
The Sliding Regret

Victor Boone, Bruno Gaujal
Inria and Univ. Grenoble Alpes

Toulouse, June 2024

“Un coup de dés jamais n’abolira le hasard”’

Reinforcement Learning in MDP: framework

MDP M = (S,A, r ,P). Let L be a learning algorithm.

1. Observe L
MDP
X(t)

state X (t)

2. Pick action L
MDP
X(t)

pick

At ∈ A

3. Get feedback L
MDP
X(t+1)reward R(t)

2 / 23

Regret and pseudo-regret

Measure of the efficiency of a learner L is the expected regret on MDP M after T steps:

Reg(T) = g∗T − E[
T∑

t=1

Rt].

The pseudo-regret measures the performance of the policy chosen by L:

Reg(T) = E
T−1∑

t=1

∆Xt ,At , with ∆x ,a := h∗x + g∗
x − rx ,a − px ,a · h∗.

The Bellman gap ∆z is similar to a relative Q-value.
Differs from usual regret by an additive term ≤ sp(h∗).

Reg(T) =
∑

z∈Z
E[Nz(T)]∆z ,

where Nz(T) is the number of visits of the pair z = (x , a) up to time T (excluded).
3 / 23

Model-based algorithm

•
tk

•
tk+1

πk •
tk+2

πk+1

1. How to compute πk ? Optimism in Face of Uncertainty: pick a policy that solves the
optimist problem:

g̃∗
t = max

π
max

M̃∈M̃tk

g(π; M̃), (EVI)

M̃tk is the confidence region at time tk .

2. How to choose episode ends tk+1 ? In current algorithms, only based on the number of
visits. The doubling trick (DT) rule: episode ends when a state-action pair is visited twice as
often as at the start of the current episode: N(x ,a)(t) = 2N(x ,a)(tk).

4 / 23

Model-based algorithm

•
tk

•
tk+1

πk •
tk+2

πk+1

1. How to compute πk ? Optimism in Face of Uncertainty: pick a policy that solves the
optimist problem:

g̃∗
t = max

π
max

M̃∈M̃tk

g(π; M̃), (EVI)

M̃tk is the confidence region at time tk .

2. How to choose episode ends tk+1 ? In current algorithms, only based on the number of
visits. The doubling trick (DT) rule: episode ends when a state-action pair is visited twice as
often as at the start of the current episode: N(x ,a)(t) = 2N(x ,a)(tk).

4 / 23

OFU: Optimism in the Face of Uncertainty

Principle: the learner maintains a confidence set M̃t for the unknown MDP M and uses an
optimal policy of the best MDP in the confidence set.

transition prob.

reward

•M̂t

•M

•
M̃t

M̃t

bP(t)

br (t)

5 / 23

Generic learning algorithm

In the following we consider EVI- based algorithms using confidence regions based on
inequalities of the form:

Nz(t)dp(p̂z(t), p̃z) ≤ log(Cpt), (1)

Nz(t)dq(q̂z(t), q̃z) ≤ log(Cqt) (2)

Where dp(−,−) and dq(−,−) are “divergence” operators, for e.g., L2-norm, squared L1 norm
or Kullback-Leibler divergence.
Remark: UCRL2, KL-UCRL, UCRL-2B and many others fit in this framework.
A notable exemption is EBF where the confidence region is not exactly of this form.

6 / 23

State of the Art: Near Optimal Regret

Quest for near-optimal minimax regret (matching the lower bound Ω(
√
DSAT)).

UCRL2 Reg(T) = O(SD
√

AT log(T))
(Auer, Jaksch, Ortner, 2009)

KL-UCRL Reg(T) = O(S
√
DAT log(T))

(Filippi, Cappé, Garivier, 2010)
(Talebi, Maillard, 2018)

UCRL2-B Reg(T) = O(S

√
DAT log2(T))

(Fruit, Pirotta, Lazaric, 2018)

EBF Reg(T) = O(
√

DSAT log(T))
(Zhang, Ji, 2019)

PM-EVI Reg(T) = O(
√

DSAT log(T))
(Boone, Zhang, 2024)

7 / 23

State of the Art: Near Optimal Regret

Quest for near-optimal minimax regret (matching the lower bound Ω(
√
DSAT)).

