
TOWARDS RL FOR OPERATIONS?

Jim Dai

Cornell University & CUHK-Shenzhen

June 19, 2024

RL4SN, ENSEEIHT, Toulouse

JIM DAI (CORNELL) RL FOR OPERATIONS 1 / 53



Computational Experiences with Proximal Policy Optimization

Queueing Network Controls via Deep Reinforcement Learning (2021)

J. G. Dai and Mark Gluzman, Stochastic Systems

Scalable Deep Reinforcement Learning for Ride-Hailing (2021)

Jiekun Feng, J. G. Dai and Mark Gluzman, IEEE Control Systems Letters

Inpatient Overflow Management with Proximal Policy Optimization (2024)

J. G. Dai, Pengyi Shi, Jingjing Sun

Deep RL algorithms are scalable in solving MDP problems modeling these

operations
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Queueing Network Controls via Deep RL

Mark Gluzman

Meta

Stochastic processing network

(SPN) examples

Proximal Policy Optimization

(PPO) Algorithm in countable

state space

Numerical examples
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SPN example I, criss-cross queueing network

S1B1 B2 S2

B3class 1

arrivals

class 3

arrivals

class 2

departures

class 3

departures
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SPN example II: Re-entrant queueing networks (PR Kumar 1993)

Many apparently “good”

policies can be unstable.

Bramson, Lu-Kumar,

Rybko-Stolyar, ...
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SPN application I: data-intensive server farm

Dai-Harrison (2020), Processing

Networks: Fluid Models and

Stability, Cambridge University

Press.
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PPO algorithm, general formulation

We consider an MDP with countable state space X , finite action space A,

one-step cost g(x) ≥ 0, and transition function P (y|x, a).

Consider a class of randomized Markovian policies πθ, θ ∈ Θ. Under the policy

πθ, the transition matrix:

Pθ(y|x) =
∑
a∈A

πθ(a|x)P (y|x, a) for x, y ∈ X .

Assume each Markov chain Pθ is irreducible and aperiodic (not essential).

Find θ ∈ Θ to minimize the long-run average cost

lim sup
N→∞

1

N
Eπθ

[
N−1∑
k=0

g(x(k))

]
, (1)

which is independent of the initial state, x(k) is the state of the Markov chain Pθ

after k timesteps.
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Poisson equation

Assume that the Markov chain Pθ has the (unique) stationary distribution, which

is denoted by µθ.

Long-run average cost in (1) is equal to µT
θ g =

∑
x∈X µθ(x)g(x).

Assume that Poisson equation has a solution hθ = h

g(x)− µT
θ g +

∑
y∈X

Pθ(y|x)h(y)− h(x) = 0 for each x ∈ X .

An advantage function Aθ : X ×A → R of policy πθ:

Aθ(x, a) := E
y∼P (·|x,a)

[
g(x)− µT

θ g + hθ(y)− hθ(x)
]
.

When X is finite, both assumptions are satisfied.
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When the state space is infinite: drift condition

Drift condition: ∃ V : X → [1,∞), b ∈ (0, 1), d ≥ 0, a finite C ⊂ X such that

∑
y∈X

Pθ(y|x)V (y) ≤ bV (x) + d IC(x), for each x ∈ X .

(Meyn-Tweedie) If Pη satisfies the drift condition with some Lyapunov function

V ≥ 1, Pη has a unique stationary distribution µη.

Assume further g ≤ V. Poisson equation has the fundamental solution

hη(x) := E

[
∞∑

k=0

(
g(x(k))− µT

η g
)

| x(0) = x

]
for each x ∈ X . (2)

where x(k) is the state of the Markov chain Pη after k timesteps.
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Some notations

Assume policy πη, η ∈ Θ satisfies the drift condition with Lyapunov function V .

For a vector ν on X , V -norm is defined as

∥ν∥∞,V := sup
x∈X

|ν(x)|
V (x)

.

For a matrix M , V−norm is defined as

∥M∥V := sup
x∈X

1

V (x)

∑
y∈X

|M(x, y)|V (y).

