Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation

Eric Moulines

Ecole polytechnique

June 17, 2024

Introduction

Stochastic Approximation

 \blacktriangleright Consider the problem of finding $\theta^{\star} \in \mathbb{R}^d$ such that

$$f(\theta^{\star})=0.$$

▶ Only "noisy" samples of $f(\theta)$ are revealed, e.g., $F(\theta; Z_n)$, such that

$$\mathbb{E}[F(\theta; Z_n)] = f(\theta) \quad \text{or, at least,} \quad \lim_{n \to +\infty} \mathbb{E}[F(\theta; Z_n)] = f(\theta).$$

Such algorithms are called *stochastic approximation (SA)* schemes to a fixed point equation:

$$\theta_{n+1} = \theta_n + \alpha_n F(\theta_n; Z_n).$$

Robbins and Monro [1951]

Compare with the standard 'Euler scheme' for numerically approximating a trajectory of the o.d.e. $\dot{\theta}(t) = f(\theta(t))$

$$\theta_{t+1} = \theta_t + \alpha f(\theta_t)$$

 The simplest instance of the problem corresponds to the Linear Stochastic Approximation (LSA)

Linear Stochastic Approximation

• Given $\bar{\mathbf{A}} \in \mathbb{R}^{d \times d}$ and $\bar{\mathbf{b}} \in \mathbb{R}^d$, we aim at finding $\theta^* \in \mathbb{R}^d$, which is a solution of

$$\mathbf{\bar{A}} \mathbf{\theta}^{\star} = \mathbf{\bar{b}}$$
 .

Our analysis is based on noisy observations {(A(Z_n), b(Z_n))}_{n∈ℕ}. Here A : Z → ℝ^{d×d}, b : Z → ℝ^d are measurable mappings.

LSA algorithm

For a sequence of step sizes $\{\alpha_k\}$, burn-in period $n_0 \in \mathbb{N}$, and initialization θ_0 , consider the sequences of estimates $\{\theta_n\}_{n \in \mathbb{N}}, \{\overline{\theta}_{n_0,n}\}_{n \geq n_0+1}$ given by

$$\theta_{k} = \theta_{k-1} - \alpha_{k} \{ \mathbf{A}(Z_{k}) \theta_{k-1} - \mathbf{b}(Z_{k}) \}, \quad k \ge 1, \\ \bar{\theta}_{n_{0},n} = (n - n_{0})^{-1} \sum_{k=n_{0}}^{n-1} \theta_{k}, \quad n \ge n_{0} + 1.$$
 (1)

Linear Stochastic Approximation

I.I.D. Noise

Sequence $\{Z_k\}_{k\in\mathbb{N}}$ is an i.i.d. sequence taking values in a state space (Z, \mathcal{Z}) with distribution π satisfying $\mathbb{E}[\mathbf{A}(Z_1)] = \mathbf{\bar{A}}$ and $\mathbb{E}[\mathbf{b}(Z_1)] = \mathbf{\bar{b}}$;

Markovian noise

Sequence $\{Z_k\}_{k\in\mathbb{N}}$ is a Z-valued ergodic Markov chain with unique invariant distribution π , such that

 $\lim_{n\to+\infty}\mathbb{E}[\mathbf{A}(Z_n)]=\bar{\mathbf{A}}$

and

$$\lim_{n\to+\infty}\mathbb{E}[\mathbf{b}(Z_n)]=\bar{\mathbf{b}}$$

We write \mathbf{A}_k instead of $\mathbf{A}(Z_k)$, and \mathbf{b}_k instead of $\mathbf{b}(Z_k)$, respectively.

RL: general paradigm

Applications: TD learning

- Consider a problem of estimating the policy ν in a discounted MDP given by a tuple (S, A, P, r, γ);
- S and A are state and action spaces, assume that they are complete metric spaces equipped with Borel σ-algebras B(S) and B(A), respectively;
- $\gamma \in (0, 1)$ is a discount factor;
- \mathcal{P} stands for the transition kernel $\mathcal{P}(\cdot|s, a)$;
- reward function $r : S \times A \rightarrow [0, 1]$ deterministic;
- policy $\nu(\cdot|s)$ distribution over the action space \mathcal{A} ;

Applications: TD learning

We aim to estimate the agent's value function

$$\mathcal{W}^{\nu}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r(s_{k}, a_{k}) | s_{0} = s\right],$$

where $a_k \sim \nu(\cdot|s_k)$, and $s_{k+1} \sim \mathcal{P}(\cdot|s_k, a_k)$;

1-step transition kernel:

$$\mathcal{P}_{\nu}(B|s) = \int_{\mathcal{A}} \mathcal{P}(B|s, a) \nu(\mathrm{d} a|s), \quad B \in \mathcal{B}(\mathcal{S});$$
(2)

• Linear functional approximation of the true value function $V^{\nu}(s)$:

$$V^
u_ heta(s) = arphi^ op(s) heta\,,$$

where $s \in \mathcal{S}$, $\theta \in \mathbb{R}^d$, $\varphi : \mathcal{S} \to \mathbb{R}^d$, d - feature dimension

TD learning as LSA problem

- The problem of estimating $V^{\nu}(s)$ reduces to the problem of estimating $\theta \in \mathbb{R}^d$ in $V^{\nu}_{\theta}(s)$;
- Set the *k*-th step randomness as $Z_k = (s_k, s'_k)$;
- The corresponding LSA writes as:

$$\theta_k = \theta_{k-1} - \alpha_k (\mathbf{A}_k \theta_{k-1} - \mathbf{b}_k), \qquad (3)$$

where the system matrix and r.h.s. are given by

$$\mathbf{A}_{k} = \phi(\mathbf{s}_{k}) \{ \phi(\mathbf{s}_{k}) - \gamma \phi(\mathbf{s}_{k}') \}^{\top}, \ \mathbf{b}_{k} = \phi(\mathbf{s}_{k}) r(\mathbf{s}_{k}, \mathbf{a}_{k}).$$
(4)

• Deterministic system writes as $\mathbf{\bar{A}}\theta^{\star} = \mathbf{\bar{b}}$, where

$$\bar{\mathbf{A}} = \mathbb{E}_{s \sim \mu, s' \sim \mathcal{P}_{\nu}(\cdot|s)} [\phi(s) \{\phi(s) - \gamma \phi(s')\}^{\top}]$$

$$\bar{\mathbf{b}} = \mathbb{E}_{s \sim \mu, a \sim \pi(\cdot|s)} [\phi(s) r(s, a)].$$

Finite-time high-probability bounds for the Polyak-Ruppert averaged LSA iterates

Linear Stochastic Approximation

• Let $\{Z_k\}_{k\in\mathbb{N}}$ be an i.i.d.sequence and consider the recurrence

$$\theta_k = \theta_{k-1} - \alpha_k \{ \mathbf{A}(Z_k) \theta_{k-1} - \mathbf{b}(Z_k) \}$$
(5)

