Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation

Eric Moulines

Ecole polytechnique

$$
\text { June 17, } 2024
$$

Introduction

Stochastic Approximation

- Consider the problem of finding $\theta^{\star} \in \mathbb{R}^{d}$ such that

$$
f\left(\theta^{\star}\right)=0 .
$$

- Only "noisy" samples of $f(\theta)$ are revealed, e.g., $F\left(\theta ; Z_{n}\right)$, such that

$$
\mathbb{E}\left[F\left(\theta ; Z_{n}\right)\right]=f(\theta) \quad \text { or, at least, } \quad \lim _{n \rightarrow+\infty} \mathbb{E}\left[F\left(\theta ; Z_{n}\right)\right]=f(\theta) .
$$

- Such algorithms are called stochastic approximation (SA) schemes to a fixed point equation:

$$
\theta_{n+1}=\theta_{n}+\alpha_{n} F\left(\theta_{n} ; Z_{n}\right) .
$$

Robbins and Monro [1951]

- Compare with the standard 'Euler scheme' for numerically approximating a trajectory of the o.d.e. $\dot{\theta}(t)=f(\theta(t))$

$$
\theta_{t+1}=\theta_{t}+\alpha f\left(\theta_{t}\right)
$$

- The simplest instance of the problem corresponds to the Linear Stochastic Approximation (LSA)

Linear Stochastic Approximation

- Given $\overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ and $\overline{\mathbf{b}} \in \mathbb{R}^{d}$, we aim at finding $\theta^{\star} \in \mathbb{R}^{d}$, which is a solution of

$$
\overline{\mathbf{A}} \theta^{\star}=\overline{\mathbf{b}} .
$$

- Our analysis is based on noisy observations $\left\{\left(\mathbf{A}\left(Z_{n}\right), \mathbf{b}\left(Z_{n}\right)\right)\right\}_{n \in \mathbb{N}}$. Here $\mathbf{A}: Z \rightarrow \mathbb{R}^{d \times d}, \mathbf{b}: Z \rightarrow \mathbb{R}^{d}$ are measurable mappings.

LSA algorithm

For a sequence of step sizes $\left\{\alpha_{k}\right\}$, burn-in period $n_{0} \in \mathbb{N}$, and initialization θ_{0}, consider the sequences of estimates $\left\{\theta_{n}\right\}_{n \in \mathbb{N}},\left\{\bar{\theta}_{n_{0}, n}\right\}_{n \geq n_{0}+1}$ given by

$$
\begin{array}{r}
\theta_{k}=\theta_{k-1}-\alpha_{k}\left\{\mathbf{A}\left(Z_{k}\right) \theta_{k-1}-\mathbf{b}\left(Z_{k}\right)\right\}, \quad k \geq 1, \\
\bar{\theta}_{n_{0}, n}=\left(n-n_{0}\right)^{-1} \sum_{k=n_{0}}^{n-1} \theta_{k}, \quad n \geq n_{0}+1 . \tag{1}
\end{array}
$$

Linear Stochastic Approximation

I.I.D. Noise

Sequence $\left\{Z_{k}\right\}_{k \in \mathbb{N}}$ is an i.i.d. sequence taking values in a state space (Z, \mathcal{Z}) with distribution π satisfying $\mathbb{E}\left[\mathbf{A}\left(Z_{1}\right)\right]=\overline{\mathbf{A}}$ and $\mathbb{E}\left[\mathbf{b}\left(Z_{1}\right)\right]=\overline{\mathbf{b}}$;

Markovian noise

Sequence $\left\{Z_{k}\right\}_{k \in \mathbb{N}}$ is a Z-valued ergodic Markov chain with unique invariant distribution π, such that

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\mathbf{A}\left(Z_{n}\right)\right]=\overline{\mathbf{A}}
$$

and

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\mathbf{b}\left(Z_{n}\right)\right]=\overline{\mathbf{b}}
$$

We write \mathbf{A}_{k} instead of $\mathbf{A}\left(Z_{k}\right)$, and \mathbf{b}_{k} instead of $\mathbf{b}\left(Z_{k}\right)$, respectively.

RL: general paradigm

Applications: TD learning

- Consider a problem of estimating the policy ν in a discounted MDP given by a tuple ($\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma$);
- \mathcal{S} and \mathcal{A} are state and action spaces, assume that they are complete metric spaces equipped with Borel σ-algebras $\mathcal{B}(\mathcal{S})$ and $\mathcal{B}(\mathcal{A})$, respectively;
- $\gamma \in(0,1)$ is a discount factor;
- \mathcal{P} stands for the transition kernel $\mathcal{P}(\cdot \mid s, a)$;
- reward function $r: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$ - deterministic;
- policy $\nu(\cdot \mid s)$ - distribution over the action space \mathcal{A};

Applications: TD learning

- We aim to estimate the agent's value function

$$
V^{\nu}(s)=\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r\left(s_{k}, a_{k}\right) \mid s_{0}=s\right],
$$

where $a_{k} \sim \nu\left(\cdot \mid s_{k}\right)$, and $s_{k+1} \sim \mathcal{P}\left(\cdot \mid s_{k}, a_{k}\right)$;

- 1-step transition kernel:

$$
\begin{equation*}
\mathcal{P}_{\nu}(B \mid s)=\int_{\mathcal{A}} \mathcal{P}(B \mid s, a) \nu(\mathrm{d} a \mid s), \quad B \in \mathcal{B}(\mathcal{S}) \tag{2}
\end{equation*}
$$

- Linear functional approximation of the true value function $V^{\nu}(s)$:

$$
V_{\theta}^{\nu}(s)=\varphi^{\top}(s) \theta,
$$

where $s \in \mathcal{S}, \theta \in \mathbb{R}^{d}, \varphi: \mathcal{S} \rightarrow \mathbb{R}^{d}, d$ - feature dimension

TD learning as LSA problem

- The problem of estimating $V^{\nu}(s)$ reduces to the problem of estimating $\theta \in \mathbb{R}^{d}$ in $V_{\theta}^{\nu}(s)$;
- Set the k-th step randomness as $Z_{k}=\left(s_{k}, s_{k}^{\prime}\right)$;
- The corresponding LSA writes as:

$$
\begin{equation*}
\theta_{k}=\theta_{k-1}-\alpha_{k}\left(\mathbf{A}_{k} \theta_{k-1}-\mathbf{b}_{k}\right), \tag{3}
\end{equation*}
$$

where the system matrix and r.h.s. are given by

$$
\begin{equation*}
\mathbf{A}_{k}=\phi\left(s_{k}\right)\left\{\phi\left(s_{k}\right)-\gamma \phi\left(s_{k}^{\prime}\right)\right\}^{\top}, \mathbf{b}_{k}=\phi\left(s_{k}\right) r\left(s_{k}, a_{k}\right) \tag{4}
\end{equation*}
$$

- Deterministic system writes as $\overline{\mathbf{A}} \theta^{\star}=\overline{\mathbf{b}}$, where

$$
\begin{aligned}
\overline{\mathbf{A}} & =\mathbb{E}_{s \sim \mu, s^{\prime} \sim \mathcal{P}_{\nu}(\cdot \mid s)}\left[\phi(s)\left\{\phi(s)-\gamma \phi\left(s^{\prime}\right)\right\}^{\top}\right] \\
\overline{\mathbf{b}} & =\mathbb{E}_{s \sim \mu, a \sim \pi(\cdot \mid s)}[\phi(s) r(s, a)] .
\end{aligned}
$$

