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Stochastic Approximation
» Consider the problem of finding 8* € R? such that

f(0*)=0.
» Only "noisy” samples of f(f) are revealed, e.g., F(6; Z,), such that
E[F(6; Z,)] = f(0) or, at least, HETOO]E[F(H; Z,)] = ().
» Such algorithms are called stochastic approximation (SA) schemes to a
fixed point equation:
Opis = O+ nF (0 Zn).
Robbins and Monro [1951]

» Compare with the standard ‘Euler scheme’ for numerically
approximating a trajectory of the o.d.e. 0(t) = f(6(t))

0t+1 = gt + Ckf(gt)

» The simplest instance of the problem corresponds to the Linear
Stochastic Approximation (LSA)
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Linear Stochastic Approximation

> Given A € R?%? and b € RY, we aim at finding 6* € RY, which is a
solution of _ _
A0* =b.
» Our analysis is based on noisy observations {(A(Z,),b(Z,))}nen-
Here A: Z — R9*9 b:Z — RY are measurable mappings.

LSA algorithm

For a sequence of step sizes {ay}, burn-in period ng € N, and
initialization 6y, consider the sequences of estimates

{QH}HEN7 {éng,n}n2n0+1 given by
Ok = k-1 — i {A(Z)0k—1 — b(Z4)}, k=1,

. - (1)
49,,0)" = (n — no)_l EZ:}’O Gk, n>n+1.
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Linear Stochastic Approximation

[.1.D. Noise

Sequence {Zk}xen is an i.i.d. sequence taking values in a state space
(Z, Z) with distribution 7 satisfying E[A(Z1)] = A and E[b(Z;)] = b;

Markovian noise

Sequence {Zk}ken is a Z-valued ergodic Markov chain with unique
invariant distribution 7, such that

lm E[A(Z,)] = A

and
lim E[b(Z,)]=b

n——+o00

We write Ay instead of A(Zy), and by instead of b(Zy), respectively.
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RL: general paradigm

State sy Reward ry Action ay

Environment
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Applications: TD learning

vvyyvyy

Consider a problem of estimating the policy v in a discounted MDP
given by a tuple (S, A, P, r,v);

S and A are state and action spaces, assume that they are complete
metric spaces equipped with Borel o-algebras B(S) and B(A),
respectively;

v € (0,1) is a discount factor;
P stands for the transition kernel P(-|s, a);
reward function r : S x A — [0, 1] - deterministic;

policy v(:|s) - distribution over the action space A;
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Applications: TD learning

> We aim to estimate the agent’s value function

V¥(s) =E [Z:O:O Y*r(sk, ak)|so = s} ;

where ax ~ v(+|sk), and sk11 ~ P(:|sk, ak);
» 1-step transition kernel:

P.(B|s) :/AP(B|s,a)1/(das), B e B(S); (2)

» Linear functional approximation of the true value function V¥(s):

Vi'(s) =o' (s)0,

where s €S, 0 € R?, p: S — R? d - feature dimension
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TD learning as LSA problem

>

>

The problem of estimating V”(s) reduces to the problem of estimating
0 € RY in VY (s);
Set the k-th step randomness as Z, = (s, s;);

The corresponding LSA writes as:
Ok = Ok—1 — ax(Akbk—1 —by), (3)
where the system matrix and r.h.s. are given by
Ak = d(sk){d(sk) — ve(sk)} s bi = d(si)r(sw, a) - (4)
Deterministic system writes as A6* = b, where

= Eswy,s’wpu(-\s) [¢(S){¢(S) - fyqﬁ(s/)}—r]
= Eswu,awﬂ(-ls)[¢(5)r(5’ a)] :

o D
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Finite-time high-probability bounds for the
Polyak-Ruppert averaged LSA iterates
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Linear Stochastic Approximation

» Let {Zk}ken be an i.i.d.sequence and consider the recurrence

O = 0r_1 — OZk{A(Zk)akfl - b(Zk)}

> Set

Assumption Al

(i) Ca=sup,cz ||A(2)]| V sup,ez [|A(2)]| < oo and the matrix —A is
Hurwitz

(i) [ A( = A and [, b(z)dn(z) = b. Moreover,
lelloo = SUPzez ||€( )< +o00.
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Why averaging: CLT view

Step size assumptions

Suppose that the sequence « satisfies one of the following assumptions:

(i) 52 o = 00, T2, 0 < 0o, log(a—1/ou) = ofa);

(i) Dpo ak =00, Y po;ai < 00, log(ak—1/ak) ~ ax/a, for

o, > 1/(2L), where L = minRe();(A)).