Set

$$\tilde{\mathbf{A}}(z) = \mathbf{A}(z) - \bar{\mathbf{A}}, \quad \tilde{\mathbf{b}}(z) = \mathbf{b}(z) - \bar{\mathbf{b}},$$

and introduce

$$\varepsilon(z) = \mathbf{A}(z)\theta^{\star} - \mathbf{b}(z), \quad \Sigma_{\varepsilon} = \mathbb{E}[\varepsilon(Z)\varepsilon(Z)^{\top}].$$

Assumption A1

(i) $C_A = \sup_{z \in Z} \|\mathbf{A}(z)\| \vee \sup_{z \in Z} \|\mathbf{\tilde{A}}(z)\| < \infty$ and the matrix $-\mathbf{\bar{A}}$ is Hurwitz

(ii)
$$\int_{\mathsf{Z}} \mathbf{A}(z) d\pi(z) = \bar{\mathbf{A}}$$
 and $\int_{\mathsf{Z}} \mathbf{b}(z) d\pi(z) = \bar{\mathbf{b}}$. Moreover, $\|\varepsilon\|_{\infty} = \sup_{z \in \mathsf{Z}} \|\varepsilon(z)\| < +\infty$.

Why averaging: CLT view

Step size assumptions

Suppose that the sequence α_k satisfies one of the following assumptions:

(i)
$$\sum_{k=1}^{\infty} \alpha_k = \infty$$
, $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$, $\log(\alpha_{k-1}/\alpha_k) = o(\alpha_k)$;
(ii) $\sum_{k=1}^{\infty} \alpha_k = \infty$, $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$, $\log(\alpha_{k-1}/\alpha_k) \sim \alpha_k/\alpha_*$ for

$$\alpha_* \geq 1/(2L)$$
, where $L = \min \operatorname{Re}(\lambda_i(\bar{\mathbf{A}}))$.

Examples: $\alpha_k = c_0/k^{\gamma}$, $\gamma \in (0.5; 1)$ satisfies (i); $\alpha_k = \alpha_*/k$ satisfies (ii).

CLT

Under assumption A1 it holds that

(i)
$$\alpha_k^{-1/2}(\theta_k - \theta^*) \xrightarrow{W} \mathcal{N}(0, \Sigma_1)$$
 if α_k satisfy (i);
(ii) $\alpha_k^{-1/2}(\theta_k - \theta^*) \xrightarrow{W} \mathcal{N}(0, \Sigma_2)$ if α_k satisfy (ii).

Why averaging: CLT view

Covariances Σ_1 and Σ_2 are given by

$$-\Sigma_1 \bar{\mathbf{A}}^\top - \bar{\mathbf{A}} \Sigma_1 = -\Sigma_{\varepsilon} \tag{6}$$

$$\Sigma_2(\mathbf{I} - 2\alpha_* \bar{\mathbf{A}}^\top) + (\mathbf{I} - 2\alpha_* \bar{\mathbf{A}})\Sigma_2 = -2\alpha_* \Sigma_{\varepsilon}.$$
(7)

Suggests that $\alpha_k = \alpha_\star/k$ is optimal. However, such a choice of step size is not implementable.

Optimal preconditioner choice Consider now the modified LSA dynamics

$$\tilde{\theta}_{k} = \tilde{\theta}_{k-1} - \alpha_{k} \Gamma(\mathbf{A}_{k} \tilde{\theta}_{k-1} - \mathbf{b}_{k}),$$

where $\alpha_k = \alpha_\star/k$ and Γ - fixed matrix. We know that

$$\alpha_k^{-1/2}(\theta_n - \theta^*) \xrightarrow{W} \mathcal{N}(0, \Sigma_2(\Gamma)).$$

Can we find Γ^* , such that for any $u \in \mathbb{R}^d$:

 $u^{\top}\Sigma_{2}(\Gamma^{\star})u \leq u^{\top}\Sigma_{2}(\Gamma)u$

Optimality of Polyak-Ruppert

Optimal preconditioning Optimal choice of Γ^* is given by

$$\Gamma^{\star} = \alpha_*^{-1} \bar{\mathbf{A}}^{-1} \,,$$

corresponding to the covariance matrix

$$\Sigma_2(\Gamma^{\star}) = \alpha_*^{-1} \bar{\mathbf{A}}^{-1} \Sigma_{\varepsilon} \bar{\mathbf{A}}^{-\top}.$$

Under A1 and (i)-th choice of step size, the Polyak-Ruppert Polyak and Juditsky [1992] averaging performs almost similarly:

$$\sqrt{n}(\bar{\theta}_n - \theta^{\star}) \xrightarrow{W} \mathcal{N}(0, \bar{\mathbf{A}}^{-1} \Sigma_{\varepsilon} \bar{\mathbf{A}}^{-\top}).$$

Extensions to the Markov setting are given in Fort [2015].

Boris Polyak (1935-2023)

Problem setting

- Goal: sharp bounds for finite-sample n and the dimension of the parameter space d;
- Constant step size α depending on the computational budget *n*;
- ► For least squares regression problems, where $\mathbf{A}(Z_n)$ is a symmetric matrix almost surely, Bach and Moulines [2013] showed that for a constant step size, the MSE of $\bar{\theta}_{n_0,n} \theta^*$ converges as $\mathcal{O}(1/n)$;
- ► General LSA: Lakshminarayanan and Szepesvari [2018] showed a rate of convergence of the MSE O(1/n).
- ▶ Mou et al. [2020] provided a non-asymptotic high-probability bounds for LSA-PR with independent observations. However, the proof relies on concentration bounds from Markov chain - under Log-Sobolev inequalities- $\{(\mathbf{A}(Z_n), \mathbf{b}(Z_n))\}_{n \in \mathbb{N}}$ - clear gaps in the proof.

Non-asymptotic LSA expansions

• Denote by $\Gamma_{1:n}^{(\alpha)}$ the product of random matrices

$$\Gamma_{m:n}^{(\alpha)} = \prod_{i=m}^{n} (I - \alpha \mathbf{A}(Z_i)), \quad m, n \in \mathbb{N}^*, \quad m \leq n.$$

The recursion θ_n = θ_{n-1} − α_n{A(Z_n)θ_{n-1} − b(Z_n)} may be decomposed as follows

$$\theta_n - \theta^\star = \tilde{\theta}_n^{(\mathrm{tr})} + \tilde{\theta}_n^{(\mathrm{fl})},$$

where $\tilde{\theta}_n^{(\mathrm{tr})}$ is the transient term and $\tilde{\theta}_n^{(\mathrm{fl})}$ is a fluctuation term

$$\tilde{\theta}_n^{(\mathrm{tr})} = \Gamma_{1:n}^{(\alpha)} \{\theta_0 - \theta^\star\}, \quad \tilde{\theta}_n^{(\mathrm{fl})} = -\alpha \sum_{j=1}^n \Gamma_{j+1:n}^{(\alpha)} \varepsilon(Z_j).$$

• A cornerstone of the theoretical analysis is a tight bound for $\mathbb{E}^{1/p}[\|\Gamma_{m,n}^{(\alpha)}\|^p]$ under some assumptions on the matrix $\bar{\mathbf{A}}$.

