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Introduction Background i on transfer between MDPs
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Motivations for transfer

® Resilience (e.g. sim2real, environment perturbations)

® Lifelong learning

But transfer can be detrimental

How can one guarantee transfer will be beneficial?

This work = attempt at formalizing safe value function transfer 4 perspectives.
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Spoiler

® Theoretical study of the Lipschitz Continuity of V* and Q* in the MDP space;

® Proposal of a practical, non-negative, transfer method based on a local distance
between MDPs;

® Proposal and study of a PAC-MDP algorithm applying this transfer method in the
Lifelong RL setting.
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Policy: m: s+ a

Expected value: V™(s) = Etrajectories [trajectory’s return]
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transfer between MDPs
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Policy: m: s+ a
Expected value: Q7(s,a) =E [Y;207'R2 | so = 5,30 = a, St1 ~ T2, ar = 7(st)]

Optimal value function: Q*(s,a) = max, Q™ (s, a)
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Value function transfer between MDPs Illustration

®00000000

Key result

The value function is Lipschitz continuous wrt MDP space.

1Qiy(s,2) — Qiy(s, 3)| < distancen(M, i)
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Idea

The closer two MDPs, the closer their optimal value functions.

0

Can we do value transfer with that?
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Value function transfer between MDPs

O@0000000

Idea

The closer two MDPs, the closer their optimal value functions.

0

Can we do value transfer with that?

| @ (s,a) — Qpy(s, a)| < distancen (M, M)

!

Qu(s,a) < U(s, a)
U(s, a) := Qp(s, a) + distancer (M, M)
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hitz Rma

Why is this important?

Good upper bound on Qp,
= more efficient exploration
= possibly faster inference of Qy,
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Value function transfer between MDPs
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What can we say about @y — @57 (1/5)

Heavy notations inside.
Proceed with caution.
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What can we say about @y — @57 (2/5)

@y is the fixed point of the sequence:

Qu'(s;2) = RI+Egnrs, [L‘?é’ﬁ Qs a/)}

=RI+~y Z T2, max Qu(s',a)
s'eS

Let's suppose that B
|Qin(s,a) — Qy(s,a)| < dsa(M[| M)
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What can we say about @y — @57 (3/5)

QpM(s,2) — Qg (s, a)| =

)

R? — R+~ Z [Tﬁs, ?gﬁ Qu(s,ad)— T2, ?Sﬁ Q,’\lﬂ(sfy a/)}
s’'eS
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What can we say about @y — @57 (3/5)

)

Qu(s,a) — QI,\77I+1(S’ a)’ =|R2-RI 4+~ Z [Tis, max Qu(s',a)— T2, max Qu(s, a’)}

s'eS

< ‘Rsa - 'L_?sa‘ + Z FYVIEI(S,) ‘Tis’ - Tzs’

+
s'eS
72 Tho max | Qha(s', o) — Q(s', )],

s'eS
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Value function transfer between MDPs
000008000

What can we say about @y — @57 (3/5)

Qs 2) - Qs a)| = |RI-RI+9 Y {T:S, max Qf(s', ) — T2y max ox-ﬂ(s',a')} ,

s'eS

<\Ra R"\+Z 74 2 T+

3 Th e Q0. - Q<)

s'eS

< Do(M|M) + 7> T2y maxds oy (M| M)
a
s’'eS
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What can we say about @y — @57 (3/5)

)

Qu(s,a) — QI,\77I+1(S’ a)) =|R2-RI 4+~ Z [Tis, max Qu(s',a)— T2, max Qu(s, a’)}

s'eS

< ‘Rsa - 'L_?sa‘ + Z FYVIEI(S,) ‘Tis’ - Tzs’

+
s'eS
/ /
v Z T?s’ ‘Teaﬁ ‘Qxﬂ(sla a/) - Q;\’Z(S »d )‘7
s'eS
< Daa(M||M) + v > TS, maellxds/a/(MH/\_ﬂ) 2 de, (M| M).
s'eS
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Introduction Background Value function transfer between MDPs

[e]e]e]e]e] lelele]

What can we say about @y — @57 (3/5)

)

Qu(s,a) — Q/’\77I+1(s’ a)’ =|R2-RI 4+~ Z [T?S, max Qu(s',a)— T2, max Qu(s, a’)}

s'eS

S ‘Rsa - 'L_?sa‘ + Z ’YV/T?](SI) ‘Tis’ - Tzs’

+
s'eS
v 3 Tae me|Qhts’ o) - Qs )
< Daa(M|M) + 7> T2 maxdsy (M|[M) £ dea(M|| ).
s'eS ?