Fundamental matrix

Zη :=

∞∑
k=0

(Pη −Πη)
k ,

where, for each x, y ∈ X , Πη(x, y) := µη(y).
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Kakade-Langford-type lemma: long-run average version

LEMMA 1
Suppose Pη satisfies the drift condition with Lyapunov function V .

|g| ≤ V .

θ ∈ Θ is close to η such that

Dθ,η := ∥(Pθ − Pη)Zη∥V < 1.

Then, Pθ has a stationary distribution µθ, and

µT
θ g − µT

η g = E
x∼µθ,a∼πθ(·|x)

[Aη(x, a)] (3)

= E
x∼µη,a∼πη(·|x)

[πθ(x, a)

πη(x, a)
Aη(x, a)

]
+∆(θ, η)

≡ L(θ, η) + ∆(θ, η).
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A bound on ∆(θ, η)

THEOREM

Under the assumptions of Lemma 1, we have

∆(θ, η) ≤ δ(θ, η) :=
D2

θ,η

1−Dθ,η
×

×
(
1 +

Dθ,η

(1−Dθ,η)
(µT

η V )∥I −Πη + Pη∥V ∥Zη∥V
)∥∥∥g − (µT

η g)e
∥∥∥
∞,V

(µT
η V ).

Thus, we have

µT
θ g − µT

η g ≤ L(θ, η) + δ(θ, η)︸ ︷︷ ︸
Surrogate function

.

When Dθ,η is small, L(θ, η) = O(Dθ,η) and δ(θ, η) = O(D2
θ,η).

Conservative update: minimizeθL(θ, η) while keeping Dθ,η is small.
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Proximal Policy Optimization

Constrained optimization: minimize L(θ, η) while keeping Dθ,η small.

LEMMA 2
Define ratio rθ,η(a|x) := πθ(a|x)

πη(a|x) and Gη(x, a) :=
1

V (x)

∑
y∈X

πη(a|x)P (y|x, a)V (y).

Dθ,η ≤ ∥Zη∥V sup
x∈X

∑
a∈A

|rθ,η(a|x)− 1|Gη(x, a).

The lemma says that Dθ,η is small when the ratio rθ,η(a|x) is close to 1.

Following Schulman et al. (2017), we solve an unconstrained optimization

problem by minimizing the clipped surrogate objective over θ

Lϵ(θ, η) := E
x∼µη

a∼πη(·|x)

max
[
rθ,η(a|x)Aη(x, a), clip(rθ,η(a|x), 1− ϵ, 1 + ϵ)Aη(x, a)

]
,

where ϵ > 0 is a hyper-parameter.
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PPO as a Policy Improvement Algorithm

Given policy πη; find an improved policy πη∗ . Define ratio rθ,η(a|x) := πθ(a|x)
πη(a|x)

Fix ϵ > 0 as a hyper-parameter. Define

Lϵ(θ, η) := E
x∼µη

a∼πη(·|x)

max
[
rθ,η(a|x)Aη(x, a), clip

(
rθ,η(a|x), 1− ϵ, 1 + ϵ

)
Aη(x, a)

]
,

µη is the stationary distribution of Pη.

Policy improvement: from πη to πη∗ , where

η∗ = argminθ L
ϵ(θ, η).
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PPO: Markov chain Monte Carlo

Under policy πη an episode is generated:

E =
{
x(0), a(0), x(1), a(1), · · · , x(K−1), a(K−1)

}
. (4)

Based on the generated episode (4), the Monte-Carlo estimate of Lϵ(θ, η) is

L̂ϵ(θ, η, E) :=
1

K

K−1∑
k=0

max
[
rθ,η(a

(k)|x(k))Aη(x
(k), a(k)),

clip
(
rθ,η(a

(k)|x(k)), 1− ϵ, 1 + ϵ
)
Aη(x

(k), a(k))
]
.

We use ADAM to find η∗ = argminθ L̂
ϵ(θ, η, E).