Exponential stability of random matrix products

Key technical element:

Exponential stability of $\{\mathbf{A}(Z_i)\}_{i\in\mathbb{N}}$ (see Guo and Ljung [1995], Ljung [2002])

For $q \ge 1$, there exist $a_q, C_q > 0$ and $\alpha_{\infty,q} < \infty$ such that, for any step size $\alpha \le \alpha_{\infty,q}$, $m, n \in \mathbb{N}$, m < n,

$$\mathbb{E}[\|\mathsf{\Gamma}_{m:n}^{(\alpha)}\|^q] \leq \mathsf{C}_q \exp\left(-\mathsf{a}_q \alpha(n-m)\right) \,.$$

- Intuitively, exponential stability means that Γ^(α)_{m:n} ≈ (I −αĀ)^{n−m}, for m, n ∈ N, m ≤ n;
- We handle both the setting of i.i.d.and Markov dependency in the sequence {Z_i}_{i∈ℕ};

Lyapunov equation

Proposition

Assume that $-\bar{\mathbf{A}}$ is Hurwitz. There exists a unique symmetric positive definite matrix Q satisfying the Lyapunov equation $\bar{\mathbf{A}}^{\top}Q + Q\bar{\mathbf{A}} = \mathbf{I}$. In addition, setting

$$a = \|Q\|^{-1}/2$$
, and $\alpha_{\infty} = (1/2)\|\bar{\mathbf{A}}\|_{Q}^{-2}\|Q\|^{-1} \wedge \|Q\|$,

for any $\alpha \in [0, \alpha_{\infty}]$, it holds that

$$\|\mathbf{I} - \alpha \bar{\mathbf{A}}\|_Q^2 \le 1 - \mathbf{a}\alpha \,,$$

and $\alpha a \leq 1/2$.

Why *Q*-norm: $||-\alpha \bar{\mathbf{A}}|$ is a strict contraction in $||\cdot||_Q$, but not necessarily in $||\cdot||$.

Exponential stability under A1

Theorem

Assume IND and A1. For any $p, q \in \mathbb{N}$, $2 \le p \le q$, $\alpha \in (0, \alpha_{q,\infty}]$ and $n \in \mathbb{N}$, it holds

$$\mathbb{E}^{1/p}\left[\|\mathsf{\Gamma}_{1:n}^{(\alpha)}\|^p\right] \leq \sqrt{\kappa_\mathsf{Q}} d^{1/q} (1-\mathsf{a}\alpha+(q-1)b_Q^2\alpha^2)^{n/2}$$

where

$$egin{aligned} &\kappa_{\mathbf{Q}} = \lambda_{\max}(Q)/\lambda_{\min}(Q)\,, \quad b_Q = \sqrt{\kappa_{\mathbf{Q}}}\, \mathbf{C}_A\,, \ &lpha_{q,\infty} = lpha_\infty \wedge \mathbf{c}_\mathbf{A}\,/q\,, \quad \mathbf{c}_\mathbf{A} = \mathbf{a}/\{2b_Q^2\}\,. \end{aligned}$$

- Note that the bound above introduces an interplay between step size α and maximal controlled moment q;
- We show that under only A1, for fixed α > 0, lim_{n→+∞} E[||θ_n − θ^{*}||^p] = ∞ for p ≥ p̄(α); cannot expect exponential tytpe HPB for ||θ_n − θ^{*}|| are not possible (see Durmus et al. [2021])

Exponential stability: sketch of the proof

- ▶ For $B \in \mathbb{R}^{d \times d}$ let $\sigma_{\ell}(B), \ell = 1, ..., d$ be its singular values;
- For $p \ge 1$, denote its Schatten *p*-norm

$$||B||_p = \{\sum_{\ell=1}^d \sigma_\ell^p(B)\}^{1/p}$$

For $p, q \ge 1$ and random matrix X, we write $||X||_{p,q} = \{\mathbb{E}[||X||_p^q]\}^{1/q}$.

Theorem (Subquadratic averages - (Huang et al., 2020)) Consider random matrices of the same sizes that satisfy $\mathbb{E}[Y|X] = 0$, \mathbb{P} -a.s. Then, for $2 \le q \le p$,

$$\|X + Y\|_{p,q}^2 \le \|X\|_{p,q}^2 + C_p \|Y\|_{p,q}^2$$

The constant $C_p = p - 1$ is the best possible.

Proof sketch: re-write a product of matrices

$$\Gamma_{1:n}^{(\alpha)} = (\mathbf{I} - \alpha \bar{\mathbf{A}}) \Gamma_{1:n-1}^{(\alpha)} - \alpha (\mathbf{A}(Z_n) - \bar{\mathbf{A}}) \Gamma_{1:n-1}^{(\alpha)},$$

then apply the subquadratic inequality above, switch to Q-norm.

Linear Stochastic Approximation

▶ Recall that the error vector $\theta_n - \theta^*$ may be decomposed as

$$\tilde{\theta}_n^{(\mathrm{tr})} = \Gamma_{1:n}^{(\alpha)} \{ \theta_0 - \theta^\star \} , \quad \tilde{\theta}_n^{(\mathrm{fl})} = -\alpha \sum_{j=1}^n \Gamma_{j+1:n}^{(\alpha)} \varepsilon(Z_j) .$$

- ► To bound $\mathbb{E}^{1/p}[\|\tilde{\theta}_n^{(tr)}\|^p]$, we simply apply the bound on the matrix product.
- How to proceed with $\mathbb{E}^{1/p}[\|\tilde{\theta}_n^{(\mathrm{fl})}\|^p]$?

Sketch of the proof: fluctuation term

For any $n \in \mathbb{N}$:

$$\tilde{\theta}_{n}^{(fl)} = J_{n}^{(0)} + H_{n}^{(0)}, \qquad (8)$$

where the latter terms are defined by the following pair of recursions

$$J_{n}^{(0)} = (\mathbf{I} - \alpha \bar{\mathbf{A}}) J_{n-1}^{(0)} - \alpha \varepsilon(Z_{n}), \qquad J_{0}^{(0)} = 0, H_{n}^{(0)} = (\mathbf{I} - \alpha \mathbf{A}(Z_{n})) H_{n-1}^{(0)} - \alpha \tilde{\mathbf{A}}(Z_{n}) J_{n-1}^{(0)}, \quad H_{0}^{(0)} = 0.$$
(9)

Solving the recursion above,

$$J_n^{(0)} = -\alpha \sum_{j=1}^n \left(\mathbf{I} - \alpha \bar{\mathbf{A}} \right)^{n-j+1} \varepsilon(Z_j), \quad H_n^{(0)} = -\alpha \sum_{j=1}^n \Gamma_{j+1:n+1}^{(\alpha)} \tilde{\mathbf{A}}(Z_j) J_{j-1}^{(0)}.$$