Examples: ax = ¢p/k”, v € (0.5; 1) satisfies (i); ax = ./ k satisfies (ii).

CLT
Under assumption Al it holds that

(i) ak_l/z(ﬂk —0%) . N(0,X1) if ay satisfy (i);
(i) o 2(0k — 0°) 25 N(0,5,) if e satisfy (ii) .
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Why averaging: CLT view

Covariances X7 and X, are given by

~-5,AT AL, =%, (6)
Yo(l -2, A7) + (I —20,A) Xy = —20, %, . (7)

Suggests that ax = a/k is optimal. However, such a choice of step size
is not implementable.

Optimal preconditioner choice

Consider now the modified LSA dynamics
O = 01 — T (Akbi—1 — by)
where o = o /k and T - fixed matrix. We know that
a 2(0, = 0) 75 N (0, %o(T)).
Can we find I'*, such that for any u € RY:

u' So(MYu < u' Zo(MNu
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Optimality of Polyak-Ruppert

Optimal preconditioning
Optimal choice of [* is given by

—1px-1
" =a, A",
corresponding to the covariance matrix
Yo(M) = o 'ATIE . AT,

Under Al and (i)-th choice of step size, the Polyak-Ruppert Polyak and
Juditsky [1992] averaging performs almost similarly:

(0, —0*) X N(0,A IS AT).

Extensions to the Markov setting are given in Fort [2015].
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Boris Polyak (1935-2023)
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Problem setting

» Goal: sharp bounds for finite-sample n and the dimension of the
parameter space d;

» Constant step size a depending on the computational budget n;

> For least squares regression problems, where A(Z,) is a symmetric
matrix almost surely, Bach and Moulines [2013] showed that for a
constant step size, the MSE of 6, , — 6* converges as O(1/n);

> General LSA: Lakshminarayanan and Szepesvari [2018] showed a rate
of convergence of the MSE O(1/n).

> Mou et al. [2020] provided a non-asymptotic high-probability bounds
for LSA-PR with independent observations. However, the proof relies
on concentration bounds from Markov chain - under Log-Sobolev
inequalities- {(A(Z,),b(Z,))}nen - clear gaps in the proof.
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Non-asymptotic LSA expansions

» Denote by I'( ) the product of random matrices

Foh =TIL,(1—0A(Z)), mneN", m<n.

> The recursion 0, = 0,1 — a,{A(Z,)0,-1 — b(Z,)} may be
decomposed as follows

9,7 _ 9* — é’gtr) + é’(_'ﬂ)’

where éf,tr) is the transient term and GNS,H) is a fluctuation term
G N LR S R

» A cornerstone of the theoretical analysis is a tight bound for
El/p[HFSﬁf%HP] under some assumptions on the matrix A.
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Exponential stability of random matrix products

Key technical element:

Exponential stability of {A(Z;)}ien (see Guo and Ljung
[1995], Ljung [2002])

For g > 1, there exist ag, C; > 0 and a,q < 00 such that, for any step
size a < 0o, mn €N, m < n,

E[|F5l%] < Cqexp (—aga(n — m)) .

> Intuitively, exponential stability means that rie) ~ (1—aA)"=™, for
mneN, m<n

» We handle both the setting of i.i.d.and Markov dependency in the
sequence {Z;}ien;
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Lyapunov equation

Proposition

Assume that —A is Hurwitz. There exists a unique symmetric positive
definite matrix Q satisfying the Lyapunov equation AT Q + QA = 1. In
addition, setting

a=QI7"/2, and asx = (1/2)IAIZIQIT AllQI,
for any o € [0, o], it holds that
[l —aAll5 <1 - aa,
and aa <1/2.

Why Q-norm: |—aA is a strict contraction in ||-||g, but not necessarily
in [J-]].
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Exponential stability under Al

Theorem

Assume IND and Al. Forany p,geN,2<p<gq, a€ (0,aq] and
n € N, it holds

EY? [IF1P] < vRad/a(1 - aa + (g — 1)b3a%)"2.
where
kQ = )‘maX(Q)/)‘min(Q), bQ =V RQ CA7
(g = oo ACa /@, ca = a/{2b3} .