By induction, B
|Qia(s. a) — Qy(s, a)| < dsa(M[|M).
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Introduction Background Value function transfer between MDPs

[e]e]e]e]ele] lele]

What can we say about @y — @57 (4/5)

Soo0000000...
|Qu(s, a) — Qp(s, a)| < dsa( M| M)
With
dea(M||M) = Dea(M[[M) +~ > T2, max dar o (M| M)
s'eS
And

Dea(M|M) = |R = RZ| + Y V() | T — T

ss’
s'eS

Dsa(/\/IHIYI): pseudo-metric between M and M.
dsa(M||M): local MDP dissimilarity.
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Introduction Background Value function transfer between MDPs
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What can we say about @y — @57 (5/5)

|Qin(s,a) — Q5 (s, a)| < min {dsa(M||M), dsa(M||M)} = Agy(M, M)
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Graphically
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Lipschitz Rmax
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Rmax in a nutshell

Rmax (Brafman and Tennenholtz, 2002)

Optimistic model initialization: Ii’;’ = [Rinese t"s =1, then:
® Solve model — Q.
® Explore greedily wrt @, store samples.
® When enough samples in (s, a), update R’sa and f;s,.

® Repeat.

Main intuition: try to disprove optimism where it indicates the most potential.
If Q is an upper-bound on Q*, then exploring greedily wrt @ will shrink this upper bound.
Notation: K := set of known state-action pairs.
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Lipschitz Rmax
00000

Rmax in a nutshell

® |earns a model online.
® Finds an e-optimal policy with high probability in polynomial time (PAC-MDP).
® One of the only algorithms with a guaranteed convergence rate.

But limited to (small) discrete state/action spaces in its original formulation.
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Introduction Background function transfer between MDPs Lipschitz Rmax
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Lipschitz Rmax — the idea

In Rmax, @ acts as an admissible heuristic for exploration.

Any tighter upper-bound than ﬁ will improve Rmax’s convergence.

With Ug (s, a) £ Q% (s, a) + Ass(M, M):

) 1
U(s,a) = min {1—77 Ug,(s;a), ..., Ug (s, a)}
Upper bound on Qy:

R2 + T2, max Qu(s’,d) if (s,a) € K,
Qu(s,a)2{ ° ,Ysgs % a'eA u(s', ) if (5. 2)
U(s, a) otherwise,

— Solve by Dynamic Programming.
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Introduction Background Value function transfer between MDPs Lipschitz Rmax

00@000

A computable upper-bound on Qy,

So we need to compute Up(s, a)
Ui(s,a) & Q(s, a) + min {dsa(M|| M), dsa(M||M)}

With
dss(M|[|M) = Dsy(M||M) +~ Z T max dsi2r (M|| M)
s’'eS ?
And B B B
Daa(MIIM) = |RZ = RZ |+ ) V(s [Ty - To
s'eS

Problem: ds,(M||M) can be computed by Dynamic Programming. . . B .
... but it requires knowing exactly V7, T¢, T2, R2 and R2.