- The term $J_n^{(0)}$ is the leading one w.r.t. α , and is a linear statistics of $\{\varepsilon(Z_j)\}_{j\geq 0}$;
- Rough bounds from (9):

$$\mathbb{E}^{1/p}[\|J_n^{(0)}\|^p] \lesssim \sqrt{\alpha} \,, \quad \mathbb{E}^{1/p}[\|H_n^{(0)}\|^p] \lesssim \sqrt{\alpha} \,.$$

Sketch of the proof: fluctuation term

The same decomposition can be applied to $H_n^{(0)}$ to obtain higher order expansions:

$$H_n^{(0)} = \sum_{\ell=1}^{L} J_n^{(\ell)} + H_n^{(L)}, \qquad (10)$$

where for any $\ell \in \{1, \dots, L\}$,

$$J_{n}^{(\ell)} = (\mathbf{I} - \alpha \bar{\mathbf{A}}) J_{n-1}^{(\ell)} - \alpha \tilde{\mathbf{A}}(Z_{n}) J_{n-1}^{(\ell-1)}, \qquad J_{0}^{(\ell)} = 0,$$

$$H_{n}^{(L)} = (\mathbf{I} - \alpha \mathbf{A}(Z_{n})) H_{n-1}^{(L)} - \alpha \tilde{\mathbf{A}}(Z_{n}) J_{n-1}^{(L)}, \qquad H_{0}^{(L)} = 0.$$
(11)

The choice of parameter *L* controls the desired approximation accuracy:

$$\mathbb{E}^{1/p}[\|J_{n}^{(\ell)}\|^{p}] \lesssim \alpha^{(\ell+1)/2}, \quad \mathbb{E}^{1/p}[\|H_{n}^{(L)}\|^{p}] \lesssim \alpha^{(L+1)/2}$$

Combining (8) and (10), we obtain the decomposition which is the cornerstone of our analysis:

$$\tilde{\theta}_{n}^{(\text{fl})} = \sum_{\ell=0}^{L} J_{n}^{(\ell)} + H_{n}^{(L)}.$$
(12)

p-th moment bound for the LSA error $\|\theta_n - \theta^\star\|$

Theorem

Assume IND and A1. Then, for any $p, q \in \mathbb{N}$, $2 \leq p \leq q$, $\alpha \in (0, \alpha_{q,\infty}]$, $n \in \mathbb{N}$, and $\theta_0 \in \mathbb{R}^d$ it holds

 $\mathbb{E}^{1/p}\left[\|\theta_n - \theta^\star\|^p\right] \le d^{1/q} \kappa_{\mathsf{Q}}^{1/2} \left(1 - \alpha a/4\right)^n \|\theta_0 - \theta^\star\| + d^{1/q} \mathsf{D}_2 \sqrt{\alpha a p} \|\varepsilon\|_{\infty} \,,$

where D_2 has closed-form expression.

Polyak-Ruppert averaging

$$\bar{\theta}_{n_0,n} = (n - n_0)^{-1} \sum_{k=n_0}^{n-1} \theta_k, \ n \ge n_0 + 1$$

Key decomposition

For any $n, n_0 \in \mathbb{N}$, $n_0 \leq n$,

$$\bar{\mathbf{A}}\left(\bar{\theta}_{n_0,n}-\theta^{\star}\right) = \frac{\theta_{n_0}-\theta_n}{\alpha(n-n_0)} - \frac{1}{n-n_0}\sum_{t=n_0}^{n-1}e\left(\theta_t, Z_{t+1}\right),$$
$$e(\theta, z) = \tilde{\mathbf{A}}(z)\theta - \tilde{\mathbf{b}}(z) = \varepsilon(z) + \tilde{\mathbf{A}}(z)(\theta-\theta^{\star}).$$

Using (12), we may further decompose

$$\sum_{t=n_0}^{n-1} e(\theta_t, Z_{t+1}) = E_{n_0,n}^{tr} + E_{n_0,n}^{fl},$$

where we have set

$$\begin{split} E_{n_0,n}^{\text{tr}} &= \sum_{t=n_0}^{n-1} \tilde{\mathbf{A}}(Z_{t+1}) \Gamma_{1:t}^{(\alpha)} \{\theta_0 - \theta^{\star}\}\,, \\ E_{n_0,n}^{\text{fl}} &= \sum_{t=n_0}^{n-1} \varepsilon(Z_{t+1}) + \sum_{\ell=0}^{L} \sum_{t=n_0}^{n-1} \tilde{\mathbf{A}}(Z_{t+1}) J_t^{(\ell)} + \sum_{t=n_0}^{n-1} \tilde{\mathbf{A}}(Z_{t+1}) H_t^{(L)}\,. \end{split}$$

Polyak-Ruppert averaging

Theorem

Assume IND and A1. Then, for any $p \ge 2$, $n \ge 2$, burn-in period $n_0 = n/2$, step size

$$\alpha(n,d,p) \asymp \frac{1}{(1+\log d)pn^{1/2}},$$
(13)

and an initial parameter $\theta_0 \in \mathbb{R}^d$, it holds that

$$\mathbb{E}^{1/p} \left[\|\bar{\mathbf{A}} \left(\bar{\theta}_{n_0,n} - \theta^* \right) \|^p \right] \lesssim_d \frac{\{ \operatorname{Tr} \Sigma_{\varepsilon} \}^{1/2} p^{1/2}}{n^{1/2}} + \|\varepsilon\|_{\infty} \left(\frac{p}{n^{3/4}} + \frac{p^2}{n} \right) \\ + p \|\theta_0 - \theta^*\| \exp\left\{ -\frac{(\alpha_{\infty} \wedge \mathbf{c}_{\mathbf{A}})\sqrt{n}}{8p(1 + \log d)} \right\}, \quad (14)$$

where $\Sigma_{\varepsilon} = \int_{\mathsf{Z}} \varepsilon(z) \varepsilon(z)^{\top} \mathrm{d}\pi(z)$.

The leading term is the *p*-moment of the Gaussian appearing in the CLT !

Markovian Setting

Markovian setting

For any $A \in \mathcal{Z}$, $\mathbb{P}_{\xi}(Z_k \in A | Z_{k-1}) = Q(Z_{k-1}, A)$, \mathbb{P}_{ξ} -a.s.

Assumption UGE

The Markov kernel Q is Uniformly Geometrically Ergodic, i.e., there exists $t_{mix} \in \mathbb{N}^*$ such that for all $k \in \mathbb{N}^*$,

$$\Delta(\mathsf{Q}^k) = \sup_{z,z'\in\mathsf{Z}} (1/2) \|\mathsf{Q}^k(z,\cdot) - \mathsf{Q}^k(z',\cdot)\|_{\mathsf{TV}} \le (1/4)^{\lfloor k/t_{\mathsf{mix}}\rfloor} \,. \tag{15}$$

Here, t_{mix} is the mixing time of Q.

- UGE implies that π is the unique invariant distribution of Q;
- ▶ UGE is equivalent to the uniform minorization condition, i.e., there exists a probability measure ν such that for all $z \in Z$, $A \in Z$,

$$\mathsf{Q}^{t_{\mathrm{mix}}}(z,\mathsf{A}) \geq (1/4)\nu(\mathsf{A})$$
.