Finite-time high-probability bounds for the Polyak-Ruppert averaged LSA iterates

Linear Stochastic Approximation

- Let $\left\{Z_{k}\right\}_{k \in \mathbb{N}}$ be an i.i.d.sequence and consider the recurrence

$$
\begin{equation*}
\theta_{k}=\theta_{k-1}-\alpha_{k}\left\{\mathbf{A}\left(Z_{k}\right) \theta_{k-1}-\mathbf{b}\left(Z_{k}\right)\right\} \tag{5}
\end{equation*}
$$

- Set

$$
\tilde{\mathbf{A}}(z)=\mathbf{A}(z)-\overline{\mathbf{A}}, \quad \tilde{\mathbf{b}}(z)=\mathbf{b}(z)-\overline{\mathbf{b}},
$$

and introduce

$$
\varepsilon(z)=\mathbf{A}(z) \theta^{\star}-\mathbf{b}(z), \quad \Sigma_{\varepsilon}=\mathbb{E}\left[\varepsilon(Z) \varepsilon(Z)^{\top}\right]
$$

Assumption A1
(i) $C_{A}=\sup _{z \in Z}\|\mathbf{A}(z)\| \vee \sup _{z \in Z}\|\tilde{\mathbf{A}}(z)\|<\infty$ and the matrix $-\overline{\mathbf{A}}$ is Hurwitz
(ii) $\int_{\mathrm{Z}} \mathbf{A}(z) \mathrm{d} \pi(z)=\overline{\mathbf{A}}$ and $\int_{\mathrm{Z}} \mathbf{b}(z) \mathrm{d} \pi(z)=\overline{\mathbf{b}}$. Moreover,
$\|\varepsilon\|_{\infty}=\sup _{z \in Z}\|\varepsilon(z)\|<+\infty$.

Why averaging: CLT view

Step size assumptions

Suppose that the sequence α_{k} satisfies one of the following assumptions:
(i) $\sum_{k=1}^{\infty} \alpha_{k}=\infty, \sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty, \log \left(\alpha_{k-1} / \alpha_{k}\right)=o\left(\alpha_{k}\right)$;
(ii) $\sum_{k=1}^{\infty} \alpha_{k}=\infty, \sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty, \log \left(\alpha_{k-1} / \alpha_{k}\right) \sim \alpha_{k} / \alpha_{*}$ for

$$
\alpha_{*} \geq 1 /(2 L), \text { where } L=\min \operatorname{Re}\left(\lambda_{i}(\overline{\mathbf{A}})\right)
$$

Examples: $\alpha_{k}=c_{0} / k^{\gamma}, \gamma \in(0.5 ; 1)$ satisfies (i); $\alpha_{k}=\alpha_{*} / k$ satisfies (ii).
CLT
Under assumption A 1 it holds that
(i) $\alpha_{k}^{-1 / 2}\left(\theta_{k}-\theta^{\star}\right) \xrightarrow{W} \mathcal{N}\left(0, \Sigma_{1}\right)$ if α_{k} satisfy (i);
(ii) $\alpha_{k}^{-1 / 2}\left(\theta_{k}-\theta^{\star}\right) \xrightarrow{W} \mathcal{N}\left(0, \Sigma_{2}\right)$ if α_{k} satisfy (ii).

Why averaging: CLT view

Covariances Σ_{1} and Σ_{2} are given by

$$
\begin{align*}
& -\Sigma_{1} \overline{\mathbf{A}}^{\top}-\overline{\mathbf{A}} \Sigma_{1}=-\Sigma_{\varepsilon} \tag{6}\\
& \Sigma_{2}\left(\mathrm{I}-2 \alpha_{*} \overline{\mathbf{A}}^{\top}\right)+\left(\mathrm{I}-2 \alpha_{*} \overline{\mathbf{A}}\right) \Sigma_{2}=-2 \alpha_{*} \Sigma_{\varepsilon} . \tag{7}
\end{align*}
$$

Suggests that $\alpha_{k}=\alpha_{\star} / k$ is optimal. However, such a choice of step size is not implementable.

Optimal preconditioner choice

Consider now the modified LSA dynamics

$$
\tilde{\theta}_{k}=\tilde{\theta}_{k-1}-\alpha_{k} \Gamma\left(\mathbf{A}_{k} \tilde{\theta}_{k-1}-\mathbf{b}_{k}\right),
$$

where $\alpha_{k}=\alpha_{\star} / k$ and Γ - fixed matrix. We know that

$$
\alpha_{k}^{-1 / 2}\left(\theta_{n}-\theta^{\star}\right) \xrightarrow{W} \mathcal{N}\left(0, \Sigma_{2}(\Gamma)\right) .
$$

Can we find Γ^{\star}, such that for any $u \in \mathbb{R}^{d}$:

$$
u^{\top} \Sigma_{2}\left(\Gamma^{\star}\right) u \leq u^{\top} \Sigma_{2}(\Gamma) u
$$

Optimality of Polyak-Ruppert

Optimal preconditioning

Optimal choice of Γ^{\star} is given by

$$
\Gamma^{\star}=\alpha_{*}^{-1} \overline{\mathbf{A}}^{-1}
$$

corresponding to the covariance matrix

$$
\Sigma_{2}\left(\Gamma^{\star}\right)=\alpha_{*}^{-1} \overline{\mathbf{A}}^{-1} \Sigma_{\varepsilon} \overline{\mathbf{A}}^{-\top} .
$$

Under A1 and (i)-th choice of step size, the Polyak-Ruppert Polyak and Juditsky [1992] averaging performs almost similarly:

$$
\sqrt{n}\left(\bar{\theta}_{n}-\theta^{\star}\right) \xrightarrow{W} \mathcal{N}\left(0, \overline{\mathbf{A}}^{-1} \Sigma_{\varepsilon} \overline{\mathbf{A}}^{-\top}\right) .
$$

Extensions to the Markov setting are given in Fort [2015].

Boris Polyak (1935-2023)

Problem setting

- Goal: sharp bounds for finite-sample n and the dimension of the parameter space d;
- Constant step size α depending on the computational budget n;
- For least squares regression problems, where $\mathbf{A}\left(Z_{n}\right)$ is a symmetric matrix almost surely, Bach and Moulines [2013] showed that for a constant step size, the MSE of $\bar{\theta}_{n_{0}, n}-\theta^{\star}$ converges as $\mathcal{O}(1 / n)$;
- General LSA: Lakshminarayanan and Szepesvari [2018] showed a rate of convergence of the $\operatorname{MSE} \mathcal{O}(1 / n)$.
- Mou et al. [2020] provided a non-asymptotic high-probability bounds for LSA-PR with independent observations. However, the proof relies on concentration bounds from Markov chain - under Log-Sobolev inequalities- $\left\{\left(\mathbf{A}\left(Z_{n}\right), \mathbf{b}\left(Z_{n}\right)\right)\right\}_{n \in \mathbb{N}}$ - clear gaps in the proof.

Non-asymptotic LSA expansions

- Denote by $\Gamma_{1: n}^{(\alpha)}$ the product of random matrices

$$
\Gamma_{m: n}^{(\alpha)}=\prod_{i=m}^{n}\left(\mathrm{I}-\alpha \mathbf{A}\left(Z_{i}\right)\right), \quad m, n \in \mathbb{N}^{*}, \quad m \leq n .
$$

- The recursion $\theta_{n}=\theta_{n-1}-\alpha_{n}\left\{\mathbf{A}\left(Z_{n}\right) \theta_{n-1}-\mathbf{b}\left(Z_{n}\right)\right\}$ may be decomposed as follows

$$
\theta_{n}-\theta^{\star}=\tilde{\theta}_{n}^{(\mathrm{tr})}+\tilde{\theta}_{n}^{(\mathrm{fl})},
$$

where $\tilde{\theta}_{n}^{(\mathrm{tr})}$ is the transient term and $\tilde{\theta}_{n}^{(\mathrm{fl})}$ is a fluctuation term

$$
\tilde{\theta}_{n}^{(\mathrm{tr})}=\Gamma_{1: n}^{(\alpha)}\left\{\theta_{0}-\theta^{\star}\right\}, \quad \tilde{\theta}_{n}^{(\mathrm{fl})}=-\alpha \sum_{j=1}^{n} \Gamma_{j+1: n}^{(\alpha)} \varepsilon\left(Z_{j}\right) .
$$

- A cornerstone of the theoretical analysis is a tight bound for $\mathbb{E}^{1 / p}\left[\left\|\Gamma_{m: n}^{(\alpha)}\right\|^{p}\right]$ under some assumptions on the matrix $\overline{\mathbf{A}}$.