» Note that the bound above introduces an interplay between step size
« and maximal controlled moment g;

» We show that under only Al, for fixed o > 0,
limp,— 400 E[||0n — 0*||P] = 0o for p > p(«); cannot expect exponential
tytpe HPB for ||8, — 6*|| are not possible (see Durmus et al. [2021])
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Exponential stability: sketch of the proof

» For B € R¥*? let 04(B),{ =1,...,d be its singular values;
» For p > 1, denote its Schatten p-norm

d
I1Bll, = {>_of(B)}Y/?

{=1

» For p,g > 1 and random matrix X, we write || X

pa = {E[lIX[IZ1}e.
Theorem (Subquadratic averages - (Huang et al., 2020))
Consider random matrices of the same sizes that satisfy E[Y|X] =0,

P-a.s. Then, for2 < q < p,

IX + Ylzq < 1XIl5.q + Coll YII5 4

p,q =
The constant C, = p — 1 is the best possible.

Proof sketch: re-write a product of matrices

M) = (1 —aA)r2)_, — a(A(Z,) — AL

n n—1>

then apply the subquadratic inequality above, switch to @-norm.
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Linear Stochastic Approximation

» Recall that the error vector 6, — 8* may be decomposed as
o =il — 0%}, B0 = —aZ M3 e

» To bound El/p[”@"f,tr)Hp], we simply apply the bound on the matrix
product.

> How to proceed with El/"[Héf,ﬂ)Hp]?
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Sketch of the proof: fluctuation term

» For any ne N:
0 = 40+ HO), @

where the latter terms are defined by the following pair of recursions

JO = (1—ahA) SO, — ae(Z,), S0 = o)
9
HO = (1-aA(Z,)) H?, — oA(Z,) ), H® =o0.
» Solving the recursion above,
n j+1 « ” 0)
= _O‘Z (2, = _O‘Zrﬁ?l 1A JJ( 1

» The term J,(,O) is the leading one w.r.t. «, and is a linear statistics of
{e(Z))}j>0:

» Rough bounds from (9):

EYP[IJO1P) S vV, EYPIIHP|P] S Va.
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Sketch of the proof: fluctuation term

The same decomposition can be applied to H,(,O) to obtain higher order

expansions:
Y = Sy )+ D (10)

where for any ¢ € {1,...,L},

JO = (1—aR) S99, — al(Z,) SV, S =0,
HO = (1—aA(Z,)) HY, — aA(Z,) )P, HP =0.

n

(11)
The choice of parameter L controls the desired approximation accuracy:
EVP[AOIP] S a2, EVPHO[P] £ ol

Combining (8) and (10), we obtain the decomposition which is the
cornerstone of our analysis:

R Sy I S (12)

22/52



p-th moment bound for the LSA error ||, — 67|

Theorem

Assume IND and Al. Then, for any p,g € N, 2 <p<gq, a € (0,aq ],
n €N, and 6y € RY it holds

EY (16, — 6%17] < /9 (1 — @a/4)" (|00 — 0¥ + d*/*Dzv/@aple]loc .

where D, has closed-form expression.
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Polyak-Ruppert averaging

n—1

0,,07”:([7—[70)71 Zﬂk, n2n0+1
k:ng

Key decomposition

For any n,np € N, ng < n,

A (eng,n _ 9*) — 9,,0 — 9,,

n— no Z (91’7Zt+1)

) t=ng
e(0,2) = A(2)0 — b(z) = £(z) + A(2)(0 - 67).
Using (12), we may further decompose

e (¢, Zey1) = EX , + E])

a(n— ng

t no no,n no,n >
where we have set
E =0 l\(zm) r{ {00 9*}

EN = e(Zest) + Yo St A(Zes1) S + S0 A(Zeyr)H
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Polyak-Ruppert averaging

Theorem

Assume IND and Al. Then, for any p > 2, n > 2, burn-in period
ng = n/2, step size

1

dp)=x ——m—
O[(n; 7p) (1+|0gd)pn1/27

(13)

and an initial parameter 6y € RY, it holds that
o {Tr Zg}l/2p1/2 p
EY/P [HA (9n07n — 9*) ||p} <d Tz + HEHoo 3/4 + "

. Qo N\ CA
+p||eoe|exp{ 8p1+|ogd}

where Y. = [, £(2)e(z) dn(z).
The leading term is the p-moment of the Gaussian appearing in the CLT !
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Markovian setting

For any A € Z, Pe(Zk € AlZk—1) = Q(Zk-1,A), P¢-as.

