Lipschitz Lifelong Reinforcement Learning

Erwan Lecarpentier ¹

David Abel ²

Kavosh Asadi ²

Yuu Jinnai ²

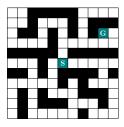
Emmanuel Rachelson ¹

Michael L. Littman ²

¹ ISAE-SUPAERO, Université de Toulouse, ² Brown University

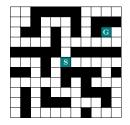
June 21, 2024

Introduction



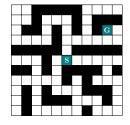
The pros and cons of transfer in RL

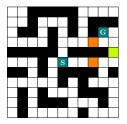
Introduction



Introduction

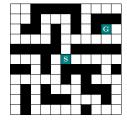
The pros and cons of transfer in RL

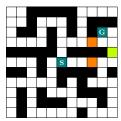




Introduction

The pros and cons of transfer in RL





Motivations for transfer

- Resilience (e.g. sim2real, environment perturbations)
- Lifelong learning

But transfer can be detrimental

How can one guarantee transfer will be beneficial?

This work = attempt at formalizing safe value function transfer + perspectives.

Outline

Introduction

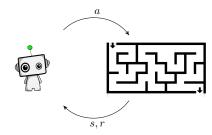
- 1 Introduction
- 2 Background
- 3 Value function transfer between MDPs
- 4 Lipschitz Rmax
- **5** Illustration

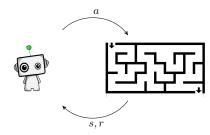
Spoiler

Introduction 0000

Contributions

- Theoretical study of the Lipschitz Continuity of V^* and Q^* in the MDP space;
- Proposal of a practical, non-negative, transfer method based on a local distance between MDPs:
- Proposal and study of a **PAC-MDP algorithm** applying this transfer method in the Lifelong RL setting.

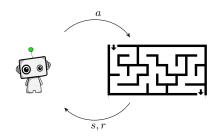




States $s_t \in \mathcal{S}$ Actions $a_t \in \mathcal{A}$

Transitions $T_{s_t s_{t+1}}^{a_t}$

Rewards $R_{s_t}^{a_t}$

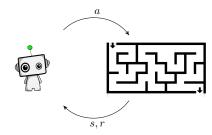


States $s_t \in \mathcal{S}$ Actions $a_t \in \mathcal{A}$

Transitions $T_{s_ts_{t+1}}^{a_t}$

Rewards $R_{s_t}^{a_t}$

Policy: what to do in s?



States

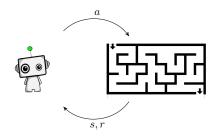
 $s_t \in \mathcal{S}$

Policy: $\pi: s \mapsto a$

Actions $a_t \in \mathcal{A}$

Transitions $T_{s_t s_{t+1}}^{a_t}$

Rewards $R_{s_t}^{a_t}$



States $s_t \in \mathcal{S}$

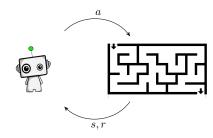
Actions $a_t \in \mathcal{A}$

Transitions $T_{s_t s_{t+1}}^{a_t}$

Rewards $R_{s_t}^{a_t}$

Policy: $\pi: s \mapsto a$

Expected value: $V^{\pi}(s) = \mathbb{E}_{\text{trajectories}}[\text{trajectory's return}]$



States $s_t \in \mathcal{S}$ Actions $a_t \in \mathcal{A}$

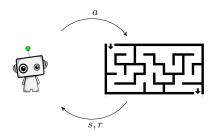
Value function transfer between MDPs

Transitions

Rewards $R_{s_t}^{a_t}$

Policy: $\pi : s \mapsto a$

Expected value: $V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, s_{t+1} \sim T_{s_t s_{t+1}}^{a_t}, a_t = \pi(s_t)\right]$



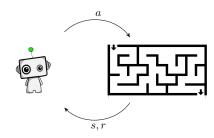
States $s_t \in \mathcal{S}$ Actions $a_t \in \mathcal{A}$