Exponential stability of random matrix products

Key technical element:
Exponential stability of $\left\{\mathbf{A}\left(Z_{i}\right)\right\}_{i \in \mathbb{N}}$ (see Guo and Ljung [1995], Ljung [2002])
For $q \geq 1$, there exist $\mathrm{a}_{q}, \mathrm{C}_{q}>0$ and $\alpha_{\infty, q}<\infty$ such that, for any step size $\alpha \leq \alpha_{\infty, q}, m, n \in \mathbb{N}, m<n$,

$$
\mathbb{E}\left[\left\|\Gamma_{m: n}^{(\alpha)}\right\|^{q}\right] \leq \mathrm{C}_{q} \exp \left(-\mathrm{a}_{q} \alpha(n-m)\right) .
$$

- Intuitively, exponential stability means that $\Gamma_{m: n}^{(\alpha)} \approx(I-\alpha \overline{\mathbf{A}})^{n-m}$, for $m, n \in \mathbb{N}, m \leq n ;$
- We handle both the setting of i.i.d.and Markov dependency in the sequence $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$;

Lyapunov equation

Proposition

Assume that $-\overline{\mathbf{A}}$ is Hurwitz. There exists a unique symmetric positive definite matrix Q satisfying the Lyapunov equation $\overline{\mathbf{A}}^{\top} Q+Q \overline{\mathbf{A}}=\mathrm{I}$. In addition, setting

$$
a=\|Q\|^{-1} / 2, \quad \text { and } \quad \alpha_{\infty}=(1 / 2)\|\overline{\mathbf{A}}\|_{Q}^{-2}\|Q\|^{-1} \wedge\|Q\|,
$$

for any $\alpha \in\left[0, \alpha_{\infty}\right]$, it holds that

$$
\|\mathbf{I}-\alpha \overline{\mathbf{A}}\|_{Q}^{2} \leq 1-a \alpha
$$

and $\alpha a \leq 1 / 2$.
Why Q-norm: $\mathrm{I}-\alpha \overline{\mathbf{A}}$ is a strict contraction in $\|\cdot\|_{Q}$, but not necessarily in $\|\cdot\|$.

Exponential stability under A1

Theorem

Assume IND and A1. For any $p, q \in \mathbb{N}, 2 \leq p \leq q, \alpha \in\left(0, \alpha_{q, \infty}\right]$ and $n \in \mathbb{N}$, it holds

$$
\mathbb{E}^{1 / p}\left[\left\|\Gamma_{1: n}^{(\alpha)}\right\|^{p}\right] \leq \sqrt{\kappa_{Q}} d^{1 / q}\left(1-a \alpha+(q-1) b_{Q}^{2} \alpha^{2}\right)^{n / 2}
$$

where

$$
\begin{aligned}
& \kappa_{Q}=\lambda_{\max }(Q) / \lambda_{\min }(Q), \quad b_{Q}=\sqrt{\kappa_{Q}} C_{A}, \\
& \alpha_{q, \infty}=\alpha_{\infty} \wedge c_{\mathbf{A}} / q, \quad \mathrm{c}_{\mathbf{A}}=a /\left\{2 b_{Q}^{2}\right\} .
\end{aligned}
$$

- Note that the bound above introduces an interplay between step size α and maximal controlled moment q;
- We show that under only A1, for fixed $\alpha>0$, $\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left\|\theta_{n}-\theta^{\star}\right\|^{p}\right]=\infty$ for $p \geq \bar{p}(\alpha)$; cannot expect exponential tytpe HPB for $\left\|\theta_{n}-\theta^{\star}\right\|$ are not possible (see Durmus et al. [2021])

Exponential stability: sketch of the proof

- For $B \in \mathbb{R}^{d \times d}$ let $\sigma_{\ell}(B), \ell=1, \ldots, d$ be its singular values;
- For $p \geq 1$, denote its Schatten p-norm

$$
\|B\|_{p}=\left\{\sum_{\ell=1}^{d} \sigma_{\ell}^{p}(B)\right\}^{1 / p}
$$

- For $p, q \geq 1$ and random matrix X, we write $\|X\|_{p, q}=\left\{\mathbb{E}\left[\|X\|_{p}^{q}\right]\right\}^{1 / q}$.

Theorem (Subquadratic averages - (Huang et al., 2020))
Consider random matrices of the same sizes that satisfy $\mathbb{E}[Y \mid X]=0$, \mathbb{P}-a.s. Then, for $2 \leq q \leq p$,

$$
\|X+Y\|_{p, q}^{2} \leq\|X\|_{p, q}^{2}+C_{p}\|Y\|_{p, q}^{2}
$$

The constant $C_{p}=p-1$ is the best possible.
Proof sketch: re-write a product of matrices

$$
\Gamma_{1: n}^{(\alpha)}=(I-\alpha \overline{\mathbf{A}}) \Gamma_{1: n-1}^{(\alpha)}-\alpha\left(\mathbf{A}\left(Z_{n}\right)-\overline{\mathbf{A}}\right) \Gamma_{1: n-1}^{(\alpha)},
$$

then apply the subquadratic inequality above, switch to Q-norm.

Linear Stochastic Approximation

- Recall that the error vector $\theta_{n}-\theta^{\star}$ may be decomposed as

$$
\tilde{\theta}_{n}^{(\mathrm{tr})}=\Gamma_{1: n}^{(\alpha)}\left\{\theta_{0}-\theta^{\star}\right\}, \quad \tilde{\theta}_{n}^{(\mathrm{fl})}=-\alpha \sum_{j=1}^{n} \Gamma_{j+1: n}^{(\alpha)} \varepsilon\left(Z_{j}\right) .
$$

- To bound $\mathbb{E}^{1 / p}\left[\left\|\tilde{\theta}_{n}^{(\text {tr) })}\right\|^{p}\right]$, we simply apply the bound on the matrix product.
- How to proceed with $\mathbb{E}^{1 / p}\left[\left\|\tilde{\theta}_{n}^{(f)}\right\|^{p}\right]$?

