TOWARDS RL FOR OPERATIONS?

Jim Dai

Cornell University & CUHK-Shenzhen

June 19, 2024 RL4SN, ENSEEIHT, Toulouse

Computational Experiences with Proximal Policy Optimization

- Queueing Network Controls via Deep Reinforcement Learning (2021)
 - J. G. Dai and Mark Gluzman, Stochastic Systems
- Scalable Deep Reinforcement Learning for Ride-Hailing (2021)
 - Jiekun Feng, J. G. Dai and Mark Gluzman, IEEE Control Systems Letters
- Inpatient Overflow Management with Proximal Policy Optimization (2024)
 - J. G. Dai, Pengyi Shi, Jingjing Sun

Deep RL algorithms are scalable in solving MDP problems modeling these operations

Queueing Network Controls via Deep RL

Mark Gluzman Meta

- Stochastic processing network (SPN) examples
- Proximal Policy Optimization (PPO) Algorithm in countable state space
- Numerical examples

SPN example I, criss-cross queueing network

SPN application I: data-intensive server farm

Dai-Harrison (2020), Processing Networks: Fluid Models and Stability, Cambridge University Press.

PPO algorithm, general formulation

- We consider an MDP with countable state space X, finite action space A, one-step cost g(x) ≥ 0, and transition function P(y|x, a).
- Consider a class of randomized Markovian policies $\pi_{\theta}, \theta \in \Theta$. Under the policy π_{θ} , the transition matrix:

$$P_{ heta}(y|x) = \sum_{a \in \mathcal{A}} \pi_{ heta}(a|x) P(y|x,a) \text{ for } x, y \in \mathcal{X}.$$

- Assume each Markov chain P_{θ} is irreducible and aperiodic (not essential).
- Find $\theta \in \Theta$ to minimize the long-run average cost

$$\limsup_{N \to \infty} \frac{1}{N} \mathbb{E}_{\pi_{\theta}} \left[\sum_{k=0}^{N-1} g(x^{(k)}) \right], \tag{1}$$

which is independent of the initial state, $x^{(k)}$ is the state of the Markov chain P_{θ} after *k* timesteps.

JIM DAI (CORNELL)

- Assume that the Markov chain P_{θ} has the (unique) stationary distribution, which is denoted by μ_{θ} .
- Long-run average cost in (1) is equal to $\mu_{\theta}^T g = \sum_{x \in \mathcal{X}} \mu_{\theta}(x) g(x)$.
- Assume that Poisson equation has a solution $h_{\theta} = h$

$$g(x) - \mu_{\theta}^{T}g + \sum_{y \in \mathcal{X}} P_{\theta}(y|x)h(y) - h(x) = 0 \quad \text{ for each } x \in \mathcal{X}.$$

An advantage function A_θ : X × A → ℝ of policy π_θ:

$$A_{\theta}(x,a) := \mathop{\mathbb{E}}_{y \sim P(\cdot|x,a)} \left[g(x) - \mu_{\theta}^T g + h_{\theta}(y) - h_{\theta}(x) \right].$$

• When \mathcal{X} is finite, both assumptions are satisfied.

When the state space is infinite: drift condition

• Drift condition: $\exists V : \mathcal{X} \to [1, \infty), b \in (0, 1), d \ge 0$, a finite $C \subset \mathcal{X}$ such that

$$\sum_{y \in \mathcal{X}} P_{\theta}(y|x)V(y) \le bV(x) + d \mathbb{I}_C(x), \quad \text{for each } x \in \mathcal{X}.$$

- (Meyn-Tweedie) If P_{η} satisfies the drift condition with some Lyapunov function $\mathcal{V} \geq 1$, P_{η} has a unique stationary distribution μ_{η} .
- Assume further $g \leq \mathcal{V}$. Poisson equation has the fundamental solution

$$h_{\eta}(x) := \mathbb{E}\left[\sum_{k=0}^{\infty} \left(g(x^{(k)}) - \mu_{\eta}^{T}g\right) \mid x^{(0)} = x\right] \text{ for each } x \in \mathcal{X}.$$
(2)

where $x^{(k)}$ is the state of the Markov chain P_{η} after k timesteps.

Some notations

- Assume policy $\pi_{\eta}, \eta \in \Theta$ satisfies the drift condition with Lyapunov function V.
- For a vector ν on \mathcal{X} , V-norm is defined as

$$\|\nu\|_{\infty,V} := \sup_{x \in \mathcal{X}} \frac{|\nu(x)|}{V(x)}.$$

• For a matrix M, V-norm is defined as

$$\|M\|_V := \sup_{x \in \mathcal{X}} \frac{1}{V(x)} \sum_{y \in \mathcal{X}} |M(x,y)| V(y).$$

Fundamental matrix

$$Z_{\eta} := \sum_{k=0}^{\infty} \left(P_{\eta} - \Pi_{\eta} \right)^k,$$

where, for each $x, y \in \mathcal{X}$, $\Pi_{\eta}(x, y) := \mu_{\eta}(y)$.

