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Stochastic Approximation
▶ Consider the problem of finding θ⋆ ∈ Rd such that

f (θ⋆) = 0 .

▶ Only ”noisy” samples of f (θ) are revealed, e.g., F (θ;Zn), such that

E[F (θ;Zn)] = f (θ) or, at least, lim
n→+∞

E[F (θ;Zn)] = f (θ).

▶ Such algorithms are called stochastic approximation (SA) schemes to a
fixed point equation:

θn+1 = θn + αnF (θn;Zn).

Robbins and Monro [1951]

▶ Compare with the standard ‘Euler scheme’ for numerically
approximating a trajectory of the o.d.e. θ̇(t) = f (θ(t))

θt+1 = θt + αf (θt)

▶ The simplest instance of the problem corresponds to the Linear
Stochastic Approximation (LSA)
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Linear Stochastic Approximation

▶ Given Ā ∈ Rd×d and b̄ ∈ Rd , we aim at finding θ⋆ ∈ Rd , which is a
solution of

Āθ⋆ = b̄ .

▶ Our analysis is based on noisy observations {(A(Zn),b(Zn))}n∈N.
Here A : Z → Rd×d , b : Z → Rd are measurable mappings.

LSA algorithm

For a sequence of step sizes {αk}, burn-in period n0 ∈ N, and
initialization θ0, consider the sequences of estimates
{θn}n∈N, {θ̄n0,n}n≥n0+1 given by

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)} , k ≥ 1,

θ̄n0,n = (n − n0)
−1
∑n−1

k=n0
θk , n ≥ n0 + 1 .

(1)
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Linear Stochastic Approximation

I.I.D. Noise

Sequence {Zk}k∈N is an i.i.d. sequence taking values in a state space
(Z,Z) with distribution π satisfying E[A(Z1)] = Ā and E[b(Z1)] = b̄;

Markovian noise

Sequence {Zk}k∈N is a Z-valued ergodic Markov chain with unique
invariant distribution π, such that

lim
n→+∞

E[A(Zn)] = Ā

and
lim

n→+∞
E[b(Zn)] = b̄

We write Ak instead of A(Zk), and bk instead of b(Zk), respectively.
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RL: general paradigm

Environment

Agent
Action atReward rtState st

rt+1

st+1
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Applications: TD learning

▶ Consider a problem of estimating the policy ν in a discounted MDP
given by a tuple (S,A,P, r , γ);

▶ S and A are state and action spaces, assume that they are complete
metric spaces equipped with Borel σ-algebras B(S) and B(A),
respectively;

▶ γ ∈ (0, 1) is a discount factor;

▶ P stands for the transition kernel P(·|s, a);
▶ reward function r : S ×A → [0, 1] - deterministic;

▶ policy ν(·|s) - distribution over the action space A;
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Applications: TD learning

▶ We aim to estimate the agent’s value function

V ν(s) = E
[∑∞

k=0
γk r(sk , ak)|s0 = s

]
,

where ak ∼ ν(·|sk), and sk+1 ∼ P(·|sk , ak);
▶ 1-step transition kernel:

Pν(B|s) =
∫
A
P(B|s, a)ν(da|s) , B ∈ B(S) ; (2)

▶ Linear functional approximation of the true value function V ν(s):

V ν
θ (s) = φ⊤(s)θ ,

where s ∈ S, θ ∈ Rd , φ : S → Rd , d - feature dimension
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TD learning as LSA problem

▶ The problem of estimating V ν(s) reduces to the problem of estimating
θ ∈ Rd in V ν

θ (s);

▶ Set the k-th step randomness as Zk = (sk , s
′
k);

▶ The corresponding LSA writes as:

θk = θk−1 − αk(Akθk−1 − bk) , (3)

where the system matrix and r.h.s. are given by

Ak = ϕ(sk){ϕ(sk)− γϕ(s ′k)}⊤, bk = ϕ(sk)r(sk , ak) . (4)

▶ Deterministic system writes as Āθ⋆ = b̄, where

Ā = Es∼µ,s′∼Pν(·|s)[ϕ(s){ϕ(s)− γϕ(s ′)}⊤]
b̄ = Es∼µ,a∼π(·|s)[ϕ(s)r(s, a)] .
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Finite-time high-probability bounds for the
Polyak-Ruppert averaged LSA iterates
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Linear Stochastic Approximation

▶ Let {Zk}k∈N be an i.i.d.sequence and consider the recurrence

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)} (5)

▶ Set
Ã(z) = A(z)− Ā , b̃(z) = b(z)− b̄ ,

and introduce

ε(z) = A(z)θ⋆ − b(z) , Σε = E[ε(Z )ε(Z )⊤] .