Sketch of the proof: fluctuation term

- For any $n \in \mathbb{N}$:

$$
\begin{equation*}
\tilde{\theta}_{n}^{(\mathrm{fl})}=J_{n}^{(0)}+H_{n}^{(0)}, \tag{8}
\end{equation*}
$$

where the latter terms are defined by the following pair of recursions

$$
\begin{array}{ll}
J_{n}^{(0)}=(\mathrm{I}-\alpha \overline{\mathbf{A}}) J_{n-1}^{(0)}-\alpha \varepsilon\left(Z_{n}\right), & J_{0}^{(0)}=0, \\
H_{n}^{(0)}=\left(\mathrm{I}-\alpha \mathbf{A}\left(Z_{n}\right)\right) H_{n-1}^{(0)}-\alpha \tilde{\mathbf{A}}\left(Z_{n}\right) J_{n-1}^{(0)}, & H_{0}^{(0)}=0 . \tag{9}
\end{array}
$$

- Solving the recursion above,

$$
J_{n}^{(0)}=-\alpha \sum_{j=1}^{n}(1-\alpha \overline{\mathbf{A}})^{n-j+1} \varepsilon\left(Z_{j}\right), \quad H_{n}^{(0)}=-\alpha \sum_{j=1}^{n} \Gamma_{j+1: n+1}^{(\alpha)} \tilde{\mathbf{A}}\left(Z_{j}\right) J_{j-1}^{(0)} .
$$

- The term $J_{n}^{(0)}$ is the leading one w.r.t. α, and is a linear statistics of $\left\{\varepsilon\left(Z_{j}\right)\right\}_{j \geq 0}$;
- Rough bounds from (9):

$$
\mathbb{E}^{1 / p}\left[\left\|J_{n}^{(0)}\right\|^{p}\right] \lesssim \sqrt{\alpha}, \quad \mathbb{E}^{1 / p}\left[\left\|H_{n}^{(0)}\right\|^{p}\right] \lesssim \sqrt{\alpha} .
$$

Sketch of the proof: fluctuation term

The same decomposition can be applied to $H_{n}^{(0)}$ to obtain higher order expansions:

$$
\begin{equation*}
H_{n}^{(0)}=\sum_{\ell=1}^{L} J_{n}^{(\ell)}+H_{n}^{(L)}, \tag{10}
\end{equation*}
$$

where for any $\ell \in\{1, \ldots, L\}$,

$$
\begin{array}{ll}
J_{n}^{(\ell)}=(\mathrm{I}-\alpha \overline{\mathbf{A}}) J_{n-1}^{(\ell)}-\alpha \tilde{\mathbf{A}}\left(Z_{n}\right) J_{n-1}^{(\ell-1)}, & J_{0}^{(\ell)}=0, \tag{11}\\
H_{n}^{(L)}=\left(\mathrm{I}-\alpha \mathbf{A}\left(Z_{n}\right)\right) H_{n-1}^{(L)}-\alpha \tilde{\mathbf{A}}\left(Z_{n}\right) J_{n-1}^{(L)}, & H_{0}^{(L)}=0 .
\end{array}
$$

The choice of parameter L controls the desired approximation accuracy:

$$
\mathbb{E}^{1 / p}\left[\left\|J_{n}^{(\ell)}\right\|^{p}\right] \lesssim \alpha^{(\ell+1) / 2}, \quad \mathbb{E}^{1 / p}\left[\left\|H_{n}^{(L)}\right\|^{p}\right] \lesssim \alpha^{(L+1) / 2}
$$

Combining (8) and (10), we obtain the decomposition which is the cornerstone of our analysis:

$$
\begin{equation*}
\tilde{\theta}_{n}^{(\mathrm{fl})}=\sum_{\ell=0}^{L} J_{n}^{(\ell)}+H_{n}^{(L)} . \tag{12}
\end{equation*}
$$

p-th moment bound for the LSA error $\left\|\theta_{n}-\theta^{\star}\right\|$

Theorem

Assume IND and A1. Then, for any $p, q \in \mathbb{N}, 2 \leq p \leq q, \alpha \in\left(0, \alpha_{q, \infty}\right]$, $n \in \mathbb{N}$, and $\theta_{0} \in \mathbb{R}^{d}$ it holds

$$
\mathbb{E}^{1 / p}\left[\left\|\theta_{n}-\theta^{\star}\right\|^{p}\right] \leq d^{1 / q} \kappa_{Q}^{1 / 2}(1-\alpha a / 4)^{n}\left\|\theta_{0}-\theta^{\star}\right\|+d^{1 / q} \mathrm{D}_{2} \sqrt{\alpha a p}\|\varepsilon\|_{\infty},
$$

where D_{2} has closed-form expression.

Polyak-Ruppert averaging

$$
\bar{\theta}_{n_{0}, n}=\left(n-n_{0}\right)^{-1} \sum_{k=n_{0}}^{n-1} \theta_{k}, \quad n \geq n_{0}+1
$$

Key decomposition
For any $n, n_{0} \in \mathbb{N}, n_{0} \leq n$,

$$
\begin{aligned}
\overline{\mathbf{A}}\left(\bar{\theta}_{n_{0}, n}-\theta^{\star}\right) & =\frac{\theta_{n_{0}}-\theta_{n}}{\alpha\left(n-n_{0}\right)}-\frac{1}{n-n_{0}} \sum_{t=n_{0}}^{n-1} e\left(\theta_{t}, Z_{t+1}\right) \\
e(\theta, z) & =\tilde{\mathbf{A}}(z) \theta-\tilde{\mathbf{b}}(z)=\varepsilon(z)+\tilde{\mathbf{A}}(z)\left(\theta-\theta^{\star}\right)
\end{aligned}
$$

Using (12), we may further decompose

$$
\sum_{t=n_{0}}^{n-1} e\left(\theta_{t}, Z_{t+1}\right)=E_{n_{0}, n}^{\mathrm{tr}}+E_{n_{0}, n}^{f 1},
$$

where we have set

$$
\begin{aligned}
& E_{n_{0}, n}^{\mathrm{tr}}=\sum_{t=n_{0}}^{n-1} \tilde{\mathbf{A}}\left(Z_{t+1}\right) \Gamma_{1: t}^{(\alpha)}\left\{\theta_{0}-\theta^{\star}\right\} \\
& E_{n_{0}, n}^{\mathrm{f}}=\sum_{t=n_{0}}^{n-1} \varepsilon\left(Z_{t+1}\right)+\sum_{\ell=0}^{L} \sum_{t=n_{0}}^{n-1} \tilde{\mathbf{A}}\left(Z_{t+1}\right) J_{t}^{(\ell)}+\sum_{t=n_{0}}^{n-1} \tilde{\mathbf{A}}\left(Z_{t+1}\right) H_{t}^{(L)} .
\end{aligned}
$$

Polyak-Ruppert averaging

Theorem

Assume IND and A1. Then, for any $p \geq 2, n \geq 2$, burn-in period $n_{0}=n / 2$, step size

$$
\begin{equation*}
\alpha(n, d, p) \asymp \frac{1}{(1+\log d) p n^{1 / 2}}, \tag{13}
\end{equation*}
$$

and an initial parameter $\theta_{0} \in \mathbb{R}^{d}$, it holds that

$$
\begin{align*}
\mathbb{E}^{1 / p}\left[\left\|\overline{\mathbf{A}}\left(\bar{\theta}_{n_{0}, n}-\theta^{\star}\right)\right\|^{p}\right] & \lesssim d \frac{\left\{\operatorname{Tr} \sum_{\varepsilon}\right\}^{1 / 2} p^{1 / 2}}{n^{1 / 2}}+\|\varepsilon\|_{\infty}\left(\frac{p}{n^{3 / 4}}+\frac{p^{2}}{n}\right) \\
& +p\left\|\theta_{0}-\theta^{\star}\right\| \exp \left\{-\frac{\left(\alpha_{\infty} \wedge \mathrm{c}_{\mathbf{A}}\right) \sqrt{n}}{8 p(1+\log d)}\right\}, \tag{14}
\end{align*}
$$

where $\Sigma_{\varepsilon}=\int_{\mathrm{Z}} \varepsilon(z) \varepsilon(z)^{\top} \mathrm{d} \pi(z)$.
The leading term is the p-moment of the Gaussian appearing in the CLT !

Markovian Setting

Markovian setting

For any $\mathrm{A} \in \mathcal{Z}, \mathbb{P}_{\xi}\left(Z_{k} \in \mathrm{~A} \mid Z_{k-1}\right)=\mathrm{Q}\left(Z_{k-1}, \mathrm{~A}\right), \mathbb{P}_{\xi}$-a.s.