Transitions $T_{s_t s_{t+1}}^{a_t}$

Rewards $R_{s_t}^{a_t}$

Policy: $\pi : s \mapsto a$

Expected value: $Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, a_0 = a, s_{t+1} \sim T_{s_t s_{t+1}}^{a_t}, a_t = \pi(s_t)\right]$



States $s_t \in \mathcal{S}$

Actions $a_t \in \mathcal{A}$

Value function transfer between MDPs

Transitions $T_{s_t s_{t+1}}^{a_t}$

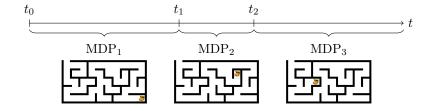
Rewards $R_{s_t}^{a_t}$

Policy: $\pi : s \mapsto a$

Expected value: $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{s_{t}}^{a_{t}} \mid s_{0} = s, a_{0} = a, s_{t+1} \sim T_{s_{t}s_{t+1}}^{a_{t}}, a_{t} = \pi(s_{t})\right]$

Optimal value function: $Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$

Lifelong Reinforcement Learning



Key result

The value function is Lipschitz continuous wrt MDP space.

Value function transfer between MDPs

•00000000

$$|\mathit{Q}_{M}^{*}(s,a) - \mathit{Q}_{\bar{M}}^{*}(s,a)| \leq \mathrm{distance}_{\mathcal{M}}(M,\bar{M})$$

Idea

The closer two MDPs, the closer their optimal value functions.

Can we do value transfer with that?

Idea

The closer two MDPs, the closer their optimal value functions.

Can we do value transfer with that?

$$|Q_M^*(s,a) - Q_{\bar{M}}^*(s,a)| \leq \operatorname{distance}_{\mathcal{M}}(M,\bar{M})$$

$$egin{aligned} Q_M^*(s,a) &\leq U(s,a) \ U(s,a) &:= Q_{ar{M}}^*(s,a) + \operatorname{distance}_{\mathcal{M}}(M,ar{M}) \end{aligned}$$

Why is this important?

Good upper bound on Q_M^*

- ⇒ more efficient exploration
- \Rightarrow possibly faster inference of Q_M^*

What can we say about $Q_M^* - Q_{\bar{M}}^*$? (1/5)

Heavy notations inside. Proceed with caution.

What can we say about $Q_M^* - Q_M^*$? (2/5)

 Q_M^* is the fixed point of the sequence:

$$Q_M^{n+1}(s, a) = R_s^a + \mathbb{E}_{s' \sim T_{ss'}^a} \left[\max_{a' \in \mathcal{A}} Q_M^n(s', a') \right]$$
$$= R_s^a + \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^a \max_{a' \in \mathcal{A}} Q_M^n(s', a')$$

Value function transfer between MDPs

Let's suppose that

$$\left|Q_M^n(s,a)-Q_{ar{M}}^n(s,a)
ight|\leq d_{\mathsf{sa}}(M\|ar{M})$$

What can we say about $Q_M^* - Q_{\bar{M}}^*$? (3/5)

$$\left|Q_M^{n+1}(s,a) - Q_{\bar{M}}^{n+1}(s,a)\right| = \left|R_s^a - \bar{R}_s^a + \gamma \sum_{s' \in S} \left[T_{ss'}^a \max_{a' \in \mathcal{A}} Q_M^n(s',a') - \bar{T}_{ss'}^a \max_{a' \in \mathcal{A}} Q_{\bar{M}}^n(s',a')\right]\right|,$$

What can we say about $Q_M^* - Q_{\bar{M}}^*$? (3/5)

$$\begin{aligned} \left| Q_{M}^{n+1}(s,a) - Q_{\bar{M}}^{n+1}(s,a) \right| &= \left| R_{s}^{a} - \bar{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \left[T_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{M}^{n}(s',a') - \bar{T}_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{\bar{M}}^{n}(s',a') \right] \right|, \\ & \cdots \\ &\leq \left| R_{s}^{a} - \bar{R}_{s}^{a} \right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^{*}(s') \left| T_{ss'}^{a} - \bar{T}_{ss'}^{a} \right| + \\ & \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a' \in \mathcal{A}} \left| Q_{M}^{n}(s',a') - Q_{\bar{M}}^{n}(s',a') \right|, \end{aligned}$$