Exponential stability: Markovian case

Define the quantities

$$\alpha_{q,\infty}^{(\mathrm{M})} = \alpha_{\infty}^{(\mathrm{M})} \wedge \mathsf{c}_{\mathsf{A}} / q \,, \tag{16}$$

where $\alpha_{\infty}^{(M)}$ depends upon constants from A1 and κ_{Q} . Then:

Theorem

Assume UGE and A1. Then, for any $2 \le p \le q$, $\alpha \in (0, \alpha_{\infty}^{(M)} t_{\text{mix}}^{-1}]$, $n \in \mathbb{N}$, and probability distribution ξ on (\mathbb{Z}, \mathbb{Z}) , it holds

$$\mathbb{E}_{\xi}^{1/p}\left[\|\Gamma_{1:n}^{(\alpha)}\|^{p}\right] \leq \sqrt{\kappa_{\mathsf{Q}}} \mathrm{e}^{2} d^{1/q} \exp\{-n\alpha a/6 + n(q-1)\alpha^{2} \mathsf{C}_{\mathsf{\Gamma}}\}, \quad (17)$$

where $\alpha_{\infty}^{(M)}$ is some constant. Moreover, for $\alpha \in (0, \alpha_{q,\infty}^{(M)} t_{mix}^{-1}]$, it holds

$$\mathbb{E}_{\xi}^{1/p} \left[\| \mathsf{\Gamma}_{1:n}^{(\alpha)} \|^p \right] \le \sqrt{\kappa_{\mathsf{Q}}} \mathrm{e}^2 d^{1/q} \mathrm{e}^{-a\alpha n/12} \,. \tag{18}$$

Covariance matrix

Noise covariance matrix

Under A1 and UGE, we define the matrix $\Sigma_{\varepsilon}^{(\mathrm{M})}$ as

$$\Sigma_{\varepsilon}^{(\mathrm{M})} = \mathbb{E}_{\pi}[\varepsilon(Z_0)\varepsilon(Z_0)^{\top}] + 2\sum_{\ell=0}^{\infty} \mathbb{E}_{\pi}[\varepsilon(Z_0)\varepsilon(Z_{\ell})^{\top}].$$
(19)

- For any initial probability measure ξ on (Z, Z), n^{-1/2} Σⁿ⁻¹_{t=0} ε(Z_t) converges in distribution to N(0, Σ^(M)_ε);
- We expect that this is also the leading term in the bound for $\mathbb{E}_{\xi}^{1/p} \left[\| \bar{\mathbf{A}} \left(\bar{\theta}_n \theta^* \right) \|^p \right]$

p-th moment bound for the LSA error $\|\theta_n - \theta^\star\|$

Theorem

Assume A1 and UGE. Let $2 \le p \le q/2$ and $\alpha_{q,\infty}^{(M)}$ be defined in (16). Then, for any $\alpha \in (0, \alpha_{q,\infty}^{(M)} t_{\text{mix}}^{-1}]$, $\theta_0 \in \mathbb{R}^d$, initial probability measure ξ on (\mathbb{Z}, \mathbb{Z}) , and $n \in \mathbb{N}$, it holds $\mathbb{E}_{\xi}^{1/p} [\|\theta_n - \theta^{\star}\|^p] \le \sqrt{\kappa_Q} e^2 d^{1/q} e^{-\alpha an/12} \|\theta_0 - \theta^{\star}\| + \mathsf{D}_2^{(M)} d^{1/q} \sqrt{\alpha apt_{\text{mix}}} \|\varepsilon\|_{\infty},$ (11)

where $D_2^{(M)}$ is some constant.

Polyak-Ruppert averaging

Theorem

Assume UGE and A1. Then, for any $p \ge 2$, $n \ge 4 \lor t_{mix}$, step size

$$lpha^{(\mathrm{M})}(n,d,
ho,t_{\mathsf{mix}}) symp rac{1}{(1+\log d)
ho n^{2/3} t_{\mathsf{mix}}^{1/3}}\,,$$

initial parameter $\theta_0 \in \mathbb{R}^d$, and initial probability measure ξ on (Z, \mathcal{Z}) , it holds that

$$\begin{split} \mathbb{E}_{\xi}^{1/p} \left[\| \bar{\mathbf{A}} \left(\bar{\theta}_n - \theta^{\star} \right) \|^p \right] \lesssim_{d,n} \frac{\{ \mathsf{Tr} \, \boldsymbol{\Sigma}_{\varepsilon}^{(\mathrm{M})} \}^{1/2} p^{1/2}}{n^{1/2}} + \| \varepsilon \|_{\infty} \left(\frac{t_{\mathsf{mix}}^{2/3} p}{n^{2/3}} + \frac{t_{\mathsf{mix}} p^2}{n} \right) \\ + p n^{1/2} \| \theta_0 - \theta^{\star} \| \exp \left\{ - \frac{(\alpha_{\infty}^{(\mathrm{M})} \wedge \mathbf{c}_{\mathbf{A}}^{(\mathrm{M})}) n^{1/3}}{24 p t_{\mathsf{mix}}^{1/3} (1 + \log d)} \right\} \,. \end{split}$$

Remark: unlike the i.i.d. noise scenario,

$$\mathbb{E}_{\pi}[\bar{\theta}_n] \neq \theta^*$$
, moreover, $\mathbb{E}_{\pi}[\bar{\theta}_n] = \mathcal{O}(\alpha)$.

Rosenthal-type inequality for Markov chains

Key technical innovation - novel Rosenthal-type inequalities of Durmus et al. [2023].

Rosenthal type inequality

Let $\{Z_k\}_{k\geq 1}$ be a Markov chain on (Z, Z) with Markov kernel Q, satisfying UGE. Then, for any bounded $f : Z \to \mathbb{R}$, and $p \geq 2$ it holds

$$\mathbb{E}_{\pi}^{1/p}[|\sum_{\ell=1}^{n} (f(Z_{\ell}) - \pi(f))|^{p}] \lesssim p^{1/2} n^{1/2} \sigma_{\infty}(f) + n^{1/4} t_{\text{mix}}^{3/4} p \log_{2}(2p) ||f||_{\infty} + t_{\text{mix}} p \log_{2}(2p) ||f||_{\infty}.$$
 (20)

Applications to TD learning

TD learning

Optimal parameter

Define θ^{\star} as a solution of the minimization problem

$$heta^\star = rg\min_{ heta \in \mathbb{R}^d} \mathbb{E}_\mu ig[ig(V^\pi_ heta(s) - V^\pi(s) ig)^2 ig].$$

Error norm

Consider the following distance between the parameters:

$$\| heta- heta^\star\|_{\Sigma_arphi}=\mathbb{E}^{1/2}_\mu\left[(V^\pi_ heta(s)-V^\pi_{ heta^\star}(s))^2
ight]$$

Previous results: discussion

 Bhandari et al. [2018]: RSA ("robust stochastic approximation") framework following Nemirovski et al. [2009]. Here

$$\mathbb{E}^{1/2}[\|\bar{\theta}_n - \theta^\star\|_{\Sigma_{\varphi}}^2] = \mathcal{O}(1/\sqrt{n}).$$

Advantages: step size α and bounds independent of conditioning;

- Li et al. [2023b]: Lower bounds on the MSE for policy evaluation problems and optimal MSE for the variance-reduced TD-learning algorithm (based on control variates);
- Li et al. [2023a]: HPB and sample complexity for TD(0) and off-policy counterpart (TDC). Step size α scales with the minimal eigenvalue of the feature matrix and covers i.i.d. setting only;
- Patil et al. [2023]: second moment for TD(0) and high-probability bounds for projected TD (0) iterates. HPBs require a projection on a ball - radius depends on ||θ*||.