Assumption A1

(i) CA = supz∈Z ∥A(z)∥ ∨ supz∈Z ∥Ã(z)∥ < ∞ and the matrix −Ā is
Hurwitz

(ii)
∫
Z
A(z)dπ(z) = Ā and

∫
Z
b(z)dπ(z) = b̄. Moreover,

∥ε∥∞ = supz∈Z ∥ε(z)∥ < +∞.
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Why averaging: CLT view

Step size assumptions

Suppose that the sequence αk satisfies one of the following assumptions:

(i)
∑∞

k=1 αk = ∞,
∑∞

k=1 α
2
k < ∞, log(αk−1/αk) = o(αk);

(ii)
∑∞

k=1 αk = ∞,
∑∞

k=1 α
2
k < ∞, log(αk−1/αk) ∼ αk/α∗ for

α∗ ≥ 1/(2L) , where L = minRe(λi (Ā)) .

Examples: αk = c0/k
γ , γ ∈ (0.5; 1) satisfies (i); αk = α∗/k satisfies (ii).

CLT
Under assumption A1 it holds that

(i) α
−1/2
k (θk − θ⋆)

W−→ N (0,Σ1) if αk satisfy (i);

(ii) α
−1/2
k (θk − θ⋆)

W−→ N (0,Σ2) if αk satisfy (ii) .
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Why averaging: CLT view
Covariances Σ1 and Σ2 are given by

− Σ1Ā
⊤ − ĀΣ1 = −Σε (6)

Σ2(I−2α∗Ā
⊤) + (I−2α∗Ā)Σ2 = −2α∗Σε . (7)

Suggests that αk = α⋆/k is optimal. However, such a choice of step size
is not implementable.

Optimal preconditioner choice

Consider now the modified LSA dynamics

θ̃k = θ̃k−1 − αkΓ(Ak θ̃k−1 − bk) ,

where αk = α⋆/k and Γ - fixed matrix. We know that

α
−1/2
k (θn − θ⋆)

W−→ N (0,Σ2(Γ)) .

Can we find Γ⋆, such that for any u ∈ Rd :

u⊤Σ2(Γ
⋆)u ≤ u⊤Σ2(Γ)u
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Optimality of Polyak-Ruppert

Optimal preconditioning

Optimal choice of Γ⋆ is given by

Γ⋆ = α−1
∗ Ā−1 ,

corresponding to the covariance matrix

Σ2(Γ
⋆) = α−1

∗ Ā−1ΣεĀ
−⊤.

Under A1 and (i)-th choice of step size, the Polyak-Ruppert Polyak and
Juditsky [1992] averaging performs almost similarly:

√
n(θ̄n − θ⋆)

W−→ N (0, Ā−1ΣεĀ
−⊤) .

Extensions to the Markov setting are given in Fort [2015].
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Boris Polyak (1935-2023)
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Problem setting

▶ Goal: sharp bounds for finite-sample n and the dimension of the
parameter space d ;

▶ Constant step size α depending on the computational budget n;

▶ For least squares regression problems, where A(Zn) is a symmetric
matrix almost surely, Bach and Moulines [2013] showed that for a
constant step size, the MSE of θ̄n0,n − θ⋆ converges as O(1/n);

▶ General LSA: Lakshminarayanan and Szepesvari [2018] showed a rate
of convergence of the MSE O(1/n).

▶ Mou et al. [2020] provided a non-asymptotic high-probability bounds
for LSA-PR with independent observations. However, the proof relies
on concentration bounds from Markov chain - under Log-Sobolev
inequalities- {(A(Zn),b(Zn))}n∈N - clear gaps in the proof.
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Non-asymptotic LSA expansions

▶ Denote by Γ
(α)
1:n the product of random matrices

Γ
(α)
m:n =

∏n
i=m(I−αA(Zi )) , m, n ∈ N∗, m ≤ n .

▶ The recursion θn = θn−1 − αn{A(Zn)θn−1 − b(Zn)} may be
decomposed as follows

θn − θ⋆ = θ̃(tr)n + θ̃(fl)n ,

where θ̃
(tr)
n is the transient term and θ̃

(fl)
n is a fluctuation term

θ̃(tr)n = Γ
(α)
1:n {θ0 − θ⋆} , θ̃(fl)n = −α

n∑
j=1

Γ
(α)
j+1:nε(Zj) .

▶ A cornerstone of the theoretical analysis is a tight bound for

E1/p[∥Γ(α)m:n∥p] under some assumptions on the matrix Ā.
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Exponential stability of random matrix products

Key technical element:

Exponential stability of {A(Zi)}i∈N (see Guo and Ljung
[1995], Ljung [2002])

For q ≥ 1, there exist aq,Cq > 0 and α∞,q < ∞ such that, for any step
size α ≤ α∞,q, m, n ∈ N, m < n,

E[∥Γ(α)m:n∥q] ≤ Cq exp (−aqα(n −m)) .

