Learning and Control in Countable State Spaces

R. Srikant
UIUC

Joint work with

Siva Theja Maguluri

Yashaswini Murthy lzzy Grosof
uluC UIUC->Northwestern GaTech

* lzzy’s and Yashaswini’s Talks: Room A001, Today 13:30-15:00

Motivation

* Reinforcement Learning (RL)

At last — a comput g
can beat a champion Go player page4g4

ALL SYSTEMS GO

Game playing [Mnih et al., 2013] Robotics

Go [Silver et al., 2018]

Well-Studied and Not So Well-Studied Learning Problems

Finite-State Spaces
P(s'|s,a)
(No or very little
structure)

Countable State-
Spaces
(Limited Structure:
positivity, easy
stabilizability; how
can we exploit it?)

Uncountable, but

structured problems
(e.g., LQ/Robust)

g — (8)—

X1 = Axk + Buk + Wi

O

Stability=bounded w.p. 1

Either Sys Id followed by Control,
Or Linear Policy Optimization

Scheduling in an nxn Switch

« A matrix of queues operating in discrete-time; packets arrive to each queue
according to some arrival process. In each time slot, at most one packet can be
served from each queue (Application: Data Center Switches)

* Controls: Permutation matrices

» At most one queue from each row, and one from each column can be served in each
time slot

» Find a sequence of such matrices to minimize average delay

-
B

7 N
J Ul

U

Scheduling in 5G Networks

Time Time . . Time
Slot1 Slot 2 Slot T
Freq 1 3 3 2 1
Slot 1
Freq 1 2 1 2 1
Slot 2
Freq 3 3 1 2 2
Slot F

 Available data rate in different slots could be different

+ Virtualization requirements: min guarantees on the # slots
allocated to different classes of users (police, fire dept,
tesla,...)

» Subject to these constraints, minimize delay, ensure
fairness, etc.

Ride Hailing

 Goal: Maximize revenue minus

= MiX'ﬁ'-“a =
&1 X"“ —

k)
LR

2, o =

Control prices Control payments

Cloud Computing

* ML jobs may have complicated structures: e.g., DAGs representing precedence
among tasks; a sequence of such jobs arrive according to some random process

» Control: allocate tasks to minimize mean job delay

« 4

Model

* Sk+1 = f(Sk, Qg Wi
. s, € Z¢ (vector of queue lengths)

* Wj: randomness

* a, = 1n(sy): (randomized) feedback policy

T —
.] — llm IETL'[Zt:()l C(Sk)]
T T—0o0 T
« Goal: minimize average cost

* c(s,) = ||sk||1(total queue length)

I

Sy oy

S sy ey

Relative Value Function V

« (Differential) Cost accumulated until you hit 0

* J.: Average cost under policy ™
* |Iskl|, = Jx: Differential cost

« 77 time to hit state 0 starting from state s

e Vo(s) = ECC= ,(lIsklls = J)lso =)

<X

R ol

S Sy sy

10

Relative Value Function Q

« (Differential) Cost accumulated until you hit 0 if

you apply action a in state s and use policy & after

that ‘ﬁ“ﬁ“ﬂ‘ o iy
'&‘i‘ﬁﬁ‘%ﬁ
* Qr(s,a) =

|[sll1 = Jr + E[Vz(s1)| S0 = $,30 = a]

11

Policy Optimization (Policy lteration)

Policy Improvement

(")

m(a|s) = argmin Q(s,a")
al

- J

(")

Jz +0(s,a) =c(s) + E[Q(s’,n(s’))|s, a]

(Poisson’s Equation)

_ J

Policy Evaluation

Policy Optimization (Learning): Natural Policy Gradient

Policy Improvement

(
NPG update:

Tr+1(als)

o 1 (a|s)exp(—1Qy, (s, @)

\

-

Collect samples from a

estimate Q,

_

\

trajectory generated by m;, and

J

Policy Evaluation

Related to PPO, Dai-Gluzman 2022

13

Abstracting Policy Evaluation (Ignoring TD Learning, etc.)

Policy Improvement

_

”an - an”oo S K

4)
NPG update:
T +1(als)
o 1 (a|s)exp(—1Qy, (s, @)
4)

(function approximation error)

J

Policy Evaluation

not a good abstraction, a
better abstraction later

14

Rationale for the Abstraction

 What can neural networks do?

Input Layer Hidden Layer Output Layer
* Input: (s, a), Output: Q(s,a)
» The reason we need a neural network is that we cannot visit all (state,action) pairs: so,

visit a few (state, action) pairs, empirically estimate the Q-function at those (state,action)

pairs and extrapolate to other (state,action) pairs by training a neural network
15

Rationale for the Abstraction

 What can neural networks do?