Assumption UGE

The Markov kernel Q is Uniformly Geometrically Ergodic, i.e., there
exists tmixy € N* such that for all kK € N*,

AQ) = SUPZ(1/2)IIQ"(Z~)—Qk(Z’,-)HTv < (/4 (15)

z,z' €

Here, tmix is the mixing time of Q.
» UGE implies that 7 is the unique invariant distribution of Q;

» UGE is equivalent to the uniform minorization condition, i.e., there
exists a probability measure v such that for all z € Z, A € Z,

Q' (z,A) > (1/4)v(A).
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Exponential stability: Markovian case

Define the quantities
o = ol Aea/q, (16)
where aE,o) depends upon constants from Al and kq. Then:

Theorem

Assume UGE and Al. Then, forany2 < p < gq, a € (0, aoo )tm.lx] neN,
and probability distribution & on (Z, Z), it holds

E¢/? [IM1°] < \/Fae?d™9 exp{—naa/6 + n(g — 1)a*Cr},  (17)
(M) (M)

where ot is some constant. Moreover, for o € (0, agoot ], it holds

1/P [Hr H } < /—KQe2d1/qefaan/l2. (18)
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Covariance matrix

Noise covariance matrix

Under Al and UGE, we define the matrix zéM) as

M = Er[e(Z0)e(Z0) "1+ 2D Erle(Z0)e(Ze) ] (19)
=0
» For any initial probability measure € on (Z, Z), n™1/2 37" ¢(Z,)
converges in distribution to N(0, ZQM));
» We expect that this is also the leading term in the bound for
L bl
E” [IA (0 —0%) 1]
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p-th moment bound for the LSA error ||, — 67|

Theorem

Assume Al and UGE. Let 2 < p < q/2 and af},& be defined in (16).

Then, for any a € (0, agl}/lol 1

(Z,2), and n €N, it holds

|, 0o € R, initial probability measure ¢ on

E¢/P [[16, — 6*[|°] < \/Rge?d™/9e="/121go—g*||+ D™ d*/ 9\ /aaptmilel|so »

M) .
where Dg ) is some constant.
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Polyak-Ruppert averaging
Theorem
Assume UGE and A1. Then, for any p > 2, n > 4V tn,ix, Step size

1
(1 + log d)pn?/3t

a(M)(na dap7 tmix) = 1/3°

initial parameter 6y € R?, and initial probability measure ¢ on (Z, Z), it
holds that

A (5. _ o* Tre. V) 2pl/2 20D | tmixp?
5P (I (F, — ) 7] Saw LEE LYy (fotep :

l/2 n2/3
(M) (M)y,1/3
RA
+ pn1/2||90 . Q*H exp{ — (Oé e CA )n )
24'ptmix (1 + |Og d)

Remark: unlike the i.i.d. noise scenario,

E.[0.] # 0*, moreover,E.[0,] = O(a).
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Rosenthal-type inequality for Markov chains

Key technical innovation - novel Rosenthal-type inequalities of Durmus
et al. [2023].

Rosenthal type inequality

Let {Zk}x>1 be a Markov chain on (Z, Z) with Markov kernel Q,
satisfying UGE. Then, for any bounded f : Z —+ R, and p > 2 it holds

EYPII > (F(Ze) = n(F))IP] < pH/2n 2o (F)+

414 b10g,(20)1lloo + tmixp 1085(2p) | Fllos - (20)
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TD learning

Optimal parameter

Define 6* as a solution of the minimization problem

0" = arg min B, [(V7 () = V™(5))’].

Error norm

Consider the following distance between the parameters:

16— 6%z, = E3/2 [(VF (s) = Vi ()] -
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Previous results: discussion

> Bhandari et al. [2018]: RSA ("robust stochastic approximation™)
framework following Nemirovski et al. [2009]. Here

EY2[10, - 07 )1%,] = O(1/v/n).