Assumption UGE

The Markov kernel Q is Uniformly Geometrically Ergodic, i.e., there exists $t_{\text {mix }} \in \mathbb{N}^{*}$ such that for all $k \in \mathbb{N}^{*}$,

$$
\begin{equation*}
\Delta\left(Q^{k}\right)=\sup _{z, z^{\prime} \in \mathrm{Z}}(1 / 2)\left\|Q^{k}(z, \cdot)-Q^{k}\left(z^{\prime}, \cdot\right)\right\|_{\mathrm{TV}} \leq(1 / 4)^{\left\lfloor k / t_{\text {mix }}\right\rfloor} . \tag{15}
\end{equation*}
$$

Here, $t_{\text {mix }}$ is the mixing time of Q .

- UGE implies that π is the unique invariant distribution of Q ;
- UGE is equivalent to the uniform minorization condition, i.e., there exists a probability measure ν such that for all $z \in Z, A \in \mathcal{Z}$,

$$
\mathrm{Q}^{t_{\operatorname{mix}}}(z, \mathrm{~A}) \geq(1 / 4) \nu(\mathrm{A})
$$

Exponential stability: Markovian case

Define the quantities

$$
\begin{equation*}
\alpha_{q, \infty}^{(\mathrm{M})}=\alpha_{\infty}^{(\mathrm{M})} \wedge \mathrm{c}_{\mathbf{A}} / q, \tag{16}
\end{equation*}
$$

where $\alpha_{\infty}^{(\mathrm{M})}$ depends upon constants from A1 and κ_{Q}. Then:

Theorem

Assume UGE and A1. Then, for any $2 \leq p \leq q, \alpha \in\left(0, \alpha_{\infty}^{(\mathrm{M})} t_{\text {mix }}^{-1}\right], n \in \mathbb{N}$, and probability distribution ξ on (Z, \mathcal{Z}), it holds

$$
\begin{equation*}
\mathbb{E}_{\xi}^{1 / p}\left[\left\|\Gamma_{1: n}^{(\alpha)}\right\|^{p}\right] \leq \sqrt{\kappa_{\mathrm{Q}}} \mathrm{e}^{2} d^{1 / q} \exp \left\{-n \alpha a / 6+n(q-1) \alpha^{2} \mathrm{C}_{\Gamma}\right\} \tag{17}
\end{equation*}
$$

where $\alpha_{\infty}^{(\mathrm{M})}$ is some constant. Moreover, for $\alpha \in\left(0, \alpha_{q, \infty}^{(\mathrm{M})} t_{\text {mix }}^{-1}\right]$, it holds

$$
\begin{equation*}
\mathbb{E}_{\xi}^{1 / p}\left[\left\|\Gamma_{1: n}^{(\alpha)}\right\|^{p}\right] \leq \sqrt{\kappa_{Q}} \mathrm{e}^{2} d^{1 / q} \mathrm{e}^{-a \alpha n / 12} \tag{18}
\end{equation*}
$$

Covariance matrix

Noise covariance matrix
Under A1 and UGE, we define the matrix $\sum_{\varepsilon}^{(\mathrm{M})}$ as

$$
\begin{equation*}
\Sigma_{\varepsilon}^{(\mathrm{M})}=\mathbb{E}_{\pi}\left[\varepsilon\left(Z_{0}\right) \varepsilon\left(Z_{0}\right)^{\top}\right]+2 \sum_{\ell=0}^{\infty} \mathbb{E}_{\pi}\left[\varepsilon\left(Z_{0}\right) \varepsilon\left(Z_{\ell}\right)^{\top}\right] \tag{19}
\end{equation*}
$$

- For any initial probability measure ξ on $(Z, \mathcal{Z}), n^{-1 / 2} \sum_{t=0}^{n-1} \varepsilon\left(Z_{t}\right)$ converges in distribution to $\mathcal{N}\left(0, \Sigma_{\varepsilon}^{(\mathrm{M})}\right)$;
- We expect that this is also the leading term in the bound for $\mathbb{E}_{\xi}^{1 / p}\left[\left\|\overline{\mathbf{A}}\left(\bar{\theta}_{n}-\theta^{\star}\right)\right\|^{p}\right]$

p-th moment bound for the LSA error $\left\|\theta_{n}-\theta^{\star}\right\|$

Theorem

Assume A1 and UGE. Let $2 \leq p \leq q / 2$ and $\alpha_{q, \infty}^{(\mathrm{M})}$ be defined in (16). Then, for any $\alpha \in\left(0, \alpha_{q, \infty}^{(\mathrm{M})} t_{\text {mix }}^{-1}\right], \theta_{0} \in \mathbb{R}^{d}$, initial probability measure ξ on (Z, \mathcal{Z}), and $n \in \mathbb{N}$, it holds
$\mathbb{E}_{\xi}^{1 / p}\left[\left\|\theta_{n}-\theta^{\star}\right\|^{p}\right] \leq \sqrt{\kappa_{\mathrm{Q}}} \mathrm{e}^{2} d^{1 / q} \mathrm{e}^{-\alpha a n / 12}\left\|\theta_{0}-\theta^{\star}\right\|+\mathrm{D}_{2}^{(\mathrm{M})} d^{1 / q} \sqrt{\alpha a p t_{\text {mix }}}\|\varepsilon\|_{\infty}$,
where $D_{2}^{(M)}$ is some constant.

Polyak-Ruppert averaging

Theorem
Assume UGE and A1. Then, for any $p \geq 2, n \geq 4 \vee t_{\text {mix }}$, step size

$$
\alpha^{(\mathrm{M})}\left(n, d, p, t_{\text {mix }}\right) \asymp \frac{1}{(1+\log d) p n^{2 / 3} t_{\text {mix }}^{1 / 3}},
$$

initial parameter $\theta_{0} \in \mathbb{R}^{d}$, and initial probability measure ξ on (Z, \mathcal{Z}), it holds that

$$
\begin{gathered}
\mathbb{E}_{\xi}^{1 / p}\left[\left\|\overline{\mathbf{A}}\left(\bar{\theta}_{n}-\theta^{\star}\right)\right\|^{p}\right] \lesssim d, n \frac{\left\{\operatorname{Tr} \sum_{\varepsilon}^{(\mathrm{M})}\right\}^{1 / 2} p^{1 / 2}}{n^{1 / 2}}+\|\varepsilon\|_{\infty}\left(\frac{t_{\text {mix }}^{2 / 3} p}{n^{2 / 3}}+\frac{t_{\text {mix }} p^{2}}{n}\right) \\
+p n^{1 / 2}\left\|\theta_{0}-\theta^{\star}\right\| \exp \left\{-\frac{\left(\alpha_{\infty}^{(\mathrm{M})} \wedge c_{\mathbf{A}}^{(\mathrm{M})}\right) n^{1 / 3}}{24 p t_{\text {mix }}^{1 / 3}(1+\log d)}\right\}
\end{gathered}
$$

Remark: unlike the i.i.d. noise scenario,

$$
\mathbb{E}_{\pi}\left[\bar{\theta}_{n}\right] \neq \theta^{\star}, \quad \text { moreover }, \mathbb{E}_{\pi}\left[\bar{\theta}_{n}\right]=\mathcal{O}(\alpha)
$$

Rosenthal-type inequality for Markov chains

Key technical innovation - novel Rosenthal-type inequalities of Durmus et al. [2023].