UCRL2 Reg(T) = O(SD
√

AT log(T))
(Auer, Jaksch, Ortner, 2009)

KL-UCRL Reg(T) = O(S
√

DAT log(T))
(Filippi, Cappé, Garivier, 2010)
(Talebi, Maillard, 2018)

UCRL2-B Reg(T) = O(S

√
DAT log2(T))

(Fruit, Pirotta, Lazaric, 2018)

EBF Reg(T) = O(
√

DSAT log(T))
(Zhang, Ji, 2019)

PM-EVI Reg(T) = O(
√

DSAT log(T))
(Boone, Zhang, 2024)

7 / 23

State of the Art: Near Optimal Regret

Quest for near-optimal minimax regret (matching the lower bound Ω(
√
DSAT)).

UCRL2 Reg(T) = O(SD
√

AT log(T)) Hoeffding ineq.
(Auer, Jaksch, Ortner, 2009)

KL-UCRL Reg(T) = O(S
√

DAT log(T)) KL bounds
(Filippi, Cappé, Garivier, 2010)
(Talebi, Maillard, 2018)

UCRL2-B Reg(T) = O(S

√
DAT log2(T)) Bernstein ineq.

(Fruit, Pirotta, Lazaric, 2018)

EBF Reg(T) = O(
√

DSAT log(T)) bounds on bias
(Zhang, Ji, 2019)

PM-EVI Reg(T) = O(
√

DSAT log(T)) bounds on bias
(Boone, Zhang, 2024)

7 / 23

Beyond Regret Bounds

All these algorithms are based on the episodic template.
The difference is on the choice of the confidence region.
But in all cases, the episode length is given by the doubling trick rule (DT).

Is there any interest to replace DT by a refined rule for episode lengths?

No, if the only concern is the regret...
Could be, if you consider one run of your favorite algoithm.

8 / 23

Beyond Regret Bounds

All these algorithms are based on the episodic template.
The difference is on the choice of the confidence region.
But in all cases, the episode length is given by the doubling trick rule (DT).

Is there any interest to replace DT by a refined rule for episode lengths?

No, if the only concern is the regret...
Could be, if you consider one run of your favorite algoithm.

8 / 23

Numerical Example

0 25000 50000 75000 100000 125000 150000 175000 200000
Time T

0

100

200

300

400

500

R
eg

(T
)

KL-UCRL
KLUCRL-VM

The regret is meant to measure the quality of a learning algorithm over a single run.
The variability under (DT) questions the pertinence of the expected regret in that case.
The behavior under the new rule (VM) is better in that respect.

9 / 23

Sliding Regret and Regret of Exploration

sliding (or local) regret:

Reg(t, t + T) := E
t+T−1∑

u=t

∆Zu

If t is arbitrary, the sliding regret can be arbitrarily bad (linear in T)
Specific version of the sliding regret: measuring the sliding regret at exploration times.
Episode k is an exploration episode (denoted E−) if πk−1 ∈ Π∗ and πk ̸∈ Π∗.
This is the regret of exploration:

RegExp(T) := lim sup
k→∞

E
[
Reg(tk ; tk + T) | k ∈ E−] .

10 / 23

Sliding Regret and Regret of Exploration

sliding (or local) regret:

Reg(t, t + T) := E
t+T−1∑

u=t

∆Zu

If t is arbitrary, the sliding regret can be arbitrarily bad (linear in T)
Specific version of the sliding regret: measuring the sliding regret at exploration times.
Episode k is an exploration episode (denoted E−) if πk−1 ∈ Π∗ and πk ̸∈ Π∗.
This is the regret of exploration:

RegExp(T) := lim sup
k→∞

E
[
Reg(tk ; tk + T) | k ∈ E−] .