A computable upper-bound Up(s,a) on Ug(s, a)?
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A computable upper-bound on Qy,

So we need to compute Up(s, a)
Ug (s, a) £ QX;,(S, a) + min {dsa(MHI\_ﬂ), dsa(l\7l||M)}

With
dsa(M|[M) = Dsa(M||M) + Z T max dsir (M| M)
s'es

And

Do(M|[M) = |RZ = RZ |+ > V()| T = T
s'eS

® Known upper-bound — Qj
— Dey(M||M)

® Maximization over the unknown model(s)
* Maximize over s if unknown — ds,(M| M)
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A computable upper-bound on Qy,

Upls.a) = Qg (s, a) + Asa(M, M)

1
Uir(s,a) = Qiz(s, a) + Asa(M, M)
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Introduction Background transfer between MDPs Lipschitz Rmax
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Algorithm 1: Lipschitz Rmax algorithm

Initialize M = 0. Function UpdateQ(M, T, R):

for each newly sampled MDP M do for M € M do
Initialize (i)(s, a) A: ﬁ,Vs,a, and K =10 Compute Dsa(/\/]”/\/l) ﬁa( | M)
Initialize T and R (Rmax initialization) Compute dss(M||M), dsa(M| M)
Q UpdateQ(M, T, f?) Compute 0,\7,

for t € [1, max number of steps| do

Compute U
a = argmax Q(s, &) ompure
a/

Compute and return Q
Observe reward r and next state s’

n(s,a) «+ n(s,a)+1

if n(s,a) < Nknown then

L Store (s, a, r,s’)

if n(s,a) = Nknown then

L Update K and (Tss/, R?)

Q < UpdateQ(M, T, R)

Save Nl — (7.R.K.Q) in X
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Unfolding the computation

Dsa(M|| M) Model distance upper-bound (analytical resolution)
— dsa(M||M)  Model dissimilarity upper-bound (dynamic programming)
— Uy Upper-bound on Lipschitz bound Q(s, a) + Ag,(M, M)
-0 Minimum over all upper-bounds

— Q  Upper bound on Qj, (dynamic programming)

e Shrinking Ds,(M||M) has an influence on ds,(M|M) in all state-action pairs.
® Smaller ds,(M||M) induce tighter U bounds

® Shrinking U(s, a) has an influence on @ in all state-action pairs

Consequence: any information that can help reduce ﬁsa(MHl\_ﬂ) will greatly facilitate value
transfer and improve Lipschitz Rmax.
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[e]e]e]e]e] ]

Prior knowledge on model distance
Recall: Dgo(M||M) is an upper-bound on Dg,(M||M).

How is it computed? Worst case distance between models.
Why? Because models are only partially known.

O Set of all the MDPs M

Set. M of possible MDPs in
a lifelong RL experiment

e Sampled MDPs

Knowledge of Dnmax (even a very conservative hypothesis) will strongly tighten 0.
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Illustration
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Empirical evaluation

Claims:
® | Rmax allows for early performance increase (resilience)
® | Rmax is more sample efficient than Rmax

® | Rmax avoids negative transfer
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Introduction Background Va ction transfer between MDPs s z Rma Illustration
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The “tight” environment from (Abel et al., 2018)

Variations:
e rewards are picked in [0.8; 1]
® probability of slipping is picked in [0;0.1]
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Average discounted return vs. tasks: early transfer among tasks
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Introduction Background Value function transfer between MDPs Illustration
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Average discounted return vs. episodes: faster convergence
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Illustration
0000@

Discounted return for specific tasks
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Conclusion

® Theoretical study of the Lipschitz Continuity of V* and Q* in the MDP space;

® Proposal of a practical, non-negative, transfer method based on a local distance
between MDPs;

® Proposal and study of a PAC-MDP algorithm applying this transfer method in the
Lifelong RL setting.

® QOther algorithms than Rmax?
® Robustness instead of resilience

® Extension to an algorithm that uses value function approximation?
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Lecarpentier E, Abel D, Asadi K, Jinnai Y,
Rachelson E, Littman M L (AAAI 2021)
Lipschitz Lifelong Reinforcement Learning
https://arxiv.org/abs/2001.05411

1338 7~

SUPAERO

Conclusion
000

47 /48


https://arxiv.org/abs/2001.05411

Conclusion
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Join us at EWRL17!

EWRL

Oct 28-30 2024, Toulouse

THE 17TH EUROPEAN WORKSHOP ON REINFORCEMENT
LEARNING
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