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Computational Experiences with Proximal Policy Optimization

@ Queueing Network Controls via Deep Reinforcement Learning (2021)

e J. G. Dai and Mark Gluzman, Stochastic Systems

@ Scalable Deep Reinforcement Learning for Ride-Hailing (2021)

e Jiekun Feng, J. G. Dai and Mark Gluzman, IEEE Control Systems Letters

@ Inpatient Overflow Management with Proximal Policy Optimization (2024)

e J. G. Dai, Pengyi Shi, Jingjing Sun

@ Deep RL algorithms are scalable in solving MDP problems modeling these
operations
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Queueing Network Controls via Deep RL

@ Stochastic processing network
(SPN) examples

@ Proximal Policy Optimization
(PPO) Algorithm in countable
state space

Mark Gluzman

Meta @ Numerical examples
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SPN example II: Re-entrant queueing networks (PR Kumar 1993)
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SPN application I: data-intensive server farm

Arrivals

Dai-Harrison (2020), Processing
Networks: Fluid Models and
Stability, Cambridge University
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PPO algorithm, general formulation

@ We consider an MDP with countable state space X, finite action space A,
one-step cost g(z) > 0, and transition function P(y|z, a).

@ Consider a class of randomized Markovian policies 7y, 6§ € ©. Under the policy
T, the transition matrix:

Py(yle) = mo(alz)Py|z, a) for o,y € X.
acA

@ Assume each Markov chain Py is irreducible and aperiodic (not essential).

@ Find 0 € © to minimize the long-run average cost

—_
~

1 N-1
lim sup NEM [Z g(m(k))] , (

N— o0 k—0

which is independent of the initial state, 2®) is the state of the Markov chain Py
after k timesteps.
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Poisson equation

@ Assume that the Markov chain Py has the (unique) stationary distribution, which
is denoted by pe.

@ Long-run average cost in (1) is equal to 5 g = >, po(z)g(x).
@ Assume that Poisson equation has a solution hy = h

g(x) —pdg+ 3 Po(ylz)h(y) —h(x) =0 foreachz € X.

yeX
@ An advantage function 4y : X x A — R of policy my:
Ao(w,a)i= B [g@) ~ i g+ ha(y) — ho(x)]

y~P(-|z,a)

@ When X is finite, both assumptions are satisfied.
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When the state space is infinite: drift condition

@ Drift condition: 3V : X — [1,00), b € (0,1), d > 0, a finite C C X such that

> Py(ylz)V(y) <bV(z)+dlo(z), foreachz € X.

YyeEX
@ (Meyn-Tweedie) If P, satisfies the drift condition with some Lyapunov function
V > 1, P, has a unique stationary distribution .
@ Assume further g < V. Poisson equation has the fundamental solution

Z ( ) ,u;‘]rg) | 2@ = a::| foreachz € X. 2)

k=0

where z(®) is the state of the Markov chain P, after k timesteps.
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Some notations
@ Assume policy 7, n € © satisfies the drift condition with Lyapunov function V.
@ For avector v on X, V-norm is defined as

o 2@
¥]loo,v = SUR Ty

@ For a matrix M, V—norm is defined as
1

M = — M .

Ml = sup 5 3 M@V R)

@ Fundamental matrix

[e o]
= (Py—1Iy)

k=0

where, for each z,y € X, I, (z,y) := un(y).
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Kakade-Langford-type lemma: long-run average version

LEMMA 1

@ Suppose P, satisfies the drift condition with Lyapunov function V.
® gl <V.

@ 0 € O is close to n such that

Do,y = [[(Po — Py)Zn|lv < 1.
Then, Py has a stationary distribution ¢, and

169 — [y g = E [An(z, a)] )

zvpg,anmy(-|z)

mo(x,a)

Ay (w,a)] +AO,m)

T~y anTy (-|) |:7T7](I, a)

= L(9,n) + A(6,n).
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Under the assumptions of Lemma 1, we have

A0 Do
( 77’)S6(9377)_1_D9 X
M

DB, T T T
x (1 + Ao ey e VI = T +Pn||v||zn||v) o= Gmare]| v

]

@ Thus, we have

1o g — g < L(0,m) +6(0,m).
—_—

Surrogate function

@ When Dy, is small, L(6,1) = O(Dy,,) and 6(8,7) = O(D3 ,,).