Input Layer Hidden Layer Output Layer
« Input: (s, a), Output: Q(s,a)

» Our abstraction assumes that the neural network can uniformly approximate the

Q-value at all (state,action) pairs: not reasonable for countable state spaces, but

we will stick with this assumption for now and refine it later

16

Result for Finite-State Spaces (Even-Dar et al, 2009, Abbasi-Yadkori et al, 2019)

» Consider T iterations of the Natural Policy Gradient algorithm.

« Step size (Q.x = Max an(s, a))
s,a,k

8log |A|
n= A
TQmax

» The overall regret (up to a function approximation error):

T
Ejnk _]n* = O(WQ\max)
k=1

17

Whatis Q,(s,a)?

Recall Q- (s,a) = [[s||1 = Jx + E[Vz(s1)| so=s,a9 = 2]
V.(s1): (relative) cost accumulated until you hit 0 starting from s,
Therefore, V.(s;) « ||s{]|?. Why?

Fluid Intuition:

Arrival rate: A Departure rate: u

—P —P

Initial queue length: s;

Costattime tiss; — (u— Dt = V(sy) x s?

18

Whatis Q,(s,a)?

e Fluid Intuition:

Arrival rate: A Departure rate: u

— —

—

Initial queue length: s;
« Costattimetiss; — (u—At = V(s;) xs?

 For this intuition, the system should be stable: in this simple single-
queue case A < L.

» This observation about stability will be useful later

19

Countable State Spaces

» The overall regret (up to a function approximation error):

T
2]7‘[;(_]T[* = O(WQ\max)
k=1

« Even if the system is stable at each iteration of NPG (which it is not
obvious that it will be), perhaps one can show that @, (s,a) « Is]]?,

but that doesn’t help: 0,4 = @

20

What Goes Wrong and How to Fix [t?

» 1 is like a step-size (algorithm is closely
related to mirror descent)
» |t has to be sufficiently small in
magnitude, of the order of 1/0,,,4, but
the error is proportional to 1 /7

4)

NPG update:

Me+1(als)

o 1y (als)exp(—1Qr, (s, @)

- J

» Solution: Make 7 state-dependent but
4) proportional to 1/0Q,,,,,(S)

”QTL’k - anlloo <K

> To be able to this, we need an estimate of

(function approximation Qmax (S) — mc?X Q (S, a)

\ error) Y

21

Roadmap to Handle Countable State Spaces

« Use the structure of our motivating examples to ensure that the system is always
stable under any policy generated by NPG (i.e., bounded w.p. 1)

» Tradeoff between robustness and performance

« This will allow us to show that Q(s) < ¢||s||? + ¢, ||s||; + ¢3

« Make a small change to the algorithm to exploit the above bound on Q(s) and
eliminate the dependence on Q,,,,

22

Exploiting Structure: Drift Assumption

Erlllsksall? = lsell®lsk = sl < —€llslly +¢ vms
» We will only search among the class of controls that

satisfy the above Lyapunov drift condition
» See also (Xie, Shah, Xu, 2020), (Lale et al, 2023)

» Question: can we assure such robust stability?

* Naturally satisfied in some cases, e.g., with
abandonments

 In other cases, we may give up some performance
(although probably doesn’t matter in practice) for robust
stability, i.e., independent of problem parameters

23

MaxWeight Algorithm (Example)

* Bipartite graph: weight of an edge from
node i to node j on the right equal to q;;

MaxWeight Algorithm (Example)

Bipartite graph: weight of an edge from
node i to node j on the right equal to q;;

Find a matching with the largest weight

This algorithm always stabilizes the system
if the system is stabilizable

But this may not be optimal

MaxWeight Algorithm (Example)

 Bipartite graph: weight of an edge from
node i to node j on the right equal to q;;

* Find a matching with the largest weight

 Solution: Use this algorithm with low
probability when the queue lengths are
small and use with higher and higher
probability when the queue length gets
larger

Satisfying the Drift Assumption: Soft Thresholding

m(s) = |

g

\

1
T S w.p. min|{1,———
NPG() P (AHS”)

1
T S w.p. 1 —min|{ 1,

> When ||s]| 2% the soft thresholding begins.

At larger queue lengths, MaxWeight policy dominates, ensuring stability

» At lower queue lengths, NPG dominates which focuses on optimality

« Hence thresholding provides an optimality-stability tradeoff

27

Value Function under the Drift Assumption

Recall the drift equation:

Erlllsk+1ll® = Isell?lse = s1 < —€llslly +¢ vm,s

Using this inequality, one can show

2
V.(s) < - lIs||? + VB Vs # B,Vrm

Not policy
independent!

Recall the fluid intuition from before for the first term.

But what about the second term?