What can we say about $Q_M^* - Q_M^*$? (3/5)

$$\begin{aligned} \left| Q_{M}^{n+1}(s,a) - Q_{\bar{M}}^{n+1}(s,a) \right| &= \left| R_{s}^{a} - \bar{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \left[T_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{M}^{n}(s',a') - \bar{T}_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{\bar{M}}^{n}(s',a') \right] \right|, \\ & \cdots \\ &\leq \left| R_{s}^{a} - \bar{R}_{s}^{a} \right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^{*}(s') \left| T_{ss'}^{a} - \bar{T}_{ss'}^{a} \right| + \\ & \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a' \in \mathcal{A}} \left| Q_{M}^{n}(s',a') - Q_{\bar{M}}^{n}(s',a') \right|, \\ &\leq D_{sa}(M \| \bar{M}) + \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a'} d_{s'a'}(M \| \bar{M}) \end{aligned} .$$

What can we say about $Q_M^* - Q_M^*$? (3/5)

$$\begin{aligned} \left| Q_{M}^{n+1}(s,a) - Q_{\bar{M}}^{n+1}(s,a) \right| &= \left| R_{s}^{a} - \bar{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \left[T_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{M}^{n}(s',a') - \bar{T}_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{\bar{M}}^{n}(s',a') \right] \right|, \\ & \cdots \\ &\leq \left| R_{s}^{a} - \bar{R}_{s}^{a} \right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^{*}(s') \left| T_{ss'}^{a} - \bar{T}_{ss'}^{a} \right| + \\ & \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a' \in \mathcal{A}} \left| Q_{M}^{n}(s',a') - Q_{\bar{M}}^{n}(s',a') \right|, \\ &\leq D_{sa}(M \| \bar{M}) + \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a'} d_{s'a'}(M \| \bar{M}) \triangleq d_{sa}(M \| \bar{M}). \end{aligned}$$

What can we say about $Q_M^* - Q_M^*$? (3/5)

$$\begin{aligned} \left| Q_{M}^{n+1}(s,a) - Q_{\bar{M}}^{n+1}(s,a) \right| &= \left| R_{s}^{a} - \bar{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \left[T_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{M}^{n}(s',a') - \bar{T}_{ss'}^{a} \max_{a' \in \mathcal{A}} Q_{\bar{M}}^{n}(s',a') \right] \right|, \\ &\cdots \\ &\leq \left| R_{s}^{a} - \bar{R}_{s}^{a} \right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^{*}(s') \left| T_{ss'}^{a} - \bar{T}_{ss'}^{a} \right| + \\ &\gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a' \in \mathcal{A}} \left| Q_{M}^{n}(s',a') - Q_{\bar{M}}^{n}(s',a') \right|, \\ &\leq D_{sa}(M \| \bar{M}) + \gamma \sum_{s' \in \mathcal{S}} T_{ss'}^{a} \max_{a'} d_{s'a'}(M \| \bar{M}) \triangleq d_{sa}(M \| \bar{M}). \end{aligned}$$

By induction,

$$\left|Q_M^*(s,a)-Q_{ar{M}}^*(s,a)
ight|\leq d_{\mathsf{sa}}(M\|ar{M}).$$

What can we say about $Q_M^* - Q_{\bar{M}}^*$? (4/5)

S00000000...

$$\left|Q_M^*(s,a)-Q_{ar{M}}^*(s,a)
ight|\leq d_{\mathsf{sa}}(M\|ar{M})$$

With

$$d_{sa}(M\|\bar{M}) = D_{sa}(M\|\bar{M}) + \gamma \sum_{s' \in S} T^{a}_{ss'} \max_{a'} d_{s'a'}(M\|\bar{M})$$

And

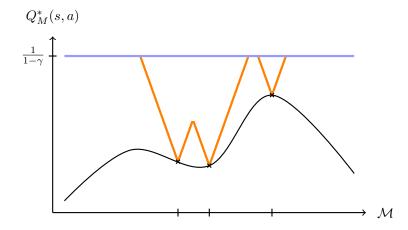
$$D_{sa}(M\|\bar{M}) = \left|R_s^a - \bar{R}_s^a\right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^*(s') \left|T_{ss'}^a - \bar{T}_{ss'}^a\right|$$

 $D_{sa}(M\|\bar{M})$: pseudo-metric between M and \bar{M} . $d_{sa}(M\|\bar{M})$: local MDP dissimilarity.