@ Conservative update: minimizey L(6, n) while keeping Dy ,, is small.



Proximal Policy Optimization

@ Constrained optimization: minimize L(¢, n) while keeping Dy, small.

LEMMA 2

Define ratio 74, (a|z) := % and G, (z,a) := V(lz) > mp(alz)P(y|z, a)V (y).
YyeX

Do,y < || Zyllv sup Y [ron(ale) — 1| Gy(x, a).
TEX heA

@ The lemma says that Dy, is small when the ratio 4, (a|x) is close to 1.

@ Following Schulman et al. (2017), we solve an unconstrained optimization
problem by minimizing the clipped surrogate objective over 0

LO,m) = E  max [Te,,,(akv)An(:c,a), C|ip(7'9,,,(a|x),17671+6)An(x,a)],

arvmy(-|x)

where € > 0 is a hyper-parameter.
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PPO as a Policy Improvement Algorithm

Given policy m,; find an improved policy .. Define ratio ¢ ,, (a|z) := Zel*2)

o (alz)

@ Fix e > 0 as a hyper-parameter. Define

L(0,n) := Eﬂn max [rg,n(a|x)An(z, a), Clip(rgm(a|x), 1—¢1+ e) An(m,a)],

T
ary (-|x)

iy is the stationary distribution of P,.

Policy improvement: from =, to m,«, where

n" = argming L°(0, 7).
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PPO: Markov chain Monte Carlo

@ Under policy 7, an episode is generated:
E— {xm)’a(m’x(n,a(m’,,, ,x““”,a‘K*”}. 4)

@ Based on the generated episode (4), the Monte-Carlo estimate of L°(0, ) is

=

1
max [rg,n(a(k) |x(k))An(az<k), a(k>),
0

~e 1
L (Q,U’E) = ?

ES
Il

clip (Tgyn(a(k>|x(k)), 1—¢€1+ e) Az a®].
@ We use ADAM to find * = argmin, L¢(0, 7, E).

@ Open problem: m,-drift condition implies m,~-drift condition?
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Numerical results for the re-entrant networks
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Figure: The extended six-class network.
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PPO wins in a challenging queueing control problem

# of classes, 3L | LBFS FCFS FP RFP Our method
6 15.749 | 40.173 | 15.422 | 15.286 | 14.130 4+ 0.208
9 25.257 | 71.518 | 26.140 | 24.917 | 23.269 + 0.251
12 34.660 | 114.860 | 38.085 | 36.857 | 32.171 + 0.556
15 45110 | 157.556 | 45.962 | 43.628 | 39.300 + 0.612
18 55.724 | 203.418 | 56.857 | 52.980 | 51.472 +0.973
21 65.980 | 251.657 | 64.713 | 59.051 | 55.124 + 1.807

Table: Simulation results for the heavy-loaded (p, = 0.9) re-entrant networks.

@ Robust fluid policy (RFP): Bertsimas-Nasrabadi-Paschalidis (2015).
@ Fluid policy (FP): Avram-Bertsimas-Ricard (1995).
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Scalable Deep Reinforcement Learning for Ride-Hailing

Aurora Feng Mark Gluzman

Teza Technologies Meta
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Matching and repositioning: Curse of dimension on # of matches

drivers, m @ Hierarchical decisions

assengers, n . .
passengers, n @ One driver at a time,

sequentially

o trip-type (RL algorithm)

o (0,d) pair of regions

. o e driver-passenger
@ Without repositioning,

(platform)

Tm—n)! possible “batch”

actions.
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Scalability: atomic policy to generate trip types

@ At each epoch, for example, 9:01am
@ RL generates trip-types sequentially, following a trained atomic policy

@ The term “atomic actions” was coined in Feng-D-Gluzman (2021)

THEOREM (D-WU-ZHANG 2024)

An optimal atomic policy is optimal for the original problem.

