B) - Qi(x,a)  mx@ifea)
< 2CONF(B) + 2BI1AS(B)

+ f (@h—l—l — QZH)

* Analysis requires carefully accounting
of one-step vs. future regret ! | | I




Empirical Results — Oil Discovery

* An agent surveys a (d-dim) map in search of hidden “oil deposits’

* Transportation cost proportional to distance moved, weighted by
* Transitions perturbed by uneven land

 Surveying land produces noisy estimates of the true value

e State/action space [0,1]¢, stochastic transition, stochastic rewarc




Empirical Results — Oil Discovery
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Questions?

Sean R. Sinclair, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Online Reinforcement Learning.”

Operations Research, 2022.

Sean R. Sinclair, Tianyu Wang, Gauri Jain, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Model-
Based Reinforcement Learning.” Advances in Neural Information Processing Systems, 2020.

Sean R. Sinclair, Siddhartha Banerjee, Christina Lee Yu. “Adaptive Discretization for Episodic Reinforcement Learning
in Metric Spaces.” Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2019.
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Part II: Exploiting latent low rank
structure in action-value function
using matrix completion

Joint work with Tyler Sam and Yudong Chen




Sample Complexity with Generative Model

* Policy m and Q = {Qp }neny are €-optimal if for all x, a, h,

Vi (z) = Vi(@)| <e and |QF (z,a) — Qu(z,a)| <e
* Optimal sample complexity to find an e-optimal policy is

~ A|lH3
o (1814

€2

> [Azar, Munos, Kappen, 2012] [Sidford, Wang, Wu, Yang, Ye, 2018]
* Need to sample from each (x,a) € SXA to construct estimate Qh
* Q: can we reduce sample complexity if (J;, low rank?



Motivating low rank structure

a

*

Qn =

* Large discrete state/action space with latent low dimension structure

* If Q function is approximated by smooth continuous function,
then it is also approximately low rank [udell Townsend 2017]

* E.g. recommendation systems where states are related to customers
and actions are related to products



Reducing Sample Complexity

a

)
>3
|l
I

e |f Q};*were low rank, could we sample from only O(S + A4)
state-action pairs and use matrix estimation to construct Qn?

» [Shah-Song-Xu-Yang, 2020] show sample complexity of O (|S|+|A|>
... but requires bounded horizon, e.g. H < 20; is this fundamental?




Information Theoretic Lower Bound sam, chen, v, 2023

Setup: S=A={1,2}and assume Q,’,f* isrank 1 forallh € [H]

Samples from MDP are constrained to (x,a) € {(1,1),(1,2),(2,1)} L
s.t. algorithm needs to use low rank structure to estimate Q, (2,2) —

Result: There exists instances for which learning a 1/8-optimal policy
with probability at least 0.9 requires Q(4") samples

* Only Q™ low rank is too weak, as Qﬁ may not be low rank

e Estimation error in last step is amplified exponentially over horizon
* Need stronger low rank conditions on MDP




Summary of Results

MDP Setting Sample Complexity

x _ Low-rank Q7 & suboptimality gap Apin > 0 O d5(|5Xg [ADH”

g - e-optimal policies have low-rank Q7 O (LS @%)H °\

é Transition kernels and rewards are low-rank O d°(|S |Jg|A|)H " ¥
- Low-rank @} & constant horizon [Shah et al, 2020] O (|S|+|A|)
Tabular MDP with homogeneous rewards [Sidford et al, 2018] © ('SWELQ'HB)

" Achieved by Low Rank Monte Carlo Policy Iteration (LR-MCPI)
* Achieved by Low Rank Empirical Value Iteration (LR-EVI)



Empirical Dynamic Programming [Haskell et al. 2016]

» Compute via backwards recursion starting with Vi1 (z) =0V z € S

7~ Given Vh+1 or Thi1,Thao...TH, cOmpute (J;, via Bellman update,
(x,a) :.‘\‘/h—kl (Zh41) | zn =z, an = q
Qh(l‘ a) re(Te, Te(xe)) | Tp = T, 0n = a}

€h1
L +

Approximate expectations with empirical samples

_ * Compute V},(z) = gleajth(x a) and 7y (x) = argrgleajth(x a)



Low Rank + Empirical Dynamic Programming

* Compute via backwards recursion starting with VH+1($) =0Vzxed

7~ « Given Vh+1 or Mhatl,Thio...TH,COMpUte Qh for (x,a) € Q via
empirical Bellman update, replacing expectations with samples

* Use matrix completion to estimate Q function for all (x, a)

matrix

{Qh(aj? a)}(m,a)EQ 7 estimation 7 Qh(iU,CL) \vd (33, CL)

o ‘/\/ p— 9 A p— 9
_ * Compute Vi (7) ?Eajth(x,a)andwh(:v) arggléajth(m,a)

Need low rank assumptions that give guarantees on relationship of Q relative to a meaningful low rank matrix



Low Rank Monte Carlo Policy lteration (LR-MCPI)

[Sam, Chen, Y., 2022]

» Compute via backwards recursion starting with Vi1 (z) =0V z € S

~ * Given Th41, Thas ... T, compute Qy, for (x,a) € Q via

A A H ~

Qn(z,a) =rp(z,a) +E | Dy re(@e, Te(ze)) ‘ Lh = L, Ap = CL}
Monte Carlo policy evaluation — Ny, full trajectory rollouts for each (x,a) € Q

* Use matrix completion to estimate Q fn for all (x, a)

_* Compute V},(z) = max Qn(x,a) and 7, (x) = arg max Qn(x,a)

Need low rank assumptions that give guarantees on relationship of Q relative to a meaningful low rank matrix



Low Rank Empirical Value Iteration (LR-EVI)

[Shah et al. 2020] [Yang et al. 2020]

» Compute via backwards recursion starting with Vi1 (z) =0V z € S

7~ Given Vh+1, compute Qh for (x,a) € Q via
Qn(z,a) =rn(z,0) + E [Vh+1($h—|—1) ‘ Tp =T, ap = a}
empirical value iteration — N; samples from Ty (- |x, a) for each (x,a) € Q

* Use matrix completion to estimate Q fn for all (x, a)

_* Compute V},(z) = max Qn(x,a) and 7, (x) = arg max Qn(x,a)

Need low rank assumptions that give guarantees on relationship of Q relative to a meaningful low rank matrix



Empirical Results — Oil Discovery
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How to design RL algorithms that provably and efficiently

exploit structure arising in real-world systems?

@ What types of structure are reasonable and common?

E.g. smoothness, low rank, exogenous input-driven dynamics, weakly coupled states, ...

@ What type of information is commonly available?

E.g. historical traces of auxiliary variables or historical trajectories, ...

@ How to exploit it to lead to efficient learning?



RL simulators ( ... beyond AIGym ... )

* Park (computer systems) — https://github.com/park-project/park [Mao et al 2019]

* ORGym (operations) — https://github.com/hubbs5/or-gym [Hubbs et al 2020]

* MARO (operations) — https://github.com/microsoft/maro [Jiang et al 2020]

e ORSuite (operations) — https://github.com/cornell-orie/ORSuite [Archer et al 2022]

* SustainGym (sustainability) — https://chrisyeh96.github.io/sustaingym/ [Yeh et al 2023]



https://github.com/park-project/park
https://github.com/hubbs5/or-gym
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https://chrisyeh96.github.io/sustaingym/