What can we say about $Q_M^* - Q_M^*$? (5/5)

$$\left|Q_M^*(s,a) - Q_{\bar{M}}^*(s,a)\right| \leq \min\left\{d_{sa}(M\|\bar{M}), d_{sa}(\bar{M}\|M)\right\} = \Delta_{sa}(M,\bar{M})$$

Graphically



Rmax in a nutshell

Rmax (Brafman and Tennenholtz, 2002)

Optimistic model initialization: $\hat{R}_s^a = R_{\text{max}}, \hat{T}_{s,s}^a = 1$, then:

- Solve model $\rightarrow Q$.
- Explore greedily wrt Q, store samples.
- When enough samples in (s, a), update \hat{R}_s^a and $\hat{T}_{s, s'}^a$.
- Repeat.

Main intuition: try to disprove optimism where it indicates the most potential.

If Q is an upper-bound on Q^* , then exploring greedily wrt Q will shrink this upper bound.

Notation: K := set of known state-action pairs.

Rmax in a nutshell

Properties

- · Learns a model online.
- Finds an ϵ -optimal policy with high probability in polynomial time (PAC-MDP).
- One of the only algorithms with a guaranteed convergence rate.

But limited to (small) discrete state/action spaces in its original formulation.

Lipschitz Rmax — the idea

In Rmax, Q acts as an admissible heuristic for exploration.

Any tighter upper-bound than $\frac{1}{1-\gamma}$ will improve Rmax's convergence.

Value function transfer between MDPs

With
$$U_{\bar{M}}(s,a) \triangleq Q_{\bar{M}}^*(s,a) + \Delta_{sa}(M,\bar{M})$$
:

$$U(s,a) = \min \left\{ rac{1}{1-\gamma}, U_{ar{M}_1}(s,a), \ldots, U_{ar{M}_m}(s,a)
ight\}$$

Upper bound on Q_M^* :

$$Q_{M}(s,a) \triangleq egin{cases} R_{s}^{a} + \gamma \sum\limits_{s' \in \mathcal{S}} T_{ss'}^{a} \max\limits_{a' \in \mathcal{A}} Q_{M}(s',a') \text{ if } (s,a) \in K, \ U(s,a) \text{ otherwise,} \end{cases}$$

→ Solve by Dynamic Programming.

A computable upper-bound on Q_M^*

So we need to compute $U_{\bar{M}}(s,a)$

$$U_{\bar{M}}(s,a) \triangleq Q_{\bar{M}}^*(s,a) + \min \left\{ d_{sa}(M\|\bar{M}), d_{sa}(\bar{M}\|M) \right\}$$

With

$$d_{\mathsf{sa}}(M\|\bar{M}) = D_{\mathsf{sa}}(M\|\bar{M}) + \gamma \sum_{s' \in S} T_{\mathsf{ss'}}^{\mathsf{a}} \max_{\mathsf{a'}} d_{\mathsf{s'a'}}(M\|\bar{M})$$

And

$$D_{sa}(M\|\bar{M}) = \left|R_s^a - \bar{R}_s^a\right| + \sum_{s' \in S} \gamma V_{\bar{M}}^*(s') \left|T_{ss'}^a - \bar{T}_{ss'}^a\right|$$

Problem: $d_{sa}(M||\bar{M})$ can be computed by Dynamic Programming...

... but it requires knowing exactly $V_{\overline{M}}^*$, $T_{ss'}^a$, $\overline{T}_{ss'}^a$, R_s^a , and \overline{R}_s^a .

A computable upper-bound $\hat{U}_{\bar{M}}(s,a)$ on $U_{\bar{M}}(s,a)$?