▶ Intuitively, exponential stability means that Γ
(α)
m:n ≈ (I−αĀ)n−m, for

m, n ∈ N, m ≤ n;

▶ We handle both the setting of i.i.d.and Markov dependency in the
sequence {Zi}i∈N;
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Lyapunov equation

Proposition

Assume that −Ā is Hurwitz. There exists a unique symmetric positive
definite matrix Q satisfying the Lyapunov equation Ā⊤Q + QĀ = I. In
addition, setting

a = ∥Q∥−1/2 , and α∞ = (1/2)∥Ā∥−2
Q ∥Q∥−1 ∧ ∥Q∥ ,

for any α ∈ [0, α∞], it holds that

∥I−αĀ∥2Q ≤ 1− aα ,

and αa ≤ 1/2.

Why Q-norm: I−αĀ is a strict contraction in ∥·∥Q , but not necessarily
in ∥·∥.
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Exponential stability under A1

Theorem

Assume IND and A1. For any p, q ∈ N, 2 ≤ p ≤ q, α ∈ (0, αq,∞] and
n ∈ N, it holds

E1/p
[
∥Γ(α)1:n ∥

p
]
≤ √

κQd
1/q(1− aα+ (q − 1)b2Qα

2)n/2 .

where

κQ = λmax(Q)/λmin(Q) , bQ =
√
κQ CA ,

αq,∞ = α∞ ∧ cA /q , cA = a/{2b2Q} .

▶ Note that the bound above introduces an interplay between step size
α and maximal controlled moment q;

▶ We show that under only A1, for fixed α > 0,
limn→+∞ E[∥θn − θ⋆∥p] = ∞ for p ≥ p̄(α); cannot expect exponential
tytpe HPB for ∥θn − θ⋆∥ are not possible (see Durmus et al. [2021])
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Exponential stability: sketch of the proof
▶ For B ∈ Rd×d let σℓ(B), ℓ = 1, . . . , d be its singular values;
▶ For p ≥ 1, denote its Schatten p-norm

∥B∥p = {
d∑

ℓ=1

σp
ℓ (B)}

1/p

▶ For p, q ≥ 1 and random matrix X , we write ∥X∥p,q = {E[∥X∥qp]}1/q.

Theorem (Subquadratic averages - (Huang et al., 2020))

Consider random matrices of the same sizes that satisfy E[Y |X ] = 0,
P-a.s. Then, for 2 ≤ q ≤ p,

∥X + Y ∥2p,q ≤ ∥X∥2p,q + Cp∥Y ∥2p,q

The constant Cp = p − 1 is the best possible.

Proof sketch: re-write a product of matrices

Γ
(α)
1:n = (I−αĀ)Γ

(α)
1:n−1 − α(A(Zn)− Ā)Γ

(α)
1:n−1 ,

then apply the subquadratic inequality above, switch to Q-norm.
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Linear Stochastic Approximation

▶ Recall that the error vector θn − θ⋆ may be decomposed as

θ̃(tr)n = Γ
(α)
1:n {θ0 − θ⋆} , θ̃(fl)n = −α

n∑
j=1

Γ
(α)
j+1:nε(Zj) .

▶ To bound E1/p[∥θ̃(tr)n ∥p], we simply apply the bound on the matrix
product.

▶ How to proceed with E1/p[∥θ̃(fl)n ∥p]?
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Sketch of the proof: fluctuation term
▶ For any n ∈ N:

θ̃(fl)n = J(0)n + H(0)
n , (8)

where the latter terms are defined by the following pair of recursions

J(0)n =
(
I−αĀ

)
J
(0)
n−1 − αε(Zn) , J

(0)
0 = 0 ,

H(0)
n = (I−αA(Zn))H

(0)
n−1 − αÃ(Zn)J

(0)
n−1 , H

(0)
0 = 0 .

(9)

▶ Solving the recursion above,

J(0)n = −α

n∑
j=1

(
I−αĀ

)n−j+1
ε(Zj), H(0)

n = −α

n∑
j=1

Γ
(α)
j+1:n+1Ã(Zj)J

(0)
j−1 .

▶ The term J
(0)
n is the leading one w.r.t. α, and is a linear statistics of

{ε(Zj)}j≥0;

▶ Rough bounds from (9):

E1/p[∥J(0)n ∥p] ≲
√
α , E1/p[∥H(0)

n ∥p] ≲
√
α .
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Sketch of the proof: fluctuation term

The same decomposition can be applied to H
(0)
n to obtain higher order

expansions:

H
(0)
n =

∑L
ℓ=1 J

(ℓ)
n + H

(L)
n , (10)

where for any ℓ ∈ {1, . . . , L},

J(ℓ)n =
(
I−αĀ

)
J
(ℓ)
n−1 − αÃ(Zn)J

(ℓ−1)
n−1 , J

(ℓ)
0 = 0 ,

H(L)
n = (I−αA(Zn))H

(L)
n−1 − αÃ(Zn)J

(L)
n−1 , H

(L)
0 = 0 .

(11)

The choice of parameter L controls the desired approximation accuracy:

E1/p[∥J(ℓ)n ∥p] ≲ α(ℓ+1)/2 , E1/p[∥H(L)
n ∥p] ