
Learning and Control in Countable State Spaces

R. Srikant

UIUC

1

Joint work with

• Izzy’s and Yashaswini’s Talks: Room A001, Today 13:30-15:00

2

Yashaswini Murthy
UIUC

Izzy Grosof
UIUCNorthwestern

Siva Theja Maguluri
GaTech

Motivation

• Reinforcement Learning (RL)

3

Go [Silver et al., 2018]

Game playing [Mnih et al., 2013] Robotics

Well-Studied and Not So Well-Studied Learning Problems

4

Finite-State Spaces
𝑃(𝑠ᇱ|𝑠, 𝑎)

(No or very little
structure)

Uncountable, but
structured problems

(e.g., LQ/Robust)

Countable State-
Spaces

(Limited Structure:
positivity, easy

stabilizability; how
can we exploit it?)

𝑥௞ାଵ = 𝐴𝑥௞ + 𝐵𝑢௞ + 𝑤௞

Either Sys Id followed by Control,
Or Linear Policy Optimization

Stability=bounded w.p. 1

Scheduling in an nxn Switch

• A matrix of queues operating in discrete-time; packets arrive to each queue
according to some arrival process. In each time slot, at most one packet can be
served from each queue (Application: Data Center Switches)

• Controls: Permutation matrices
• At most one queue from each row, and one from each column can be served in each

time slot

• Find a sequence of such matrices to minimize average delay

0 1 0
1 0 0
0 0 1

Scheduling in 5G Networks

6

Time
Slot 1

Time
Slot 2

. . Time
Slot T

Freq
Slot 1

1 3 3 2 1

Freq
Slot 2

1 2 1 2 1

.

.

Freq
Slot F

3 3 1 2 2

• Available data rate in different slots could be different
• Virtualization requirements: min guarantees on the # slots

allocated to different classes of users (police, fire dept,
tesla,…)

• Subject to these constraints, minimize delay, ensure
fairness, etc.

Ride Hailing

• Goal: Maximize revenue minus
weighted delay

Control matches

Control paymentsControl prices

Cloud Computing

• ML jobs may have complicated structures: e.g., DAGs representing precedence
among tasks; a sequence of such jobs arrive according to some random process

• Control: allocate tasks to minimize mean job delay

8

Model

•
• 𝑠௞ ∈ 𝑍ା

ௗ (vector of queue lengths)

• 𝑤௞: randomness

• 𝑎௞ = 𝜋(𝑠௞): (randomized) feedback policy

• ഏ ೖ
೅షభ
೟సబ

• Goal: minimize average cost

• 𝑐 𝑠௞ = ||𝑠௞||ଵ(total queue length)

9

Relative Value Function

• (Differential) Cost accumulated until you hit

• 𝐽గ: Average cost under policy 𝜋

• 𝑠௞ ଵ
− 𝐽గ: Differential cost

• 𝜏௦
గ time to hit state 0 starting from state 𝑠

• గ ௞ ଵ గ ଴
ఛೞ

ഏ

௞ୀ଴

10

Relative Value Function

• (Differential) Cost accumulated until you hit if

you apply action

•

11

Policy Optimization (Policy Iteration)

12

௔ᇱ

𝐽గ + 𝑄 𝑠, 𝑎 = 𝑐 𝑠 + 𝔼 𝑄 𝑠ᇱ, 𝜋 𝑠ᇱ |𝑠, 𝑎

(Poisson’s Equation)

Policy Improvement

Policy Evaluation

Policy Optimization (Learning): Natural Policy Gradient

13

NPG update:

𝜋௞ାଵ 𝑎 𝑠

∝ 𝜋௞(𝑎|𝑠)exp (−𝜂𝑄෠గೖ
𝑠, 𝑎)

Collect samples from a
trajectory generated by 𝜋௞ and
estimate 𝑄෠గೖ

Policy Improvement

Policy Evaluation

Related to PPO, Dai-Gluzman 2022

Abstracting Policy Evaluation (Ignoring TD Learning, etc.)

14

NPG update:

𝜋௞ାଵ 𝑎 𝑠

∝ 𝜋௞(𝑎|𝑠)exp (−𝜂𝑄෠గೖ
𝑠, 𝑎)

||𝑄గೖ
− 𝑄෠గೖ

||ஶ ≤ 𝜅

(function approximation error)

Policy Improvement

Policy Evaluation

not a good abstraction, a
better abstraction later

Rationale for the Abstraction

• What can neural networks do?

• Input: (𝑠, 𝑎), Output: 𝑄෠(𝑠, 𝑎)

• The reason we need a neural network is that we cannot visit all (state,action) pairs: so,

visit a few (state, action) pairs, empirically estimate the Q-function at those (state,action)

pairs and extrapolate to other (state,action) pairs by training a neural network
15

Rationale for the Abstraction

• What can neural networks do?

• Input: , Output:

• Our abstraction assumes that the neural network can uniformly approximate the

Q-value at all (state,action) pairs: not reasonable for countable state spaces, but

we will stick with this assumption for now and refine it later
16

Result for Finite-State Spaces (Even-Dar et al, 2009, Abbasi-Yadkori et al, 2019)

• Consider iterations of the Natural Policy Gradient algorithm.

• Step size (୫ୟ୶
ୱ,ୟ,୩

గౡ

௠௔௫

• The overall regret (up to a function approximation error):

గೖ గ∗

்

௞ୀଵ

௠௔௫

17

What is

• Recall గ ଵ గ గ ଵ ଴ ଴

• గ ଵ (relative) cost accumulated until you hit starting from ଵ

• Therefore, గ ଵ ଵ
ଶ Why?

• Fluid Intuition:

• Cost at time is ଵ ଵ ଵ
ଶ

18

Initial queue length: 𝑠ଵ

Arrival rate: 𝜆 Departure rate: 𝜇

What is

• Fluid Intuition:

• Cost at time is ଵ ଵ ଵ
ଶ

• For this intuition, the system should be stable: in this simple single-

queue case

• This observation about stability will be useful later

19

Initial queue length: 𝑠ଵ

Arrival rate: 𝜆 Departure rate: 𝜇

Countable State Spaces

• The overall regret (up to a function approximation error):

గೖ గ∗

்

௞ୀଵ

௠௔௫

• Even if the system is stable at each iteration of NPG (which it is not

obvious that it will be), perhaps one can show that గೖ
ଶ

but that doesn’t help: ௠௔௫

20

What Goes Wrong and How to Fix It?

21

NPG update:

𝜋௞ାଵ 𝑎 𝑠

∝ 𝜋௞(𝑎|𝑠)exp (−𝜂𝑄෠గೖ
𝑠, 𝑎)

||𝑄గೖ
− 𝑄෠గೖ

||ஶ ≤ 𝜅

(function approximation
error)

 is like a step-size (algorithm is closely
related to mirror descent)
 It has to be sufficiently small in

magnitude, of the order of 1/ ௠௔௫ but
the error is proportional to

 Solution: Make state-dependent but
proportional to ௠௔௫

To be able to this, we need an estimate of
୫ୟ୶

௔

Roadmap to Handle Countable State Spaces

• Use the structure of our motivating examples to ensure that the system is always
stable under any policy generated by NPG (i.e., bounded w.p. 1)

• Tradeoff between robustness and performance

• This will allow us to show that ଵ
ଶ

ଶ ଵ ଷ

• Make a small change to the algorithm to exploit the above bound on and
eliminate the dependence on ௠௔௫

22

Exploiting Structure: Drift Assumption

గ ௞ାଵ
ଶ

௞
ଶ

௞ ଵ

• We will only search among the class of controls that

satisfy the above Lyapunov drift condition

• See also (Xie, Shah, Xu, 2020), (Lale et al, 2023)

• Question: can we assure such robust stability?

• Naturally satisfied in some cases, e.g., with

abandonments

• In other cases, we may give up some performance

(although probably doesn’t matter in practice) for robust

stability, i.e., independent of problem parameters
23

MaxWeight Algorithm (Example)

• Bipartite graph: weight of an edge from
node i to node j on the right equal to ௜௝

1

1

5

2

MaxWeight Algorithm (Example)

• Bipartite graph: weight of an edge from
node i to node j on the right equal to ௜௝

• Find a matching with the largest weight

• This algorithm always stabilizes the system
if the system is stabilizable

• But this may not be optimal

1

5

2

MaxWeight Algorithm (Example)

• Bipartite graph: weight of an edge from
node i to node j on the right equal to ௜௝

• Find a matching with the largest weight

• Solution: Use this algorithm with low
probability when the queue lengths are
small and use with higher and higher
probability when the queue length gets
larger

1

5

2

Satisfying the Drift Assumption: Soft Thresholding

27

ே௉ீ

ெௐ

• When
ଵ

ఒ
the soft thresholding begins.

• At larger queue lengths, MaxWeight policy dominates, ensuring stability

• At lower queue lengths, NPG dominates which focuses on optimality

• Hence thresholding provides an optimality-stability tradeoff

Value Function under the Drift Assumption

• Recall the drift equation:

𝔼గ ||𝑠௞ାଵ||ଶ − ||𝑠௞||ଶ|𝑠௞ = 𝑠 ≤ −𝜖||𝑠||ଵ + 𝑐 ∀𝜋, 𝑠

• Using this inequality, one can show

𝑉గ 𝑠 ≤
2

𝜖
||𝑠||ଶ + 𝑉గ

஻ ∀𝑠 ≠ 𝐵, ∀𝜋

• Recall the fluid intuition from before for the first term.

• But what about the second term?

28

𝑉గ
஻ = max

௦∈஻
𝑉గ 𝑠

Not policy
independent!

Exploit Additional Structure

• Bounded arrivals and bounded departures i.e.,

గ
ᇱ ଶ

ଵ
ଶ

ଶ

• Can move from any state to any state ᇱ

in at most ஻ time slots with probability at least ஻ i.e.,

గ
௫ಳ ᇱ

஻
ᇱ

29

s’

s

𝑥஻ steps

Exploiting Problem Structure

• Assumption: within a finite set there is non-zero probability of moving from any
to in a finite amount of time with non-zero probability

• For instance, consider a simple M/M/1 queue

• For any there is a non-zero probability to hit state from i.e., when no
arrivals occur. It is also possible to move from to any state with non-zero
probability ie., when no departures occur.

30

Poisson 𝜆 Exponential 𝜇

Implications of the Structural Assumption

• Uniform upper bound on the value function for all

policies , for all states within i.e.,

గ∈ஈ
గ
஻

஻

஻

஻
ଶ ஻

• The bounds on గ are obtained by studying the solution
to Poisson’s equation and obtaining robust bounds

• See Glynn-Meyn (1996) for policy dependent bounds

31

𝑉గ
஻ = max

௦∈஻
𝑉గ 𝑠

A Key Result

If all policies induce a Markov chain that:

• is irreducible

• satisfies the drift equation

• satisfies the additional structural assumption

then, the state action value function గ can be uniformly bounded:

గ ଵ
ଶ

32

State Dependent,
policy-independent

upper bound

Why does it matter?

33

NPG update:

𝜋 𝑎 𝑠

∝ 𝜋(𝑎|𝑠)exp (−𝜼𝒔𝑄෠గ 𝑠, 𝑎)

||𝑄గ − 𝑄෠గ||ஶ ≤ 𝜅

(function approximation error)

Policy Improvement

Policy Evaluation

Allows us to choose
the step-size as a
function of 𝑠

Theorem (Learning and Control in Queues)

Set 𝜂௦ =
଼ ୪୭୥ |஺|

்

ଵ

ெೞ
, where ௦ is a quadratic in

Up to function approximation error:

గೖ గ∗
ᇱ்

௞ୀଵ

With the function approximation error:

గೖ గ∗
ᇱ்

௞ୀଵ

34

𝜅 → 0 as the
number of
neurons in the
neural network
goes to infinity

Recall our Abstraction of Policy Evaluation

35

NPG update:

𝜋 𝑎 𝑠

∝ 𝜋(𝑎|𝑠)exp (−𝜂௦𝑄෠గ 𝑠, 𝑎)

||𝑄గ − 𝑄෠గ||ஶ ≤ 𝜅

(function approximation error)

Policy Improvement

Policy Evaluation

This abstraction is
problematic

Comments on the Policy Evaluation abstraction

• What can neural networks do?

• Universal approximation theorem: Sufficiently large neural networks can

approximate any continuous function on a compact domain to an arbitrary degree

of accuracy (an explicit construction in (Satpathi-S., 2019))

36

Comments on the Policy Evaluation abstraction

• However, our function ଶ

• The domain (being countable) can be compactified, but the function blows up to
infinity, so neural networks cannot uniformly approximate

• On the other hand

ଶ

is bounded, so a modified abstraction is more reasonable (but there is more to
be proved here)

37

A Modified Abstraction of Policy Evaluation

38

NPG update:

𝜋 𝑎 𝑠

∝ 𝜋(𝑎|𝑠)exp (−𝜂௦𝑄෠గ 𝑠, 𝑎)

|𝑄గ(𝑠, 𝑎) − 𝑄෠గ(𝑠, 𝑎)| ≤ 𝜅||𝑠||ଶ

(function approximation error)

Policy Improvement

Policy Evaluation

Theorem (Learning and Control in Queues)

Set 𝜂௦ =
଼ ୪୭୥ |஺|

்

ଵ

ெೞ
, where ௦ is a quadratic in

Up to function approximation error:

గೖ గ∗
ᇱ்

௞ୀଵ

With the function approximation error:

గೖ గ∗
గ

గ
ଶ ᇱ்

௞ୀଵ

39

𝜅 → 0 as the
number of
neurons goes to
infinity;
But is this a
meaningful
result?

Is finite?

• Recall the drift equation:

గ ௞ାଵ
ଶ

௞
ଶ

௞ ଵ

• One can show that this ensures that the moments of exist (Eryilmaz, S.,

2012), (Hajek 1982), i.e., there exists such that,

గ
ఈ| ௦ |

independent of

• This implies
గ

గ
ଶ is finite

40

Thus, we have a valid Theorem

Set 𝜂௦ =
଼ ୪୭୥ |஺|

்

ଵ

ெೞ
, where ௦ is a quadratic in

Up to function approximation error:

గೖ గ∗
ᇱ்

௞ୀଵ

With the function approximation error:

గೖ గ∗
గ

గ
ଶ ᇱ்

௞ୀଵ

41

𝜅 → 0 as the
number of
neurons goes to
infinity

Conclusions

• Exploited problem structure to design RL algorithms to control countable state-
space applications like communication networks, cloud computing, and ride
sharing

• Even when the problem has very limited structure

• Key Algorithmic Idea: Use state-dependent step-sizes in the policy improvement
part of the NPG algorithm

• Key Proof Idea: Bound the relative value function (also called the solution to
Poisson’s equation) and relate it learning-theoretic ideas in prediction-from-expert
advice a.k.a. online mirror descent (in prior work on finite-state spaces)

42

Thank You!

43