Open problem: πη-drift condition implies πη∗ -drift condition?
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Numerical results for the re-entrant networks

Figure: The extended six-class network.
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PPO wins in a challenging queueing control problem

# of classes, 3L LBFS FCFS FP RFP Our method

6 15.749 40.173 15.422 15.286 14.130± 0.208

9 25.257 71.518 26.140 24.917 23.269± 0.251

12 34.660 114.860 38.085 36.857 32.171± 0.556

15 45.110 157.556 45.962 43.628 39.300± 0.612

18 55.724 203.418 56.857 52.980 51.472± 0.973

21 65.980 251.657 64.713 59.051 55.124± 1.807

Table: Simulation results for the heavy-loaded (ρℓ = 0.9) re-entrant networks.

Robust fluid policy (RFP): Bertsimas-Nasrabadi-Paschalidis (2015).

Fluid policy (FP): Avram-Bertsimas-Ricard (1995).

JIM DAI (CORNELL) RL FOR OPERATIONS 17 / 53



Scalable Deep Reinforcement Learning for Ride-Hailing

Aurora Feng

Teza Technologies

Mark Gluzman

Meta

JIM DAI (CORNELL) RL FOR OPERATIONS 18 / 53



Matching and repositioning: Curse of dimension on # of matches

drivers, m
passengers, n

Without repositioning,
m!

(m−n)! possible “batch”

actions.

Hierarchical decisions

One driver at a time,

sequentially

trip-type (RL algorithm)

(o,d) pair of regions

driver-passenger

(platform)
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Scalability: atomic policy to generate trip types

At each epoch, for example, 9:01am

RL generates trip-types sequentially, following a trained atomic policy

The term “atomic actions” was coined in Feng-D-Gluzman (2021)

THEOREM (D-WU-ZHANG 2024)
An optimal atomic policy is optimal for the original problem.

Manxi Wu

Cornell ORIE

Zhanhao Zhang

Cornell ORIE
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Experiments: 9-region network

The 9-region transportation networks from Braverman et al. 2019 1 is based on the

real-world data released by the Didi Research Institute.

A transportation network consisting of R = 9 regions, N = 2000 cars, and H = 240 minutes.

1
A. Braverman, J. G. Dai, X. Liu, and Y. Lei, Empty-car routing in ridesharing systems, Operations Research, 2019.
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Inpatient Overflow Management with Proximal Policy Optimization
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Hospital inpatients, from ED to wards
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Waiting time for beds in Singapore (MOH website: April 2018)
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Waiting Time for Admission to Ward (May 2024)
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Discrete-time, Infinite-horizon Average Cost MDP
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MDP: States

S(t) =
(
X1(t), · · · , XJ(t)︸ ︷︷ ︸

Patient count

, Y1(t), · · · , YJ(t),︸ ︷︷ ︸
to-be-discharge count

h(t)︸ ︷︷ ︸
time

)
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MDP: Actions

Actions: f(t) = {f12(t), f21(t)}
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MDP: One-Step Cost and Objective

One-step cost:

g
(
S(t), f(t)

)
=

∑
i̸=j

Bijfi,j(t) +
∑
j

CjQj(t+).

Average-cost objective:

Minf lim
N→∞

1

N
E
[ N∑

t=1

g
(
S(t), f(t)

)]
.
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Periodic MDP

The bed request (arrival) and discharge (departure) pattern is periodic.

Consider m decision epochs a day and denote the kth decision epoch at day t and tk,

our objective can be rewritten as

Minf lim
T→∞

1

T
E
[ T∑

t=1

m∑
k=1

g
(
S(tk), f(tk)

)]
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Prior Work: Dai and Shi (2019)-ADP approach

Value function approximation with queueing based features: V̂π(s) = ⟨βπ, ϕ(s)⟩

At each state, search an action in the large action space to update policy:

min
f∈A

[
g(s, f) + Es′∼P (·|s,f)V̂π(s

′)
]
.

Works well in 5-pool system.
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Challenge: Large Action Space

Example: In a twenty-pool system, assume the capacity in each pool is 60. At state

with

(x1, ..., x20) = (65, 63, 62, 50, 50, 50, ...., 50),

where there are 10 waiting customers from three classes, and 10 idle servers in 17

partially-occupied server pools, the action space size is:

C5+17
17 · C3+17

17 · C2+17
17 ≈ 5.13 · 109

JIM DAI (CORNELL) RL FOR OPERATIONS 32 / 53



PPO + atomic policies on a 20-pool model
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Key Factors Contributed to the PPO Success

Atomic policies: Decompose actions into a sequence of atomic actions. Atomic

policies have small action space.