Advantages: step size « and bounds independent of conditioning;

> Li et al. [2023b]: Lower bounds on the MSE for policy evaluation
problems and optimal MSE for the variance-reduced TD-learning
algorithm (based on control variates);

> Li et al. [2023a]: HPB and sample complexity for TD(0) and off-policy
counterpart (TDC). Step size « scales with the minimal eigenvalue of
the feature matrix and covers i.i.d. setting only;

> Patil et al. [2023]: second moment for TD(0) and high-probability
bounds for projected TD (0) iterates. HPBs require a projection on a
ball - radius depends on [|0*]|.
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Matrix stability in TD

Checking matrix stability for TD learning

Let {6k }ken be a sequence of TD(0) updates under TD1 and TD2. Then
this update scheme satisfies the stability assumption A2(p) with
(1 B ’y))\min 1- Y

a:f, %p:]., apyw:%. (21)
Discussion: Previous results — Huang et al. [2021] and Durmus et al.
[2021] - yield an instance-dependent stability threshold

(1 - 'Y)Amin
= ¥/ Amin 22
Qp,o0 op (22)

for some absolute constant ¢y > 0. The same order of magnitude of the
step size is predicted in [Li et al., 2023a, Theorem 1].
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Stability of matrix product

Theorem: Matrix stability for TD learning

Let {0k }ken be a sequence of TD(0) updates under TD1 and TD2.
Then, forany ne N, 1 <j < n, p> 2, step size a € (0, %28;7}’ it holds
P-a.s. that

BR[| (80 — 0%)[1P) < (1 — (1 — ¥)Amin/2)" 160 — 07]] -
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TD learning: Proof of matrix stability

Result from Patil et al. [2023]

Let A = ¢(s){w(s) — v(s')} T be a random TD update matrix defined
in (4), where s’ ~ P™(+|s), and s ~ p. Then, for any p € N and
a € (0;272], it holds that

E[(I—aA)T(I1—aA)] = 1—(1/2)a(l — )%, .
Proof: With the definition of A, we get that
A+AT =p(s){p(s) —v0(s)} T +{e(s) —ve(s) }e(s)
T

(
= 2¢(s)e(s)" = v{e(s)e(s") " +o(s)els) "}
= (2=)e(s)e(s) " —ve(s)e(s) .
Hence, E[A + AT] = 2(1 — 4)X,,. Similarly, one can show by direct

computations that
E[ATA] < (1+7)%%,.
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TD learning: Proof of matrix stability

Lemma
Let B=B" >0, B € R?*? be a symmetric positive definite matrix and
u € RY be some vector. Then, for any s € N and p = 2%, it holds that

(uTBu)p < ||ul*P2u" BPu.

Lemma
For random matrix A defined i in (4)and B=A+AT —aATA, for
p € N and step size a € (0, (1+ 2] it holds that

E[B] = (1-v)x,, E[BP]=<4PYL,.
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TD learning: Proof of matrix stability

Lemma: key lemma for p-th moment stability

Let A = ¢(s){p(s) —vo(s')} " be a random TD update matrix defined
in (4), where s’ ~ P™(+|s), and s ~ p. Then, for any p € N and step size

1—v
€ (0, —],
@€l 64p
it holds that

E[{(1-ah)T(1-aA)}?] <1-(1/2)ap(1 —)T,.
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TD learning: 2nd moment bound

Theorem 2: second moment error for tail-averaging
Let {0k }ken be a sequence of TD(0) updates generated by (3) under

TD1 and TD2. Then for any n > 2, a € (0; (1 — 7)/256], and 6, € RY,

it holds that
_ 0z, +1 Va
E1/2 en _9* 2 5 H @
d I.] VAminn(1 — ) ( (1- W)Amin>
s, 1
\/a(l *7)3/2/\min”
ol — >\min n *
+ Ao A m) (1 — STy 2y, g

where fi(a, Amin, 1) is a polynomial function in 1/, 1/Amin, n.
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TD sample complexity: 2-nd moment

Sample complexity

Under assumptions of Theorem 2, E[||§, — *[|3 ] < & requires where
R1/e) = Tt

» Set o ~ 1 — 7, sample complexity (agrees with Patil et al. [2023]):

* (|12
A 1 ) ll60—6" | 16"z,
O<(1,,Y)2m g ==+ @Topw,= :
————

suboptimal by a factor A;i}‘

> Set a >~ (1 —7)Amin, sample complexity (agrees with Li et al. [2023a]):

> 1 100 — 0*I| | 1+lle%1
O((l-w)w s e )

min

suboptimal by a factor An:\rl|
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TD learning: HPB

Theorem 3: high-probability error bounds for tail-averaging
Fix e > 0, 6 > 0, assume TD1 and TD2. Let {0 }xen be a sequence of
TD(0) updates generated by (3). Then for any n > 2, and step size
1—7v ]

@ @ 128log (n/9)

to achieve error ||(6, — 0*)|lz, < e with probability at least 1 — 4 it takes

(07115, +1) log (1/6) alo —0*
O( AP n? (1 u (1&3%?) + Ro(1/2,0) + =y log 125 ”) :
TD(0) updates.