Manxi Wu Zhanhao Zhang
Cornell ORIE Cornell ORIE
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@ The 9-region transportation networks from Braverman et al. 2019 ! is based on the
real-world data released by the Didi Research Institute.

90 i

PPO algorithm

== PPO algorithm, no empty-car routing
= “Time-dependent lookahead” policy

®
@

50...u|IH

50 Policy iteration 100 150

~ ®
@ =)

Percentage of fulfilled ride requests
~
o

o

A transportation network consisting of R = 9 regions, N = 2000 cars, and H = 240 minutes.

1A. Braverman, J. G. Dai, X. Liu, and Y. Lei, Empty-car routing in ridesharing systems, Operations Research, 2019.



Inpatient Overflow Management with Proximal Policy Optimization

o » k.
Pengyi Shi Jingjing Sun
Krannert, Purdue CUHK-Shenzhen
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Hospital inpatients, from ED to wards
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Median Wait Time for Admision at ED (Hr)
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MDP: Actions

X, (t)

Actions: f(t) = {fi2(t), f1(t)}
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MDP: One-Step Cost and Objective

@ One-step cost:
g(S@), £() =D Bifis(t) + > CiQ;(t+).
i#j J
@ Average-cost objective:
1 N
Min, Jim —E[ 3" g(S(8), /(1))
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Periodic MDP

The bed request (arrival) and discharge (departure) pattern is periodic.

35
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(a) Empirical bed-request distribution (b) Empirical discharge time distribution

Consider m decision epochs a day and denote the kth decision epoch at day ¢ and ¢y,
our objective can be rewritten as

T m
Min hm = {Z g(s tk))}

t=1 k=1
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Prior Work: Dai and Shi (2019)-ADP approach

@ Value function approximation with queueing based features: Vi (s) = (8-, #(s))
@ At each state, search an action in the large action space to update policy:
?1612 [9(57 I)+Egopis,nVa(s)|.

@ Works well in 5-pool system.
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Challenge: Large Action Space

Example: In a twenty-pool system, assume the capacity in each pool is 60. At state
with
(z1, ..., 220) = (65,63, 62, 50, 50, 50, ...., 50),

where there are 10 waiting customers from three classes, and 10 idle servers in 17

partially-occupied server pools, the action space size is:

oL o ~ 513 -10°
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Key Factors Contributed to the PPO Success

@ Atomic policies: Decompose actions into a sequence of atomic actions. Atomic
policies have small action space.

@ Periodic MDP: Policy NN design.

@ Value function approximation®: Use LSTD method to reduce estimation
variance in the long-run average cost setting.
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Randomized atomic policy

@ At 3pm, state s = (9,4, 7, y1, y2,ys3, 15 : 00), with four waiting patients.
@ A sequence of “atomic actions” will be taken at 3pm, one step at a time.

@ Instep 1, set s* = s. Suppose

©0e

4=

-
-

(e =1]s',¢' =1)=0.2 waiting -
0.

02 7~
7T(a1:2|81,01:1):().8 pool 2
CoOogd . oo
1 2 3

@ Suppose 1st step atomic action o' = 1, patient “a” continues to wait, and s = s

o

1

Jim DA1 (CORNELL) RL FOR OPERATIONS 35/53



Second Step Atomic Action

@ Instep 2, updated state s* = (9,4, 7, y1, y2, ys, 15 : 00).