Rosenthal type inequality

Let $\left\{Z_{k}\right\}_{k \geq 1}$ be a Markov chain on (Z, \mathcal{Z}) with Markov kernel Q, satisfying UGE. Then, for any bounded $f: \mathbf{Z} \rightarrow \mathbb{R}$, and $p \geq 2$ it holds

$$
\begin{align*}
& \mathbb{E}_{\pi}^{1 / p}\left[\left|\sum_{\ell=1}^{n}\left(f\left(Z_{\ell}\right)-\pi(f)\right)\right|^{p}\right] \lesssim p^{1 / 2} n^{1 / 2} \sigma_{\infty}(f)+ \\
& n^{1 / 4} t_{\text {mix }}^{3 / 4} p \log _{2}(2 p)\|f\|_{\infty}+t_{\text {mix }} p \log _{2}(2 p)\|f\|_{\infty} \tag{20}
\end{align*}
$$

Applications to TD learning

TD learning

Optimal parameter

Define θ^{\star} as a solution of the minimization problem

$$
\theta^{\star}=\arg \min _{\theta \in \mathbb{R}^{d}} \mathbb{E}_{\mu}\left[\left(V_{\theta}^{\pi}(s)-V^{\pi}(s)\right)^{2}\right] .
$$

Error norm

Consider the following distance between the parameters:

$$
\left\|\theta-\theta^{\star}\right\|_{\Sigma_{\varphi}}=\mathbb{E}_{\mu}^{1 / 2}\left[\left(V_{\theta}^{\pi}(s)-V_{\theta^{\star}}^{\pi}(s)\right)^{2}\right] .
$$

Previous results: discussion

- Bhandari et al. [2018]: RSA ("robust stochastic approximation") framework following Nemirovski et al. [2009]. Here

$$
\mathbb{E}^{1 / 2}\left[\left\|\bar{\theta}_{n}-\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}\right]=\mathcal{O}(1 / \sqrt{n}) .
$$

Advantages: step size α and bounds independent of conditioning;

- Li et al. [2023b]: Lower bounds on the MSE for policy evaluation problems and optimal MSE for the variance-reduced TD-learning algorithm (based on control variates);
- Li et al. [2023a]: HPB and sample complexity for TD(0) and off-policy counterpart (TDC). Step size α scales with the minimal eigenvalue of the feature matrix and covers i.i.d. setting only;
- Patil et al. [2023]: second moment for TD(0) and high-probability bounds for projected TD (0) iterates. HPBs require a projection on a ball - radius depends on $\left\|\theta^{\star}\right\|$.

Matrix stability in TD

Checking matrix stability for TD learning
Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $\operatorname{TD}(0)$ updates under TD1 and TD2. Then this update scheme satisfies the stability assumption A2 (p) with

$$
\begin{equation*}
a=\frac{(1-\gamma) \lambda_{\min }}{2}, \quad \varkappa_{p}=1, \quad \alpha_{p, \infty}=\frac{1-\gamma}{128 p} \tag{21}
\end{equation*}
$$

Discussion: Previous results - Huang et al. [2021] and Durmus et al. [2021] - yield an instance-dependent stability threshold

$$
\begin{equation*}
\alpha_{p, \infty}=\frac{(1-\gamma) \lambda_{\min }}{c_{0} p} \tag{22}
\end{equation*}
$$

for some absolute constant $c_{0}>0$. The same order of magnitude of the step size is predicted in [Li et al., 2023a, Theorem 1].

Stability of matrix product

Theorem: Matrix stability for TD learning
Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $\operatorname{TD}(0)$ updates under TD1 and TD2. Then, for any $n \in \mathbb{N}, 1 \leq j \leq n, p \geq 2$, step size $\alpha \in\left(0 ; \frac{1-\gamma}{128 p}\right]$, it holds \mathbb{P}-a.s. that

$$
\mathbb{E}^{1 / P}\left[\left\|\Gamma_{1: n}^{(\alpha)}\left(\theta_{0}-\theta^{\star}\right)\right\|^{p}\right] \leq\left(1-\alpha(1-\gamma) \lambda_{\min } / 2\right)^{n-j}\left\|\theta_{0}-\theta^{\star}\right\| .
$$

TD learning: Proof of matrix stability

Result from Patil et al. [2023]

Let $\mathbf{A}=\varphi(s)\left\{\varphi(s)-\gamma \varphi\left(s^{\prime}\right)\right\}^{\top}$ be a random TD update matrix defined in (4), where $s^{\prime} \sim P^{\pi}(\cdot \mid s)$, and $s \sim \mu$. Then, for any $p \in \mathbb{N}$ and $\alpha \in\left(0 ; \frac{1-\gamma}{4}\right]$, it holds that

$$
\mathbb{E}\left[(\mathrm{I}-\alpha \mathbf{A})^{\top}(\mathrm{I}-\alpha \mathbf{A})\right] \preceq \mathrm{I}-(1 / 2) \alpha(1-\gamma) \Sigma_{\varphi} .
$$

Proof: With the definition of \mathbf{A}, we get that

$$
\begin{aligned}
\mathbf{A}+\mathbf{A}^{\top} & =\varphi(s)\left\{\varphi(s)-\gamma \varphi\left(s^{\prime}\right)\right\}^{\top}+\left\{\varphi(s)-\gamma \varphi\left(s^{\prime}\right)\right\} \varphi(s)^{\top} \\
& =2 \varphi(s) \varphi(s)^{\top}-\gamma\left\{\varphi(s) \varphi\left(s^{\prime}\right)^{\top}+\varphi\left(s^{\prime}\right) \varphi(s)^{\top}\right\} \\
& \succeq(2-\gamma) \varphi(s) \varphi(s)^{\top}-\gamma \varphi\left(s^{\prime}\right) \varphi\left(s^{\prime}\right)^{\top} .
\end{aligned}
$$

Hence, $\mathbb{E}\left[\mathbf{A}+\mathbf{A}^{\top}\right] \succeq 2(1-\gamma) \Sigma_{\varphi}$. Similarly, one can show by direct computations that

$$
\mathbb{E}\left[\mathbf{A}^{\top} \mathbf{A}\right] \preceq(1+\gamma)^{2} \Sigma_{\varphi} .
$$

TD learning: Proof of matrix stability

Lemma

Let $B=B^{\top} \geq 0, B \in \mathbb{R}^{d \times d}$ be a symmetric positive definite matrix and $u \in \mathbb{R}^{d}$ be some vector. Then, for any $s \in \mathbb{N}$ and $p=2^{s}$, it holds that

$$
\left(u^{\top} B u\right)^{p} \leq\|u\|^{2 p-2} u^{\top} B^{p} u .
$$

Lemma

For random matrix \mathbf{A} defined in (4) and $\mathbf{B}=\mathbf{A}+\mathbf{A}^{\top}-\alpha \mathbf{A}^{\top} \mathbf{A}$, for $p \in \mathbb{N}$ and step size $\alpha \in\left(0 ; \frac{1-\gamma}{(1+\gamma)^{2}}\right]$ it holds that

$$
\mathbb{E}[\mathbf{B}] \succeq(1-\gamma) \Sigma_{\varphi}, \quad \mathbb{E}\left[\mathbf{B}^{p}\right] \preceq 4^{p} \Sigma_{\varphi}
$$

TD learning: Proof of matrix stability

Lemma: key lemma for p-th moment stability
Let $\mathbf{A}=\varphi(s)\left\{\varphi(s)-\gamma \varphi\left(s^{\prime}\right)\right\}^{\top}$ be a random TD update matrix defined in (4), where $s^{\prime} \sim P^{\pi}(\cdot \mid s)$, and $s \sim \mu$. Then, for any $p \in \mathbb{N}$ and step size

$$
\alpha \in\left(0 ; \frac{1-\gamma}{64 p}\right],
$$

it holds that

$$
\mathbb{E}\left[\left\{(\mathbf{I}-\alpha \mathbf{A})^{\top}(\mathbf{I}-\alpha \mathbf{A})\right\}^{p}\right] \preceq \mathbf{I}-(1 / 2) \alpha \boldsymbol{p}(1-\gamma) \Sigma_{\varphi} .
$$