LEMMA 1

- Suppose P_{η} satisfies the drift condition with Lyapunov function V.
- $|g| \leq V.$
- $\theta \in \Theta$ is close to η such that

$$D_{\theta,\eta} := \| (P_{\theta} - P_{\eta}) Z_{\eta} \|_{V} < 1.$$

Then, P_{θ} has a stationary distribution μ_{θ} , and

$$\mu_{\theta}^{T}g - \mu_{\eta}^{T}g = \underset{x \sim \mu_{\theta}, a \sim \pi_{\theta}(\cdot|x)}{\mathbb{E}} [A_{\eta}(x, a)]$$

$$= \underset{x \sim \mu_{\eta}, a \sim \pi_{\eta}(\cdot|x)}{\mathbb{E}} \left[\frac{\pi_{\theta}(x, a)}{\pi_{\eta}(x, a)} A_{\eta}(x, a) \right] + \Delta(\theta, \eta)$$

$$\equiv L(\theta, \eta) + \Delta(\theta, \eta).$$
(3)

THEOREM

Under the assumptions of Lemma 1, we have

$$\begin{aligned} \Delta(\theta,\eta) &\leq \delta(\theta,\eta) := \frac{D_{\theta,\eta}^2}{1 - D_{\theta,\eta}} \times \\ &\times \left(1 + \frac{D_{\theta,\eta}}{(1 - D_{\theta,\eta})} (\mu_\eta^T V) \|I - \Pi_\eta + P_\eta\|_V \|Z_\eta\|_V \right) \left\| g - (\mu_\eta^T g) e \right\|_{\infty,V} (\mu_\eta^T V). \end{aligned}$$

Thus, we have

$$\mu_{\theta}^{T}g - \mu_{\eta}^{T}g \leq \underbrace{L(\theta, \eta) + \delta(\theta, \eta)}_{\text{Surrogate function}}.$$

- When $D_{\theta,\eta}$ is small, $L(\theta,\eta) = O(D_{\theta,\eta})$ and $\delta(\theta,\eta) = O(D_{\theta,\eta}^2)$.
- Conservative update: minimize $_{\theta}L(\theta,\eta)$ while keeping $D_{\theta,\eta}$ is small.

• Constrained optimization: minimize $L(\theta, \eta)$ while keeping $D_{\theta, \eta}$ small.

LEMMA 2

Define ratio
$$r_{\theta,\eta}(a|x) := \frac{\pi_{\theta}(a|x)}{\pi_{\eta}(a|x)}$$
 and $G_{\eta}(x,a) := \frac{1}{V(x)} \sum_{y \in \mathcal{X}} \pi_{\eta}(a|x) P(y|x,a) V(y).$

$$D_{\theta,\eta} \le \|Z_{\eta}\|_{V} \sup_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} |r_{\theta,\eta}(a|x) - 1| G_{\eta}(x,a).$$

- The lemma says that $D_{\theta,\eta}$ is small when the ratio $r_{\theta,\eta}(a|x)$ is close to 1.
- Following Schulman et al. (2017), we solve an unconstrained optimization problem by minimizing the clipped surrogate objective over θ

$$L^{\epsilon}(\theta,\eta) := \underset{\substack{x \sim \mu_{\eta} \\ a \sim \pi_{\eta}(\cdot|x)}}{\mathbb{E}} \max\left[r_{\theta,\eta}(a|x)A_{\eta}(x,a), \ \mathsf{clip}(r_{\theta,\eta}(a|x), 1-\epsilon, 1+\epsilon)A_{\eta}(x,a) \right],$$

where $\epsilon > 0$ is a hyper-parameter.

PPO as a Policy Improvement Algorithm

- Given policy π_{η} ; find an improved policy π_{η^*} . Define ratio $r_{\theta,\eta}(a|x) := \frac{\pi_{\theta}(a|x)}{\pi_{\eta}(a|x)}$
- Fix $\epsilon > 0$ as a hyper-parameter. Define

$$L^{\epsilon}(\theta,\eta) := \underset{\substack{x \sim \mu_{\eta} \\ a \sim \pi_{\eta}(\cdot|x)}}{\mathbb{E}} \max\left[r_{\theta,\eta}(a|x)A_{\eta}(x,a), \ \mathsf{clip}\Big(r_{\theta,\eta}(a|x), 1-\epsilon, 1+\epsilon\Big)A_{\eta}(x,a) \right],$$