Matrix stability in TD

Checking matrix stability for TD learning

Let $\{\theta_k\}_{k\in\mathbb{N}}$ be a sequence of TD(0) updates under TD1 and TD2. Then this update scheme satisfies the stability assumption A2(*p*) with

$$a = \frac{(1-\gamma)\lambda_{\min}}{2}, \quad \varkappa_p = 1, \quad \alpha_{p,\infty} = \frac{1-\gamma}{128p}.$$
(21)

Discussion: Previous results – Huang et al. [2021] and Durmus et al. [2021] – yield an instance-dependent stability threshold

$$\alpha_{p,\infty} = \frac{(1-\gamma)\lambda_{\min}}{c_0 p} \tag{22}$$

for some absolute constant $c_0 > 0$. The same order of magnitude of the step size is predicted in [Li et al., 2023a, Theorem 1].

Stability of matrix product

Theorem: Matrix stability for TD learning Let $\{\theta_k\}_{k\in\mathbb{N}}$ be a sequence of TD(0) updates under TD1 and TD2. Then, for any $n \in \mathbb{N}$, $1 \le j \le n$, $p \ge 2$, step size $\alpha \in \left(0; \frac{1-\gamma}{128p}\right]$, it holds \mathbb{P} -a.s. that

 $\mathbb{E}^{1/p}[\|\Gamma_{1:n}^{(\alpha)}(\theta_0-\theta^\star)\|^p] \leq (1-\alpha(1-\gamma)\lambda_{\min}/2)^{n-j}\|\theta_0-\theta^\star\|.$

TD learning: Proof of matrix stability

Result from Patil et al. [2023] Let $\mathbf{A} = \varphi(s) \{\varphi(s) - \gamma \varphi(s')\}^{\top}$ be a random TD update matrix defined in (4), where $s' \sim P^{\pi}(\cdot|s)$, and $s \sim \mu$. Then, for any $p \in \mathbb{N}$ and $\alpha \in (0; \frac{1-\gamma}{4}]$, it holds that

$$\mathbb{E}\left[\left(\mathsf{I}-\alpha \mathbf{A}\right)^{\top}\left(\mathsf{I}-\alpha \mathbf{A}\right)\right] \preceq \mathsf{I}-(1/2)\alpha(1-\gamma)\Sigma_{\varphi}\,.$$

Proof: With the definition of A, we get that

$$\mathbf{A} + \mathbf{A}^{\top} = \varphi(s)\{\varphi(s) - \gamma\varphi(s')\}^{\top} + \{\varphi(s) - \gamma\varphi(s')\}\varphi(s)^{\top} \\ = 2\varphi(s)\varphi(s)^{\top} - \gamma\{\varphi(s)\varphi(s')^{\top} + \varphi(s')\varphi(s)^{\top}\} \\ \succeq (2 - \gamma)\varphi(s)\varphi(s)^{\top} - \gamma\varphi(s')\varphi(s')^{\top}.$$

Hence, $\mathbb{E}[\mathbf{A} + \mathbf{A}^{\top}] \succeq 2(1 - \gamma)\Sigma_{\varphi}$. Similarly, one can show by direct computations that

$$\mathbb{E}[\mathbf{A}^{\top}\mathbf{A}] \preceq (1+\gamma)^2 \Sigma_{\varphi}$$
.

TD learning: Proof of matrix stability

Lemma

Let $B = B^{\top} \ge 0$, $B \in \mathbb{R}^{d \times d}$ be a symmetric positive definite matrix and $u \in \mathbb{R}^d$ be some vector. Then, for any $s \in \mathbb{N}$ and $p = 2^s$, it holds that

 $\left(u^{\top}Bu\right)^{p} \leq \|u\|^{2p-2}u^{\top}B^{p}u.$

Lemma

For random matrix **A** defined in (4) and **B** = **A** + **A**^T - α **A**^T**A**, for $p \in \mathbb{N}$ and step size $\alpha \in (0; \frac{1-\gamma}{(1+\gamma)^2}]$ it holds that

$$\mathbb{E}[\mathbf{B}] \succeq (1 - \gamma) \Sigma_{\varphi} , \quad \mathbb{E}[\mathbf{B}^{\rho}] \preceq 4^{\rho} \Sigma_{\varphi} .$$

TD learning: Proof of matrix stability

Lemma: key lemma for *p*-th moment stability

Let $\mathbf{A} = \varphi(s)\{\varphi(s) - \gamma\varphi(s')\}^{\top}$ be a random TD update matrix defined in (4), where $s' \sim P^{\pi}(\cdot|s)$, and $s \sim \mu$. Then, for any $p \in \mathbb{N}$ and step size

$$\alpha \in \left(0; \frac{1-\gamma}{64p}\right],$$

it holds that

$$\mathbb{E}\big[\{(\mathsf{I}-\alpha \mathsf{A})^{\top}(\mathsf{I}-\alpha \mathsf{A})\}^{p}\big] \leq \mathsf{I}-(1/2)\alpha p(1-\gamma)\Sigma_{\varphi}\,.$$

TD learning: 2nd moment bound

Theorem 2: second moment error for tail-averaging

Let $\{\theta_k\}_{k\in\mathbb{N}}$ be a sequence of TD(0) updates generated by (3) under TD1 and TD2. Then for any $n \ge 2$, $\alpha \in (0; (1 - \gamma)/256]$, and $\theta_0 \in \mathbb{R}^d$, it holds that

$$\begin{split} \mathbb{E}^{1/2}[\|\bar{\theta}_n - \theta^\star\|_{\Sigma_{\varphi}}^2] \lesssim & \frac{\|\theta^\star\|_{\Sigma_{\varphi}} + 1}{\sqrt{\lambda_{\min}n(1-\gamma)}} \big(1 + \frac{\sqrt{\alpha}}{\sqrt{(1-\gamma)\lambda_{\min}}}\big) \\ & + \frac{\|\theta^\star\|_{\Sigma_{\varphi}} + 1}{\sqrt{\alpha}(1-\gamma)^{3/2}\lambda_{\min}n} \\ & + f_1(\alpha,\lambda_{\min},n) \big(1 - \frac{\alpha(1-\gamma)\lambda_{\min}}{2}\big)^{n/2} \|\theta_0 - \theta^\star\|\,, \end{split}$$

where $f_1(\alpha, \lambda_{\min}, n)$ is a polynomial function in $1/\alpha, 1/\lambda_{\min}, n$.