28

Exploit Additional Structure

» Bounded arrivals and bounded departures i.e.,

Pr(s'ls) > 0= |[|s'|* < c1s]I* + c; Vm

« Can move from any state s € B to any state s’ € B

in at most x; time slots with probability at least pg, i.e.,

PYE(s'|s) =pg Vs,s' €EB,m

29

Exploiting Problem Structure

« Assumption: within a finite set there is non-zero probability of moving from any
s € B to s’ € B in a finite amount of time with non-zero probability

» For instance, consider a simple M/M/1 queue

Poisson (4) BIBIR Exponential (1)

— —

* For any s < B, there is a non-zero probability to hit state 0 from s i.e., when no
arrivals occur. It is also possible to move from 0 to any state s < B with non-zero
probability ie., when no departures occur.

30

Implications of the Structural Assumption

» Uniform upper bound on the value function for all

policies € II, for all states within B i.e.,

B c Xp
max V7 < —| — + 2xp
mell PB€ \Pp

* The bounds on V;, are obtained by studying the solution
to Poisson’s equation and obtaining robust bounds

+ See Glynn-Meyn (1996) for policy dependent bounds

31

A Key Result

If all policies = € Il induce a Markov chain that:
* is irreducible
« satisfies the drift equation

« satisfies the additional structural assumption

then, the state action value function Q,; can be uniformly bounded:

{ 0n(s,0) < Sealls|f? +C }
AN

State Dependent,
policy-independent
upper bound

32

Why does it matter?

Policy Improvement

-

NPG update:
m(als)

o< m(als)exp(—nsQx (s, a))

\

-

_

1Qr — Qrlleo = K

\

(function approximation error)

J

Policy Evaluation

Allows us to choose
the step-size as a
function of s

33

Theorem (Learning and Control in Queues)

/Set e = /81°g 'A'Mi, where M, is a quadratic in s.

T

Up to function approximation error:

£=1Unk_]n*) = C,\/T

With the function approximation error:

\ Zizl(’nk_]n*) < kT + C,\/T

~

/

Kk — 0 as the
number of
neurons in the
neural network
goes to infinity

34

Recall our Abstraction of Policy Evaluation

Policy Improvement

-

NPG update:
n(als)

o< (als)exp(—nsQx (s, a))

\

-

_

1Qr — Qrlleo = K

\

(function approximation error)

J

Policy Evaluation

This abstraction is
problematic

35

Comments on the Policy Evaluation abstraction

 What can neural networks do?

— -

> /4

N
/<§ << 3:)
N
/// %\(\\(

A
—O—
O
@/

Input Layer Hidden Layer Output Layer

Universal approximation theorem: Sufficiently large neural networks can
approximate any continuous function on a compact domain to an arbitrary degree

of accuracy (an explicit construction in (Satpathi-S., 2019))

36

Comments on the Policy Evaluation abstraction

« However, our function Q(s) ~ ||s]|?

« The domain (being countable) can be compactified, but the function blows up to
infinity, so neural networks cannot uniformly approximate Q(s)

* On the other hand
Q(s)

|Is]?

IS bounded, so a modified abstraction is more reasonable (but there is more to
be proved here)

37

A Modified Abstraction of Policy Evaluation

Policy Improvement

-

NPG update:
n(als)

o< (als)exp(—nsQx (s, a))

\

-

_

|0 (5,@) = Qr (s, @)| < x||s]|?

\

(function approximation error)

J

Policy Evaluation

38

Theorem (Learning and Control in Queues)

/Set ne = /MML where M is a quadratic in s.

T

Up to function approximation error:

£=1Unk_]n*) < C,‘/T

With the function approximation error:

\ Yi=1Um,~Jr) S kmax Ex([|s||) T + ¢'VT

~

/

Kk — 0 as the
number of
neurons goes to
infinity;

But is this a
meaningful
result?

39

Is max E,(||s||?) finite?
T

« Recall the drift equation:

Enlllse+all? = lIskll?Isk = s] < —e€llslly +¢ Vm,s

« One can show that this ensures that the moments of ||s|| exist (Eryilmaz, S.,

2012), (Hajek 1982), i.e., there exists a such that,
[En[eaIISII] <M,

independent of

* This implies max E,(||s||?) is finite
T

40

Thus, we have a valid Theorem

/Set e = /81°g 'A'Mi, where M, is a quadratic in s.

T

Up to function approximation error:

£=1Unk_]n*) = C,\/T

With the function approximation error:

\ Yie=1Uny—~Jn) < kmax Ex(||s||2) T + ¢'NT

/

Kk — 0 as the
number of
neurons goes to
infinity

41

Conclusions

« Exploited problem structure to design RL algorithms to control countable state-
space applications like communication networks, cloud computing, and ride
sharing

« Even when the problem has very limited structure

« Key Algorithmic Idea: Use state-dependent step-sizes in the policy improvement
part of the NPG algorithm

» Key Proof Idea: Bound the relative value function (also called the solution to
Poisson’s equation) and relate it learning-theoretic ideas in prediction-from-expert
advice a.k.a. online mirror descent (in prior work on finite-state spaces)

42

Thank Youl!