- μ_{η} is the stationary distribution of P_{η} .
- Policy improvement: from π_{η} to π_{η^*} , where

$$\eta^* = \operatorname{argmin}_{\theta} L^{\epsilon}(\theta, \eta).$$

PPO: Markov chain Monte Carlo

• Under policy π_{η} an episode is generated:

$$E = \left\{ x^{(0)}, a^{(0)}, x^{(1)}, a^{(1)}, \cdots, x^{(K-1)}, a^{(K-1)} \right\}.$$
 (4)

• Based on the generated episode (4), the Monte-Carlo estimate of $L^{\epsilon}(\theta,\eta)$ is

$$\begin{split} \hat{L}^{\epsilon}(\theta,\eta,E) &:= \frac{1}{K} \sum_{k=0}^{K-1} \max \Big[r_{\theta,\eta}(a^{(k)} | x^{(k)}) A_{\eta}(x^{(k)}, a^{(k)}), \\ & \operatorname{clip} \Big(r_{\theta,\eta}(a^{(k)} | x^{(k)}), 1 - \epsilon, 1 + \epsilon \Big) A_{\eta}(x^{(k)}, a^{(k)}) \Big]. \end{split}$$

- We use ADAM to find $\eta^* = \operatorname{argmin}_{\theta} \hat{L}^{\epsilon}(\theta, \eta, E)$.
- Open problem: π_{η} -drift condition implies π_{η^*} -drift condition?

Figure: The extended six-class network.

# of classes, $3L$	LBFS	FCFS	FP	RFP	Our method
6	15.749	40.173	15.422	15.286	14.130 ± 0.208
9	25.257	71.518	26.140	24.917	23.269 ± 0.251
12	34.660	114.860	38.085	36.857	32.171 ± 0.556
15	45.110	157.556	45.962	43.628	39.300 ± 0.612
18	55.724	203.418	56.857	52.980	51.472 ± 0.973
21	65.980	251.657	64.713	59.051	55.124 ± 1.807

Table: Simulation results for the heavy-loaded ($\rho_{\ell} = 0.9$) re-entrant networks.

- Robust fluid policy (RFP): Bertsimas-Nasrabadi-Paschalidis (2015).
- Fluid policy (FP): Avram-Bertsimas-Ricard (1995).

Scalable Deep Reinforcement Learning for Ride-Hailing

Aurora Feng Teza Technologies Mark Gluzman Meta

• Without repositioning, $\frac{m!}{(m-n)!}$ possible "batch" actions.

- Hierarchical decisions
 - One driver at a time, sequentially
 - trip-type (RL algorithm)
 - (o,d) pair of regions
 - driver-passenger (platform)

Scalability: atomic policy to generate trip types

- At each epoch, for example, 9:01am
- RL generates trip-types sequentially, following a trained atomic policy
- The term "atomic actions" was coined in Feng-D-Gluzman (2021)

THEOREM (D-WU-ZHANG 2024)

An optimal atomic policy is optimal for the original problem.

Manxi Wu Cornell ORIE Zhanhao Zhang Cornell ORIE

JIM DAI (CORNELL)

Experiments: 9-region network

• The 9-region transportation networks from Braverman et al. 2019¹ is based on the real-world data released by the Didi Research Institute.

A transportation network consisting of R = 9 regions, N = 2000 cars, and H = 240 minutes.

¹ A. Braverman, J. G. Dai, X. Liu, and Y. Lei, Empty-car routing in ridesharing systems, Operations Research, 2019.

Pengyi Shi Krannert, Purdue

Jingjing Sun CUHK-Shenzhen

Hospital inpatients, from ED to wards

Waiting time for beds in Singapore (MOH website: April 2018)

Waiting Time for Admission to Ward (May 2024)

MDP: Actions

Actions: $f(t) = \{f_{12}(t), f_{21}(t)\}$

MDP: One-Step Cost and Objective

• One-step cost:

$$g(S(t), f(t)) = \sum_{i \neq j} B_{ij} f_{i,j}(t) + \sum_j C_j Q_j(t+).$$

Average-cost objective:

$$\mathsf{Min}_{f} \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \Big[\sum_{t=1}^{N} g\big(S(t), f(t) \big) \Big].$$

Periodic MDP

The bed request (arrival) and discharge (departure) pattern is periodic.

Consider *m* decision epochs a day and denote the *k*th decision epoch at day *t* and t_k , our objective can be rewritten as

$$\mathsf{Min}_{f} \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \bigg[\sum_{t=1}^{T} \sum_{k=1}^{m} g\big(S(t_k), f(t_k) \big) \bigg]$$

- Value function approximation with queueing based features: $\hat{V}_{\pi}(s) = \langle \beta_{\pi}, \phi(s) \rangle$
- At each state, search an action in the large action space to update policy:

$$\min_{f \in \mathcal{A}} \left[g(s, f) + \mathbb{E}_{s' \sim P(\cdot|s, f)} \hat{V}_{\pi}(s') \right].$$

• Works well in 5-pool system.