A computable upper-bound on Q_M^*

So we need to compute $U_{\bar{M}}(s,a)$

$$U_{\bar{M}}(s,a) \triangleq Q_{\bar{M}}^*(s,a) + \min \left\{ d_{sa}(M\|\bar{M}), d_{sa}(\bar{M}\|M) \right\}$$

Value function transfer between MDPs

With

$$d_{sa}(M\|\bar{M}) = D_{sa}(M\|\bar{M}) + \gamma \sum_{s' \in S} T^{a}_{ss'} \max_{a'} d_{s'a'}(M\|\bar{M})$$

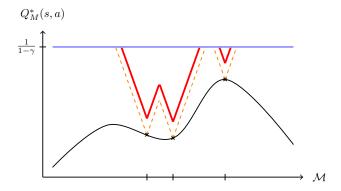
And

$$D_{sa}(M\|\bar{M}) = \left| R_s^a - \bar{R}_s^a \right| + \sum_{s' \in \mathcal{S}} \gamma V_{\bar{M}}^*(s') \left| T_{ss'}^a - \bar{T}_{ss'}^a \right|$$

- Known upper-bound $\rightarrow Q_{\bar{M}}$
- Maximization over the unknown model(s) $\to \hat{D}_{sa}(M\|\bar{M})$
- Maximize over s' if unknown $\rightarrow \hat{d}_{sa}(M||\bar{M})$

A computable upper-bound on Q_M^*

$$egin{aligned} U_{ar{M}}(s,a) &= Q_{ar{M}}^*(s,a) + \Delta_{sa}(M,ar{M}) \ \downarrow \ \hat{U}_{ar{M}}(s,a) &= Q_{ar{M}}(s,a) + \hat{\Delta}_{sa}(M,ar{M}) \end{aligned}$$



Algorithm 1: Lipschitz Rmax algorithm

Initialize $\hat{\mathcal{M}} = \emptyset$.

for each newly sampled MDP M do

Initialize $Q(s,a) = \frac{1}{1-\alpha}, \forall s, a, \text{ and } K = \emptyset$ Initialize \hat{T} and \hat{R} (Rmax initialization)

 $Q \leftarrow \mathsf{UpdateQ}(\hat{\mathcal{M}}, \hat{\mathcal{T}}, \hat{R})$

for $t \in [1, max number of steps]$ **do**

 $a = \arg\max_{s} Q(s, a')$

Observe reward r and next state s'

 $n(s, a) \leftarrow n(s, a) + 1$

if $n(s,a) < n_{known}$ then Store (s, a, r, s')

if $n(s, a) = n_{known}$ then

Update K and $(\hat{T}^a_{ss'},\hat{R}^a_s)$

 $extstyle{Q} \leftarrow \mathsf{UpdateQ}(\hat{\mathcal{M}}, \hat{\mathcal{T}}, \hat{\mathcal{R}})$

Save $\hat{M} = (\hat{T}, \hat{R}, K, Q)$ in $\hat{\mathcal{M}}$

Function UpdateQ($\hat{\mathcal{M}}$, $\hat{\mathcal{T}}$, $\hat{\mathcal{R}}$):

for $\bar{M} \in \hat{\mathcal{M}}$ do

Compute $\hat{D}_{sa}(M||\bar{M}), \hat{D}_{sa}(\bar{M}||M)$

Compute $\hat{d}_{sa}(M||\bar{M})$, $\hat{d}_{sa}(\bar{M}||M)$

Compute $\hat{U}_{\bar{M}}$

Compute \hat{U}

Compute and return Q

$$\begin{array}{ll} \hat{D}_{sa}(M\|\bar{M}) & \text{Model distance upper-bound (analytical resolution)} \\ \to \hat{d}_{sa}(M\|\bar{M}) & \text{Model dissimilarity upper-bound (dynamic programming)} \\ \to \hat{U}_{\bar{M}} & \text{Upper-bound on Lipschitz bound } Q_{\bar{M}}(s,a) + \hat{\Delta}_{sa}(M,\bar{M}) \\ \to \hat{U} & \text{Minimum over all upper-bounds} \\ \to Q & \text{Upper bound on } Q_M^* \text{ (dynamic programming)} \end{array}$$