TD sample complexity: 2-nd moment

Sample complexity

Under assumptions of Theorem 2, $\mathbb{E}[\|\bar{\theta}_n - \theta^\star\|_{\Sigma_{\varphi}}^2] \leq \varepsilon^2$ requires where $\mathsf{R}_1(1/\varepsilon) = \frac{\|\theta^\star\|_{\Sigma_{\varphi}} + 1}{\sqrt{\alpha}(1-\gamma)^{3/2}\lambda_{\min}\varepsilon}.$

Set $\alpha \simeq 1 - \gamma$, sample complexity (agrees with Patil et al. [2023]):

$$\widetilde{\mathcal{O}}\left(\frac{1}{(1-\gamma)^2\lambda_{\min}} \cdot \log \frac{\|\theta_0 - \theta^\star\|}{\varepsilon} + \underbrace{\frac{1+\|\theta^\star\|_{\mathcal{L}\varphi}^2}{(1-\gamma)^2\lambda_{\min}^2\varepsilon^2}}_{\text{suboptimal by a factor } \lambda_{\min}^{-1}}\right)$$

• Set $\alpha \simeq (1 - \gamma)\lambda_{\min}$, sample complexity (agrees with Li et al. [2023a]):

$$\widetilde{\mathcal{O}}\left(\underbrace{\frac{1}{(1-\gamma)^2\lambda_{\min}^2}\cdot\log\frac{\|\theta_0-\theta^\star\|}{\varepsilon}}_{\text{suboptimal by a factor }\lambda_{\min}^{-1}}+\frac{1+\|\theta^\star\|_{\Sigma_{\varphi}}^2}{(1-\gamma)^2\lambda_{\min}\varepsilon^2}\right)$$

TD learning: HPB

Theorem 3: high-probability error bounds for tail-averaging Fix $\varepsilon > 0$, $\delta > 0$, assume TD1 and TD2. Let $\{\theta_k\}_{k \in \mathbb{N}}$ be a sequence of TD(0) updates generated by (3). Then for any $n \ge 2$, and step size

$$lpha \in \left(0; \frac{1-\gamma}{128 \log\left(n/\delta\right)}\right]$$

to achieve error $\|(\bar{\theta}_n - \theta^\star)\|_{\Sigma_{\varphi}} \leq \varepsilon$ with probability at least $1 - \delta$ it takes

$$\widetilde{\mathcal{O}}\bigg(\frac{(\|\theta^*\|_{\Sigma_{\varphi}}^{2}+1)\log\left(1/\delta\right)}{(1-\gamma)^{2}\lambda_{\min}\varepsilon^{2}}\left(1+\frac{\alpha\log\left(1/\delta\right)}{(1-\gamma)\lambda_{\min}}\right)+\mathsf{R}_{2}(1/\varepsilon,\delta)+\frac{1}{\alpha\lambda_{\min}(1-\gamma)}\log\frac{\|\theta_{0}-\theta^{*}\|}{\varepsilon}\bigg)$$

TD(0) updates.

1

Optimizing the bound w.r.t. α yields the same dilemma as for the 2-nd moment.

Asymptotic covariance matrix

Introduce the TD(0) covariance matrix

$$\Sigma_{\varepsilon}^{(TD)} = \mathbb{E}[((\phi(s_k) - \gamma \phi(s'_k))^{\top} \theta^{\star} - r_k)^2 \phi(s_k) \phi(s_k)^{\top}];$$

 Covariance Σ^(TD)_ε aligns with the CLT for Polyak-Ruppert averaged iterates Fort [2015];

Define the transformed covariance matrix

$$\Sigma_{\varepsilon}^{(opt)} = \Sigma_{\varphi}^{1/2} \bar{\mathbf{A}}^{-1} \Sigma_{\varepsilon}^{(TD)} \bar{\mathbf{A}}^{-T} \Sigma_{\varphi}^{1/2} \,,$$

corresponding to $\Sigma_{\varphi}^{1/2} \bar{\mathbf{A}}^{-1} \varepsilon$.

Upper bounding the optimal covariance matrix Under our assumptions,

$$\operatorname{\mathsf{Tr}} \Sigma^{(opt)}_arepsilon \leq rac{\| heta^\star\|^2_{\Sigma_arphi}+1}{(1-\gamma)^2\lambda_{\mathsf{min}}}$$

Tighter 2-nd moment bound

Refined Theorem 2

Let $\{\theta_k\}_{k\in\mathbb{N}}$ be a sequence of TD(0) updates generated by (3) under TD1 and TD2. Then for any $n \ge 2$, $\alpha \in (0; (1 - \gamma)/256]$, and $\theta_0 \in \mathbb{R}^d$, it holds that

$$\mathbb{E}^{1/2}[\|\bar{\theta}_{n}-\theta^{\star}\|_{\Sigma_{\varphi}}^{2}] \lesssim \frac{\sqrt{\operatorname{Tr}\Sigma_{\varepsilon}^{(opt)}}}{n^{1/2}} + \frac{1+\|\theta^{\star}\|_{\Sigma_{\varphi}}}{(1-\gamma)^{3/2}\lambda_{\min}n^{1/2}} \left(\frac{1}{\sqrt{\alpha n}}+\sqrt{\alpha}\right) + f_{2}(\alpha,\lambda_{\min},n)\left(1-\alpha(1-\gamma)\lambda_{\min}\right)^{n/2}\|\theta_{0}-\theta^{\star}\|,$$
(23)

where $f_2(\alpha, \lambda_{\min}, n)$ is a polynomial in $1/\alpha, 1/\lambda_{\min}, n$.

Markovian sampling: assumptions

Trajectory-wise evaluation (instead of TD1):

Assumption TD3

Agent's learning is based on tuples (s_k, a_k, s_{k+1}) which are generated sequentially following the generative model $a_k \sim \pi(\cdot|s_k)$, $s_{k+1} \sim \mathcal{P}(\cdot|s_k, a_k)$.

The assumption TD3 yields that the sequence $\{s_k\}_{k\in\mathbb{N}}$ is a Markov chain with the Markov kernel $\mathcal{P}_{\pi}(\cdot|s)$.

Assumption TD4

The Markov kernel \mathcal{P}_{π} admits a unique invariant distribution μ and is uniformly geometrically ergodic, that is, there exist $t_{\text{mix}} \in \mathbb{N}$, such that for any $s \in S$ and $k \in \mathbb{N}$ it holds that

$$\left\|\mathcal{P}_{\pi}^{k}(\cdot|\boldsymbol{s})-\mu\right\|_{\mathrm{TV}} \leq (1/4)^{\lceil k/t_{\mathsf{mix}}\rceil}.$$
(24)

One can consider the generalisations of $\mathsf{TD4}$ coming at a price of more technical work.