Example: In a twenty-pool system, assume the capacity in each pool is 60. At state with

$$(x_1, \dots, x_{20}) = (65, 63, 62, 50, 50, 50, \dots, 50),$$

where there are 10 waiting customers from three classes, and 10 idle servers in 17 partially-occupied server pools, the action space size is:

$$C_{17}^{5+17} \cdot C_{17}^{3+17} \cdot C_{17}^{2+17} \approx 5.13 \cdot 10^9$$

PPO + atomic policies on a 20-pool model

- Atomic policies: Decompose actions into a sequence of atomic actions. Atomic policies have small action space.
- Periodic MDP: Policy NN design.
- Value function approximation²: Use LSTD method to reduce estimation variance in the long-run average cost setting.

Randomized atomic policy

- At 3pm, state $s = (9, 4, 7, y_1, y_2, y_3, 15: 00)$, with four waiting patients.
- A sequence of "atomic actions" will be taken at 3pm, one step at a time.
- In step 1, set $s^1 = s$. Suppose

$$\begin{aligned} \pi(a^1 &= 1 \mid s^1, c^1 = 1) = 0.2 & \text{waiting} \\ \pi(a^1 &= 2 \mid s^1, c^1 = 1) = 0.8 & \text{pool 2} \end{aligned}$$

• Suppose 1st step atomic action $a^1 = 1$, patient "a" continues to wait, and $s^2 = s^1$

Second Step Atomic Action

• In step 2, updated state $s^2 = (9, 4, 7, y_1, y_2, y_3, 15: 00)$.

Suppose

$$\pi(a^2 = 3 \mid s^2, c^2 = 3) = 0.6 \quad \text{waiting}$$

$$\pi(a^2 = 2 \mid s^2, c^2 = 3) = 0.4 \quad \text{pool } 2$$

• And 2nd step atomic action $a^2 = 2$.

Patient 'b" is routed to pool 2 $s^{3} = (9, 5, 6, y_{1}, y_{2}, y_{3}, 15:00)$

After 4th Atomic Action

• Post-action state: $s^5 = (8, 6, 6, y_1, y_2, y_3, 15:00)$

• At 15:30 (next decision epoch), a new sequence of atomic actions will be taken.

Randomized Policy Parameterized by NN

• Neural network θ to parameterize randomized policy π_{θ}

Choice 1: Fully-connect

Choice 2: Fully-separate

Input: State without time

Output: Routing probability

PPO Hyper-parameter: NN Structure

Choice 3: Partial-share

Conduce experiments in 10-pool model with baseline PPO hype-parameters:

Parameters	Baseline Choice		
NN depth	One hidden layer		
NN hidden layer width	34 neurons		
Basis function	$(\boldsymbol{X},\boldsymbol{X}^2,\boldsymbol{Y},\boldsymbol{Y}^2,\boldsymbol{X}\boldsymbol{Y},\boldsymbol{V_s})$ from Dai and Shi (2019)		
Initial policy	Complete-overflow policy		
Simulation days per actor	10,000		
Number of actors	10		
Number of training epochs	15		
Clipping parameter (ϵ)	0.5		

Table: Baseline choice of PPO hyper-parameters in ten-pool setting.

Summary

- Atomic polices can be optimal (D-Wu-Zhang 2024)
- PPO + atomic policy can drastically reduce discrete action space
- PPO is a policy improvement algorithm
 - Policy evaluation is data-expensive
 - Can be implemented by using operational data? + synthetic data?
- For periodic MDPs, policy NN design improves sample efficiency

- Is RL relevant to operations?
 - Game
 - Robotics
 - LLM

- Inventory
- FE
- ...

- Load
- Time-varying
- Behavior

• Killer application?

Some further thoughts

- Diffusion control problems
 - Han-Jentzen-E (2018), PNAS
 - Ata, Harrison, Si (2023, 2024)
- Standard test problems?

TSP Test Data
 U Waterloo

Appendix

N-model

Figure: N-model network with $\rho = 0.95$

JIM DAI (CORNELL)

Numerical results for N-model

Numerical results: 5-pool

- PPO method improve greatly over naive policies
- PPO method obtain comparable results with ADP method
- Time: 2.5h per iteration for PPO

10h per iteration for ADP

Tailored NN structure designs to improve sample efficiency.

- Input excludes customer class cⁿ
 Output ℙ(aⁿ = j|cⁿ = i), i, j = 1, ..., J;
- Input excludes time-of-day h

Output $\mathbb{P}(a^n = j | c^n = i, h = l), i, j = 1, ..., J, l = 0, ..., m - 1;$

Numerical results: PPO Hyper-parameters