TD learning: 2nd moment bound

Theorem 2: second moment error for tail-averaging
Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $\mathrm{TD}(0)$ updates generated by (3) under TD1 and TD2. Then for any $n \geq 2, \alpha \in(0 ;(1-\gamma) / 256]$, and $\theta_{0} \in \mathbb{R}^{d}$, it holds that

$$
\begin{aligned}
\mathbb{E}^{1 / 2}\left[\left\|\bar{\theta}_{n}-\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}\right] & \lesssim \frac{\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}+1}{\sqrt{\lambda_{\min } n}(1-\gamma)}\left(1+\frac{\sqrt{\alpha}}{\sqrt{(1-\gamma) \lambda_{\min }}}\right) \\
& +\frac{\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}+1}{\sqrt{\alpha}(1-\gamma)^{3 / 2} \lambda_{\min } n} \\
& +f_{1}\left(\alpha, \lambda_{\min }, n\right)\left(1-\frac{\alpha(1-\gamma) \lambda_{\min }}{2}\right)^{n / 2}\left\|\theta_{0}-\theta^{\star}\right\|
\end{aligned}
$$

where $f_{1}\left(\alpha, \lambda_{\text {min }}, n\right)$ is a polynomial function in $1 / \alpha, 1 / \lambda_{\text {min }}, n$.

TD sample complexity: 2-nd moment

Sample complexity

Under assumptions of Theorem 2, $\mathbb{E}\left[\left\|\bar{\theta}_{n}-\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}\right] \leq \varepsilon^{2}$ requires where $\mathrm{R}_{1}(1 / \varepsilon)=\frac{\left\|\theta^{*}\right\|_{\varepsilon_{\varphi}}+1}{\sqrt{\alpha}(1-\gamma)^{3 / 2} \lambda_{\text {min }} \varepsilon}$.

- Set $\alpha \simeq 1-\gamma$, sample complexity (agrees with Patil et al. [2023]):

$$
\widetilde{\mathcal{O}}(\frac{1}{(1-\gamma)^{2} \lambda_{\text {min }}} \cdot \log \frac{\left\|\theta_{0}-\theta^{\star}\right\|}{\varepsilon}+\underbrace{\frac{1+\left\|\theta^{\star}\right\|_{2,}^{2}}{(1-\gamma)^{2} \lambda_{\text {min }}{ }^{2}}}_{\text {suboptimal by a factor } \lambda_{\text {min }}^{-1}}) .
$$

- Set $\alpha \simeq(1-\gamma) \lambda_{\text {min }}$, sample complexity (agrees with Li et al. [2023a]):

$$
\widetilde{\mathcal{O}}(\underbrace{\frac{1}{(1-\gamma)^{2} \lambda_{\text {min }}^{2}} \cdot \log \frac{\left\|\theta_{0}-\theta^{\star}\right\|}{\varepsilon}}_{\text {suboptimal by a factor } \lambda_{\min }^{-1}}+\frac{1+\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}}{(1-\gamma)^{2} \lambda_{\min } \varepsilon^{2}}) .
$$

TD learning: HPB

Theorem 3: high-probability error bounds for tail-averaging
Fix $\varepsilon>0, \delta>0$, assume TD1 and TD2. Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of TD(0) updates generated by (3). Then for any $n \geq 2$, and step size

$$
\alpha \in\left(0 ; \frac{1-\gamma}{128 \log (n / \delta)}\right]
$$

to achieve error $\left\|\left(\bar{\theta}_{n}-\theta^{\star}\right)\right\|_{\Sigma_{\varphi}} \leq \varepsilon$ with probability at least $1-\delta$ it takes

$$
\widetilde{\mathcal{O}}\left(\frac{\left(\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}+1\right) \log (1 / \delta)}{(1-\gamma)^{2} \lambda_{\min } \varepsilon^{2}}\left(1+\frac{\alpha \log (1 / \delta)}{(1-\gamma) \lambda_{\min }}\right)+\mathrm{R}_{2}(1 / \varepsilon, \delta)+\frac{1}{\alpha \lambda_{\min }(1-\gamma)} \log \frac{\left\|\theta_{0}-\theta^{\star}\right\|}{\varepsilon}\right) .
$$

TD(0) updates.
Optimizing the bound w.r.t. α yields the same dilemma as for the 2-nd moment.

Asymptotic covariance matrix

- Introduce the TD(0) covariance matrix

$$
\Sigma_{\varepsilon}^{(T D)}=\mathbb{E}\left[\left(\left(\phi\left(s_{k}\right)-\gamma \phi\left(s_{k}^{\prime}\right)\right)^{\top} \theta^{\star}-r_{k}\right)^{2} \phi\left(s_{k}\right) \phi\left(s_{k}\right)^{\top}\right] ;
$$

- Covariance $\Sigma_{\varepsilon}^{(T D)}$ aligns with the CLT for Polyak-Ruppert averaged iterates Fort [2015];
- Define the transformed covariance matrix

$$
\Sigma_{\varepsilon}^{(o p t)}=\Sigma_{\varphi}^{1 / 2} \overline{\mathbf{A}}^{-1} \Sigma_{\varepsilon}^{(T D)} \overline{\mathbf{A}}^{-T} \Sigma_{\varphi}^{1 / 2},
$$

corresponding to $\sum_{\varphi}^{1 / 2} \overline{\mathbf{A}}^{-1} \varepsilon$.
Upper bounding the optimal covariance matrix
Under our assumptions,

$$
\operatorname{Tr} \Sigma_{\varepsilon}^{(\text {opt })} \leq \frac{\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}+1}{(1-\gamma)^{2} \lambda_{\min }}
$$

Tighter 2-nd moment bound

Refined Theorem 2

Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $\operatorname{TD}(0)$ updates generated by (3) under TD1 and TD2. Then for any $n \geq 2, \alpha \in(0 ;(1-\gamma) / 256]$, and $\theta_{0} \in \mathbb{R}^{d}$, it holds that

$$
\begin{align*}
\mathbb{E}^{1 / 2}\left[\left\|\bar{\theta}_{n}-\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}\right] & \lesssim \frac{\sqrt{\operatorname{Tr} \sum_{\varepsilon}^{(o p t)}}}{n^{1 / 2}}+\frac{1+\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}}{(1-\gamma)^{3 / 2} \lambda_{\min } n^{1 / 2}}\left(\frac{1}{\sqrt{\alpha n}}+\sqrt{\alpha}\right) \\
& +f_{2}\left(\alpha, \lambda_{\min }, n\right)\left(1-\alpha(1-\gamma) \lambda_{\min }\right)^{n / 2}\left\|\theta_{0}-\theta^{\star}\right\| \tag{23}
\end{align*}
$$

where $f_{2}\left(\alpha, \lambda_{\text {min }}, n\right)$ is a polynomial in $1 / \alpha, 1 / \lambda_{\text {min }}, n$.

Markovian sampling: assumptions

Trajectory-wise evaluation (instead of TD1):

Assumption TD3

Agent's learning is based on tuples (s_{k}, a_{k}, s_{k+1}) which are generated sequentially following the generative model $a_{k} \sim \pi\left(\cdot \mid s_{k}\right)$,
$s_{k+1} \sim \mathcal{P}\left(\cdot \mid s_{k}, a_{k}\right)$.
The assumption TD3 yields that the sequence $\left\{s_{k}\right\}_{k \in \mathbb{N}}$ is a Markov chain with the Markov kernel $\mathcal{P}_{\pi}(\cdot \mid s)$.