@

©
Suppose )|

m(a® =3|s* ¢ =3)=0.6 waiting

admitted into pool 2 kccp waltmg

m(a®=2]s%c3=3)=04 pool?2 - . ’ -

@ And 2nd step atomic action a® = 2.
@
©)| 4
©)
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After 4th Atomic Action

@ Post-action state: s° = (8,6, 6, y1,y2,y3, 15 : 00)

®e

@ At 15:30 (next decision epoch), a new sequence of atomic actions will be taken.
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Randomized Policy Parameterized by NN

@ Neural network 6 to parameterize randomized policy g

State and customer class

()
Waiting customer count of each class { .\
AN
(] }% Routing probability
Busy sever count in each pool { N \\\‘
[ ) }\\\}‘\s}:} \
“{‘\v‘h/ . . IP’(a1 - 1)
[
To-be discharge count in each pool { . _—
Oy J=1)) Y
\ ® — P@=)
. 77 3 /
Time-of-day h

Customer class c* {
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PPO Hyper-parameter: NN Structure

Choice 1: Fully-connect

Input: State
Output: Routing probability

Waiting customer count of each class { {P@a" = jlc" =),

Lj=1..J}
Busy sever count in each pool { N ® - O
To-be discharge count in each pool ® - 0

0 J =) { °®

Time-of-day h {
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PPO Hyper-parameter: NN Structure

Choice 2: Fully-separate

Input: State without time

Output: Routing probability

0 {P(a™ =jlc" =i,h=0),
Waiting customer count of each class Lj=1,..J}
® - O
Network for
Busy sever count in each pool onlyh =0
® - O
To-be discharge count in each pool
Opi=1..])
® - o
Same as above Network for
e . o only h = m-1
{P(@a" =jlc"=i,h=m—1),
Lji=1,..,]J}
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PPO Hyper-parameter: NN Structure

Choice 3: Partial-share

Input to last hidden
(same for different h)

o Output: Routing probability
Input: State without time

{P(a" =jlc" =i,h=0),
Waiting customer count of each class { PY

Lj=1..J}

Busy sever count in each pool {

To-be discharge count in each pool { L
O J=1-]) ) {P(a" =jlc"=i,h=m—1),
Lj=1..J}

JiM DAI (CORNELL)

RL FOR OPERATIONS
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Numerical results: Baseline Hyper-parameters

Conduce experiments in 10-pool model with baseline PPO hype-parameters:

Parameters Baseline Choice
NN depth One hidden layer
NN hidden layer width 34 neurons
Basis function (X,X2,Y,Y? XY, V;) from Dai and Shi (2019)
Initial policy Complete-overflow policy
Simulation days per actor 10,000
Number of actors 10
Number of training epochs 15
Clipping parameter (e) 0.5

Table: Baseline choice of PPO hyper-parameters in ten-pool setting.
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Numerical results: Partial-share Policy Network is Sample Efficient

25%

Improvement over Empirical policy

JiM DAI (CORNELL)
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Summary

@ Atomic polices can be optimal (D-Wu-Zhang 2024)

@ PPO + atomic policy can drastically reduce discrete action space

@ PPO is a policy improvement algorithm

e Policy evaluation is data-expensive

e Can be implemented by using operational data? + synthetic data?

@ For periodic MDPs, policy NN design improves sample efficiency
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@ Is RL relevant to operations?

o Game e Inventory e Load
o Robotics e FE o Time-varying
e LLM ° ... e Behavior

@ Killer application?



Some further thoughts

@ Diffusion control problems

e Han-Jentzen-E (2018), PNAS
e Ata, Harrison, Si (2023, 2024)

@ Standard test problems?

What We See and What We Value:
— AIWith a Human Perspective ° TS P TeSt Data
=

U Waterloo
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Figure: N-model network with p = 0.95



Numerical results for N-model
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Numerical results for N-model
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Numerical results: 5-pool

@ PPO method improve greatly over naive policies

@ PPO method obtain comparable results with ADP method

@ Time: 2.5h per iteration for PPO
10h per iteration for ADP

B
3
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PPO Hyper-parameter: NN Structure

Tailored NN structure designs to improve sample efficiency.

@ Input excludes customer class ¢
Output P(a™ = j|c" =1), 4,5 =1,..., J;

@ Input excludes time-of-day h
Output P(a™ = jlc" =i, h=1), i,j=1,...,J,0 =0,....m — 1;

Jim DA1 (CORNELL) RL FOR OPERATIONS
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