10 / 23

Regret of Exploration: visual representation

0 25000 50000 75000 100000 125000 150000 175000 200000
0

500

1000

1500

2000

2500
UCRL2

Sliding regret over T = 25000 steps at two successive explorations times.
11 / 23

Linear RegExp under DT

Theorem

Let M be a recurrent MDP that is not trivial to learn, then, any consistent algo using DT has
a linear regret of exploration over M: RegExp(T) = Ω(T).

0 200 400 600 800 1000
Horizon T

0

200

400

600

800

1000
E
[su

p t
k∈

[1
00

00
0,

40
00

00
]R

eg
(t

k;
t k

+
T

)]
UCRL2
UCRL2-VM
KL-UCRL
KLUCRL-VM
UCRL2B
UCRL2B-VM

12 / 23

First Alternative to the Doubling Trick: Performance Test
Idea:

Dynamically check, over time, that the current policy is still good:

In the learning algorithm, (DT) is replaced by: (DT) or (PT): g(πk ,M̃t) +

√
θ log(t)

t
< g̃∗

t .

Theorem (Regret guarantees of PT)

Using the same confidence region M̃t as UCRL2, UCRL-PT has expected regret:

Reg(T) = O(
(
DS

√
A+ θ−1/2D2S3/2A

)√
T)

Theorem

UCRL-PT has sub-logarithmic regret of exploration for any M in DMDPs:

RegExp(T) = O(logT)

13 / 23

First Alternative to the Doubling Trick: Performance Test
Idea:

Dynamically check, over time, that the current policy is still good:

In the learning algorithm, (DT) is replaced by: (DT) or (PT): g(πk ,M̃t) +

√
θ log(t)

t
< g̃∗

t .

Theorem (Regret guarantees of PT)

Using the same confidence region M̃t as UCRL2, UCRL-PT has expected regret:

Reg(T) = O(
(
DS

√
A+ θ−1/2D2S3/2A

)√
T)

Theorem

UCRL-PT has sub-logarithmic regret of exploration for any M in DMDPs:

RegExp(T) = O(logT)

13 / 23

Improvement: Lazy testing

Main drawback of (PT): EVI has to be solved at each time step. This can be alleviated:

EVI converges faster when the optimal value at the previous time step is known (only
PX1,At and rXt ,At are modified).

Lazy test: Performance test is not performed at each time step but according to a testing
scheme that doubles the intervals between two tests.

14 / 23

Illustration of the behavior of UCRL-PT

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−0.04

−0.02

0.00

0.02

0.04

optimistic gaps ∆̃t(a1;a2)

Different behavior in sub-optimal / optimal episodes. This explains the good performance of
UCRL-PT but is also related to the shrinking/shaking effect used in our 2nd solution. 15 / 23

Second Alternative to the doubling rule: Vanishing Multiplicative

Recall the Doubling Trick (DT) stopping rule:

NXt ,πk (Xt)(t) > (2)NXt ,πk (Xt)(tk) (EVI)

the Vanishing Multiplicative (VM) stopping rule:

NXt ,πk (Xt)(t) > (1 + f (tk))NXt ,πk (Xt)(tk) (VM)

where f (t) is a vanishing function of t. More precisely, we assume 1/ log(t) ≳ f (t) ≳ 1/
√
t.

16 / 23

No degradation of the regret

Theorem (minimax regret)

Assume that the running algorithm is EVI-based with confidence region constructed as in (1).
Under (VM), the number of episodes in K (T) = O(SA log(T)/f (T)) and , for all MDP
M ∈ M such that D(M) < D ,

Reg(T) = O(DS
√

AT log(T/δ))

with probability 1− δ, and in expectation

EReg(T) = O(DS
√
AT)

Theorem (Model dependent regret)

For any M ∈ M, EM [Reg(T)] = O(log(T)/f (T)), with model dependent constants.
17 / 23

Small increase in numerical complexity

The computational cost of any optimist algorithm comes almost exclusively from EVI. In
UCRL2, the total cost of EVI is O(D

√
SAT) (Boone & Zhang, 2024).