Assumption TD4

The Markov kernel \mathcal{P}_{π} admits a unique invariant distribution μ and is uniformly geometrically ergodic, that is, there exist $t_{\text {mix }} \in \mathbb{N}$, such that for any $s \in S$ and $k \in \mathbb{N}$ it holds that

$$
\begin{equation*}
\left\|\mathcal{P}_{\pi}^{k}(\cdot \mid s)-\mu\right\|_{\mathrm{TV}} \leq(1 / 4)^{\left\lceil k / t_{\text {mix }}\right\rceil} \tag{24}
\end{equation*}
$$

One can consider the generalisations of TD4 coming at a price of more technical work.

TD with Markovian sampling

Parameters : features $\varphi(\cdot): \mathcal{S} \rightarrow \mathbb{R}^{d}$, step size α, number of iterations n, behavioral policy π, time window $q \in \mathbb{N}^{*}$
Compute number of blocks $m=\lfloor n / q\rfloor$
for $k=0, \ldots, n$: do
Receive tuple ($s_{k}, a_{k}, s_{k}^{\prime}$) following TD4
if $k=q j, j \in \mathbb{N}$ then
Compute update

$$
\tilde{\theta}_{j}=\tilde{\theta}_{j-1}-\alpha\left(\mathbf{A}_{k} \tilde{\theta}_{j-1}-\mathbf{b}_{k}\right)
$$

based on $\mathbf{A}_{k}, \mathbf{b}_{k}$ from (4)
else
skip current learning tuple end
end
Return: tail-averaged estimate $\bar{\theta}_{n}=(2 / m) \sum_{k=m / 2+1}^{m} \tilde{\theta}_{k}$
value function estimate $V_{\bar{\theta}_{n}}^{\pi}(s)=\varphi^{\top}(s) \bar{\theta}_{n}$ Idea goes back to Nagaraj
et al. [2020], Patil et al. [2023].

Markovian sampling schemes

Refined Theorem 2

Let $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of $\operatorname{TD}(0)$ updates generated by (3) under TD2, TD3, and TD4, and $\bar{\theta}_{n}$ be a tail-averaged estimate generated by Algorithm ?? with $q=t_{\text {mix }}$. Then, for the step size and sample size satisfy

$$
\alpha=\frac{1-\gamma}{128 \log (n / \delta)}, \quad n \geq \frac{\log (1 / \delta)}{(1-\gamma)^{2}} \vee \frac{2 t_{\text {mix }} \log (4 / \delta)}{\log 4}
$$

in order to achieve $\left\|\bar{\theta}_{n}-\theta^{\star}\right\|_{\Sigma_{\varphi}} \leq \varepsilon$ with probability at least $1-3 \delta$, it requires

$$
\widetilde{\mathcal{O}}\left(\frac{t_{\text {mix }}\left(\left\|\theta^{\star}\right\|_{\Sigma_{\varphi}}^{2}+1\right) \log (1 / \delta)}{(1-\gamma)^{2} \lambda_{\text {min }}^{2} \varepsilon^{2}}+\frac{t_{\text {mix }} \log ^{2}(1 / \delta)}{\lambda_{\text {min }}(1-\gamma)^{2}} \log \frac{\left\|\theta_{0}-\theta^{\star}\right\|}{\varepsilon}\right)
$$

observations.

Markovian sampling schemes

- Proof is based on Berbee's coupling lemma Berbee [1979];
- Bounds scale by a factor $t_{\text {mix }}$ compared to the i.i.d. setting;
- Extra $\sqrt{\log 1 / \delta}$ factor in the leading term as an artefact of applying Berbee's construction;
- Using Berbee's construction potentially can be avoided, but requires to adjust the step size $\alpha \approx t_{\text {mix }}^{-1}$. Hence, the knowledge of $t_{\text {mix }}$ is still required.

Conclusion and open questions

Adaptive version

Is it possible to come up with a version of Algorithm 1, which does not require to know $t_{\text {mix }}$ in advance?

Optimal bounds for instance-independent step size
Is it possible to remove the extra $\lambda_{\text {min }}^{-1}$ in the analysis of Theorem 2 for the step size α independent of $\lambda_{\text {min }}$? Or construct a lower bound showing that this suboptimality is not an artefact of the proof.

References:

- Durmus, A., Moulines, E., Naumov, A., Samsonov, S., Wai, H. T. (2021, July). On the stability of random matrix product with markovian noise: Application to linear stochastic approximation and td learning. In Conference on Learning Theory (pp. 1711-1752). PMLR.
- Durmus, A., Moulines, E., Naumov, A., Samsonov, S., Wai, H. T. (2021, July). On the stability of random matrix product with markovian noise: Application to linear stochastic approximation and td learning. In Conference on Learning Theory (pp. 1711-1752). PMLR.
- Durmus, A., Moulines, E., Naumov, A., Samsonov, S. (2024). Finite-Time High-Probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation. Mathematics of Operations Research. https://arxiv.org/abs/2207.04475
- Samsonov, S., Tiapkin, D., Naumov, A., Moulines, E. (2024), Improved high-probability bounds for temporal difference learning algorithms wia exponential stability, https://arxiv.org/abs/2310.14286 - To appear in COLT-2024.

Thank you!

References I

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate $o(1 / n)$. In NeurlPS, volume 26, 2013.
H.C.P. Berbee. Random Walks with Stationary Increments and Renewal Theory. Mathematical Centre tracts. Centrum Voor Wiskunde en Informatica, 1979. ISBN 9789061961826. URL https://books.google.ru/books?id=ivUAtQEACAAJ.
J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with linear function approximation. In Conference On Learning Theory, pages 1691-1692, 2018.
R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer Series in Operations Research and Financial Engineering. Springer, 2018. ISBN 978-3-319-97703-4.
Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, and Hoi-To Wai. Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. In NeurIPS, 2021.
Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, and Marina Sheshukova. Rosenthal-type inequalities for linear statistics of markov chains. arXiv preprint arXiv:2303.05838, 2023.
G. Fort. Central limit theorems for stochastic approximation with controlled Markov chain dynamics. ESAIM: PS, 19:60-80, 2015.
L. Guo and L. Ljung. Exponential stability of general tracking algorithms. IEEE Transactions on Automatic Control, 40(8):1376-1387, 1995.
De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentration for products. Foundations of Computational Mathematics, pages 1-33, 2021.
C.r Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: How far does constant step-size and iterate averaging go? In AISTATS, volume 84, pages 1347-1355, 2018.

References II

Gen Li, Weichen Wu, Yuejie Chi, Cong Ma, Alessandro Rinaldo, and Yuting Wei. Sharp high-probability sample complexities for policy evaluation with linear function approximation. arXiv preprint arXiv:2305.19001, 2023a.
Tianjiao Li, Guanghui Lan, and Ashwin Pananjady. Accelerated and instance-optimal policy evaluation with linear function approximation. SIAM Journal on Mathematics of Data Science, 5(1):174-200, 2023b. doi: $10.1137 / 21 \mathrm{M} 1468668$. URL https://doi.org/10.1137/21M1468668.
Lennart Ljung. Recursive identification algorithms. Circuits, Systems and Signal Processing, 21(1): 57-68, 2002.
Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. On linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration. In Conference on learning theory, volume 125, pages 2947-2997. PMLR, 2020.
Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least squares regression with markovian data: Fundamental limits and algorithms. Advances in neural information processing systems, 33:16666-16676, 2020.
Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on optimization, 19(4): 1574-1609, 2009.
Gandharv Patil, LA Prashanth, Dheeraj Nagaraj, and Doina Precup. Finite time analysis of temporal difference learning with linear function approximation: Tail averaging and regularisation. In International Conference on Artificial Intelligence and Statistics, pages 5438-5448. PMLR, 2023.
Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM journal on control and optimization, 30(4):838-855, 1992.
Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400-407, 1951.