TD with Markovian sampling

Parameters : features $\varphi(\cdot) : S \to \mathbb{R}^d$, step size α , number of iterations *n*, behavioral policy π , time window $q \in \mathbb{N}^*$ Compute number of blocks $m = \lfloor n/q \rfloor$ for k = 0, ..., n: do Receive tuple (s_k, a_k, s'_k) following TD4 if $k = qi, j \in \mathbb{N}$ then Compute update $\tilde{\theta}_i = \tilde{\theta}_{i-1} - \alpha (\mathbf{A}_k \tilde{\theta}_{i-1} - \mathbf{b}_k)$ based on \mathbf{A}_k , \mathbf{b}_k from (4) else skip current learning tuple end end **Return:** tail-averaged estimate $\bar{\theta}_n = (2/m) \sum_{k=m/2+1}^m \tilde{\theta}_k$ value function estimate $V^{\pi}_{\bar{\theta}}(s) = \varphi^{\top}(s) \bar{\theta}_n$ Idea goes back to Nagaraj et al. [2020], Patil et al. [2023].

Markovian sampling schemes

Refined Theorem 2

Let $\{\theta_k\}_{k\in\mathbb{N}}$ be a sequence of TD(0) updates generated by (3) under TD2, TD3, and TD4, and $\overline{\theta}_n$ be a tail-averaged estimate generated by Algorithm **??** with $q = t_{\text{mix}}$. Then, for the step size and sample size satisfy

$$\alpha = \frac{1 - \gamma}{128 \log \left(n/\delta \right)}, \quad n \ge \frac{\log \left(1/\delta \right)}{(1 - \gamma)^2} \lor \frac{2t_{\mathsf{mix}} \log(4/\delta)}{\log 4}$$

in order to achieve $\|\bar{\theta}_n - \theta^\star\|_{\Sigma_{\varphi}} \leq \varepsilon$ with probability at least $1 - 3\delta$, it requires

$$\widetilde{\mathcal{O}}\left(\frac{t_{\mathsf{mix}}(\|\theta^\star\|_{\Sigma_{\varphi}}^2+1)\log\left(1/\delta\right)}{(1-\gamma)^2\lambda_{\mathsf{min}}^2\varepsilon^2}+\frac{t_{\mathsf{mix}}\log^2\left(1/\delta\right)}{\lambda_{\mathsf{min}}(1-\gamma)^2}\log\frac{\|\theta_0-\theta^\star\|}{\varepsilon}\right)$$

observations.

Markovian sampling schemes

- Proof is based on Berbee's coupling lemma Berbee [1979];
- Bounds scale by a factor t_{mix} compared to the i.i.d. setting;
- Extra √log 1/δ factor in the leading term as an artefact of applying Berbee's construction;
- ▶ Using Berbee's construction potentially can be avoided, but requires to adjust the step size $\alpha \approx t_{\text{mix}}^{-1}$. Hence, the knowledge of t_{mix} is still required.

Conclusion and open questions

Adaptive version

Is it possible to come up with a version of Algorithm 1, which does not require to know t_{mix} in advance?

Optimal bounds for instance-independent step size

Is it possible to remove the extra λ_{\min}^{-1} in the analysis of Theorem 2 for the step size α independent of λ_{\min} ? Or construct a lower bound showing that this suboptimality is not an artefact of the proof.

References:

- Durmus, A., Moulines, E., Naumov, A., Samsonov, S., Wai, H. T. (2021, July). On the stability of random matrix product with markovian noise: Application to linear stochastic approximation and td learning. In Conference on Learning Theory (pp. 1711-1752). PMLR.
- Durmus, A., Moulines, E., Naumov, A., Samsonov, S., Wai, H. T. (2021, July). On the stability of random matrix product with markovian noise: Application to linear stochastic approximation and td learning. In Conference on Learning Theory (pp. 1711-1752). PMLR.
- Durmus, A., Moulines, E., Naumov, A., Samsonov, S. (2024). Finite-Time High-Probability Bounds for Polyak–Ruppert Averaged Iterates of Linear Stochastic Approximation. Mathematics of Operations Research. https://arxiv.org/abs/2207.04475

Samsonov, S., Tiapkin, D., Naumov, A., Moulines, E. (2024), Improved high-probability bounds for temporal difference learning algorithms wia exponential stability, https://arxiv.org/abs/2310.14286 - To appear in COLT-2024. Thank you!

References I

- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n). In *NeurIPS*, volume 26, 2013.
- H.C.P. Berbee. Random Walks with Stationary Increments and Renewal Theory. Mathematical Centre tracts. Centrum Voor Wiskunde en Informatica, 1979. ISBN 9789061961826. URL https://books.google.ru/books?id=ivUAtQEACAAJ.
- J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with linear function approximation. In *Conference On Learning Theory*, pages 1691–1692, 2018.
- R. Douc, E. Moulines, P. Priouret, and P. Soulier. *Markov chains*. Springer Series in Operations Research and Financial Engineering. Springer, 2018. ISBN 978-3-319-97703-4.
- Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, and Hoi-To Wai. Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. In *NeurIPS*, 2021.
- Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, and Marina Sheshukova. Rosenthal-type inequalities for linear statistics of markov chains. *arXiv preprint arXiv:2303.05838*, 2023.
- G. Fort. Central limit theorems for stochastic approximation with controlled Markov chain dynamics. *ESAIM: PS*, 19:60–80, 2015.
- L. Guo and L. Ljung. Exponential stability of general tracking algorithms. *IEEE Transactions on Automatic Control*, 40(8):1376–1387, 1995.
- De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentration for products. *Foundations of Computational Mathematics*, pages 1–33, 2021.
- C.r Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: How far does constant step-size and iterate averaging go? In AISTATS, volume 84, pages 1347–1355, 2018.

References II

- Gen Li, Weichen Wu, Yuejie Chi, Cong Ma, Alessandro Rinaldo, and Yuting Wei. Sharp high-probability sample complexities for policy evaluation with linear function approximation. *arXiv preprint arXiv:2305.19001*, 2023a.
- Tianjiao Li, Guanghui Lan, and Ashwin Pananjady. Accelerated and instance-optimal policy evaluation with linear function approximation. SIAM Journal on Mathematics of Data Science, 5(1):174–200, 2023b. doi: 10.1137/21M1468668. URL https://doi.org/10.1137/21M1468668.
- Lennart Ljung. Recursive identification algorithms. *Circuits, Systems and Signal Processing*, 21(1): 57–68, 2002.
- Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. On linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration. In *Conference on learning theory*, volume 125, pages 2947–2997. PMLR, 2020.
- Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli. Least squares regression with markovian data: Fundamental limits and algorithms. *Advances in neural information processing systems*, 33:16666–16676, 2020.
- Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on optimization*, 19(4): 1574–1609, 2009.
- Gandharv Patil, LA Prashanth, Dheeraj Nagaraj, and Doina Precup. Finite time analysis of temporal difference learning with linear function approximation: Tail averaging and regularisation. In *International Conference on Artificial Intelligence and Statistics*, pages 5438–5448. PMLR, 2023.
- Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM journal on control and optimization*, 30(4):838–855, 1992.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.