Under (VM) the number of episodes can be as low as O(log2(T) by choosing f (t) = 1/ log(t).
This implies that the number of calls to EVI is O(log2(T)), compared to O(log(T)) under
(DT) and O(T) for (PT).

The time complexity of UCRL2 is O(D
√
SAT);

The time complexity of UCRL2-VM is O(D
√
SAT log(T));

The time complexity of UCRL2-PT is O(T 2).

18 / 23

Small increase in numerical complexity

The computational cost of any optimist algorithm comes almost exclusively from EVI. In
UCRL2, the total cost of EVI is O(D

√
SAT) (Boone & Zhang, 2024).

Under (VM) the number of episodes can be as low as O(log2(T) by choosing f (t) = 1/ log(t).
This implies that the number of calls to EVI is O(log2(T)), compared to O(log(T)) under
(DT) and O(T) for (PT).

The time complexity of UCRL2 is O(D
√
SAT);

The time complexity of UCRL2-VM is O(D
√
SAT log(T));

The time complexity of UCRL2-PT is O(T 2).

18 / 23

Big gain for the regret of exploration

Theorem

For any EVI-based algorithm with confidence region satisfying 1 and episodes following the
(VM) rule, for all non-degenerate MDP in M, RegExp(T) = O(log(T)).

0 200 400 600 800 1000
Horizon T

0

200

400

600

800

1000
E
[su

p t
k∈

[1
00

00
0,

40
00

00
]R

eg
(t

k;
t k

+
T

)]
UCRL2
UCRL2-VM
KL-UCRL
KLUCRL-VM
UCRL2B
UCRL2B-VM

19 / 23

Comparison with (PT)

0 25000 50000 75000 100000 125000 150000 175000 200000
Time T

0

500

1000

1500

2000

2500

3000

R
eg

(T
)

UCRL2
UCRL2-VM
UCRL2-PT(0.01)

VM and PT have the same type of behavior over one run / expected regret. However (VM)
runs 10 times faster here (riverswim 10 states).

20 / 23

Ideas of the proof (I): shrinking/shaking

The behavior of the confidence region is very different when the current policy is sub-optimal
and when the curremt policy is optimal.

Nz(t) = o(log(t)) Nz(t) = Θ(log(t)) Nz(t) = Ω(log(t))

21 / 23

Ideas of the proof (II): Coherence

The shrinking/shaking effect implies that the algorithm has a coherent behavior:
An algorithm is coherent if under a good event and a stopping time τ ,

∀t ∈ [τ, τ + T],
{
g(πt , St) < g∗ ⇒ ∃z , St πt−→ x : Nz(t)− Nz(τ) ≤ C log(T)

}
.

Coherence roughly says that if the current policy is sub-optimal, this implies that some
reachable state (under the current policy) have been sub-sampled (in O(log(T))).

Finally, coherence implies that sub-optimal episodes are short and in turn this yields a
logarithmic regret of exploration.

22 / 23

Ideas of the proof (II): Coherence

The shrinking/shaking effect implies that the algorithm has a coherent behavior:
An algorithm is coherent if under a good event and a stopping time τ ,

∀t ∈ [τ, τ + T],
{
g(πt , St) < g∗ ⇒ ∃z , St πt−→ x : Nz(t)− Nz(τ) ≤ C log(T)

}
.

Coherence roughly says that if the current policy is sub-optimal, this implies that some
reachable state (under the current policy) have been sub-sampled (in O(log(T))).

Finally, coherence implies that sub-optimal episodes are short and in turn this yields a
logarithmic regret of exploration.

22 / 23

That’s all folks!

23 / 23