Remarks

- Shrinking $\hat{D}_{sa}(M\|\bar{M})$ has an influence on $\hat{d}_{sa}(M\|\bar{M})$ in all state-action pairs.
- Smaller $\hat{d}_{sa}(M\|\bar{M})$ induce tighter \hat{U} bounds
- Shrinking $\hat{U}(s,a)$ has an influence on Q in all state-action pairs

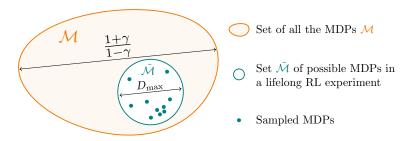
Consequence: any information that can help reduce $\hat{D}_{sa}(M||\bar{M})$ will greatly facilitate value transfer and improve Lipschitz Rmax.

Prior knowledge on model distance

Recall: $\hat{D}_{sa}(M||\bar{M})$ is an upper-bound on $D_{sa}(M||\bar{M})$.

How is it computed? Worst case distance between models.

Why? Because models are only partially known.



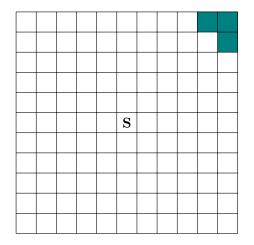
Knowledge of D_{max} (even a very conservative hypothesis) will strongly tighten \hat{U} .

Empirical evaluation

Claims:

- LRmax allows for early performance increase (resilience)
- LRmax is more sample efficient than Rmax
- LRmax avoids negative transfer

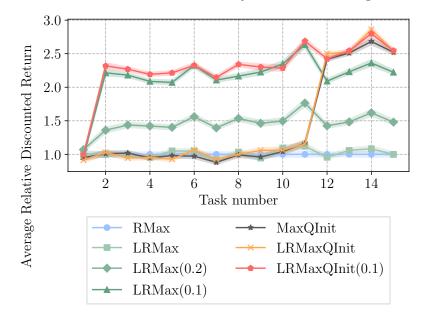
The "tight" environment from (Abel et al., 2018)



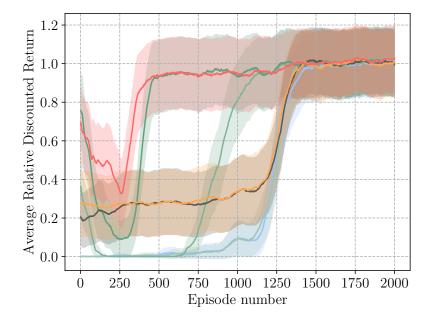
Variations:

- rewards are picked in [0.8; 1]
- probability of slipping is picked in [0; 0.1]

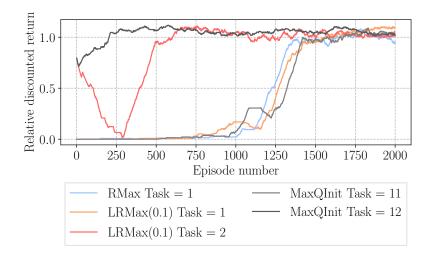
Average discounted return vs. tasks: early transfer among tasks



Average discounted return vs. episodes: faster convergence



Discounted return for specific tasks



Conclusion

Contributions

• Theoretical study of the Lipschitz Continuity of V^* and Q^* in the MDP space;

Value function transfer between MDPs

- Proposal of a practical, non-negative, transfer method based on a local distance between MDPs;
- Proposal and study of a PAC-MDP algorithm applying this transfer method in the Lifelong RL setting.

Perspectives

- Other algorithms than Rmax?
- Robustness instead of resilience
- Extension to an algorithm that uses value function approximation?

Lecarpentier E, Abel D, Asadi K, Jinnai Y, Rachelson E, Littman M L (AAAI 2021) Lipschitz Lifelong Reinforcement Learning https://arxiv.org/abs/2001.05411

Thanks for your attention!

Join us at EWRL17!

Oct 28-30 2024, Toulouse

THE 17TH EUROPEAN WORKSHOP ON REINFORCEMENT LEARNING

Influence of D_{max}