Optimizing the bound w.r.t. « yields the same dilemma as for the 2-nd
moment.
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Asymptotic covariance matrix
» Introduce the TD(0) covariance matrix
) = E[((6(sk) = 76(s1)) 0" — r) *é(si)é(s) T

» Covariance z,E.TD) aligns with the CLT for Polyak-Ruppert averaged
iterates Fort [2015];

» Define the transformed covariance matrix
_ —
ngpt) — 23.0/2A lng )A TZ:.O/27
corresponding to Z}/zﬁfls.

Upper bounding the optimal covariance matrix

Under our assumptions,

* |12
Trston < 171E, 1
c - (1 - 7)2/\min
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Tighter 2-nd moment bound

Refined Theorem 2

Let {0k }ken be a sequence of TD(0) updates generated by (3) under
TD1 and TD2. Then for any n > 2, a € (0; (1 —v)/256], and 6y € R,

it holds that
EY2[19. — 0|2 1< Trzgopt) 1+ ”0*”):@ 1 Ja
on =02 S =+ T A \ Vam YV

+ (@, Aminy 1) (1 = (1 = 7)min) " %100 — 6",
(23)

where f(a, Amin, 1) is a polynomial in 1/a, 1/Amin, n.
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Markovian sampling: assumptions

Trajectory-wise evaluation (instead of TD1):

Assumption TD3

Agent's learning is based on tuples (sk, ak, Sk+1) which are generated
sequentially following the generative model ax ~ 7(+|sk),
Sk+1 ~ P[5k, a)-

The assumption TD3 yields that the sequence {sk }ken is @ Markov chain
with the Markov kernel P, (-|s).

Assumption TD4

The Markov kernel P, admits a unique invariant distribution p and is
uniformly geometrically ergodic, that is, there exist tyix € N, such that
for any s € S and k € N it holds that

[PRCls) = pll gy < (/)T 5T (24)

One can consider the generalisations of TD4 coming at a price of more
technical work.
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TD with Markovian sampling

Parameters : features ¢(-) : S — R, step size «, number of iterations
n, behavioral policy 7, time window g € N*
Compute number of blocks m = |n/q]
for k=0,...,n:do
Receive tuple (sk, ax, s) following TD4
if k =gqj,j € N then
Compute update

6; =61 — a(Akdj1 —by)

based on Ay, by from (4)
else

| skip current learning tuple
end

end

Return: tail-averaged estimate 0, = (2/m) D hem/241 0y

value function estimate V7' (s) = ©"(s)0, ldea goes back to Nagaraj
et al. [2020], Patil et al. [2023].
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Markovian sampling schemes

Refined Theorem 2

Let {0k }ken be a sequence of TD(0) updates generated by (3) under
TD2, TD3, and TD4, and 6, be a tail-averaged estimate generated by
Algorithm ?? with g = tiix. Then, for the step size and sample size

satisfy
B 1—~ o log (1/0) v 2tmix log(4/0)
~ 128log(n/d)’ T (1—#)? log 4
in order to achieve [|0, — 0*||s, < e with probability at least 1 — 39, it
requires
G (OB DR 0/0) | i tog? (1/0) 1o Ioo—0"]
P =7

observations.
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Markovian sampling schemes

v

Proof is based on Berbee's coupling lemma Berbee [1979];
Bounds scale by a factor tyix compared to the i.i.d. setting;

Extra \/log1/4 factor in the leading term as an artefact of applying
Berbee's construction;

Using Berbee's construction potentially can be avoided, but requires to
adjust the step size o ~ tr;ii. Hence, the knowledge of tix is still
required.
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Conclusion and open questions

Adaptive version

Is it possible to come up with a version of Algorithm 1, which does not
require to know tmi, in advance?

Optimal bounds for instance-independent step size

Is it possible to remove the extra /\r;iln in the analysis of Theorem 2 for

the step size « independent of Apin? Or construct a lower bound showing
that this suboptimality is not an artefact of the proof.
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