Periodic MDP: Policy NN design.

Value function approximation2: Use LSTD method to reduce estimation

variance in the long-run average cost setting.
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Randomized atomic policy

At 3pm, state s = (9, 4, 7, y1, y2, y3, 15 : 00), with four waiting patients.

A sequence of “atomic actions” will be taken at 3pm, one step at a time.

In step 1, set s1 = s. Suppose

π(a1 = 1 | s1, c1 = 1) = 0.2 waiting

π(a1 = 2 | s1, c1 = 1) = 0.8 pool 2

Suppose 1st step atomic action a1 = 1, patient “a” continues to wait, and s2 = s1
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Second Step Atomic Action

In step 2, updated state s2 = (9, 4, 7, y1, y2, y3, 15 : 00).

Suppose

π(a2 = 3 | s2, c2 = 3) = 0.6 waiting

π(a2 = 2 | s2, c2 = 3) = 0.4 pool 2

And 2nd step atomic action a2 = 2.

Patient ‘b” is routed to pool 2

s3 = (9, 5, 6, y1, y2, y3, 15 : 00)
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After 4th Atomic Action

Post-action state: s5 = (8, 6, 6, y1, y2, y3, 15 : 00)

At 15:30 (next decision epoch), a new sequence of atomic actions will be taken.
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Randomized Policy Parameterized by NN

Neural network θ to parameterize randomized policy πθ
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PPO Hyper-parameter: NN Structure

Choice 1: Fully-connect
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PPO Hyper-parameter: NN Structure

Choice 2: Fully-separate
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PPO Hyper-parameter: NN Structure

Choice 3: Partial-share
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Numerical results: Baseline Hyper-parameters

Conduce experiments in 10-pool model with baseline PPO hype-parameters:

Parameters Baseline Choice

NN depth One hidden layer

NN hidden layer width 34 neurons

Basis function (X,X2, Y, Y 2, XY, Vs) from Dai and Shi (2019)

Initial policy Complete-overflow policy

Simulation days per actor 10,000

Number of actors 10

Number of training epochs 15

Clipping parameter (ϵ) 0.5

Table: Baseline choice of PPO hyper-parameters in ten-pool setting.
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Numerical results: Partial-share Policy Network is Sample Efficient
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Summary

Atomic polices can be optimal (D-Wu-Zhang 2024)

PPO + atomic policy can drastically reduce discrete action space

PPO is a policy improvement algorithm

Policy evaluation is data-expensive

Can be implemented by using operational data? + synthetic data?

For periodic MDPs, policy NN design improves sample efficiency
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Some reflections

Is RL relevant to operations?

Game

Robotics

LLM

Inventory

FE

. . .

Load

Time-varying

Behavior

Killer application?
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Some further thoughts

Diffusion control problems

Han-Jentzen-E (2018), PNAS

Ata, Harrison, Si (2023, 2024)

Standard test problems?

TSP Test Data

U Waterloo
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Appendix
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N-model

S1 S2

B1 B2

λ1 = 1.3ρ λ2 = 0.4ρ

m1 = 1
m2 = 2

m3 = 1

server 1

departures

server 2

departures

class 1

arrivals

class 2

arrivals

Figure: N-model network with ρ = 0.95
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Numerical results for N-model

(a) after 1 iteration (b) after 50 iteration (c) after 100 iter. (d) after 150 iter.

(e) after 200 iter. (f) Threshold policy (g) Optimal policy
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Numerical results for N-model
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Numerical results: 5-pool

PPO method improve greatly over naive policies

PPO method obtain comparable results with ADP method

Time: 2.5h per iteration for PPO

10h per iteration for ADP
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PPO Hyper-parameter: NN Structure

Tailored NN structure designs to improve sample efficiency.

Input excludes customer class cn

Output P(an = j|cn = i), i, j = 1, ..., J ;

Input excludes time-of-day h

Output P(an = j|cn = i, h = l), i, j = 1, ..., J, l = 0, ...,m− 1;
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Numerical results: PPO Hyper-parameters
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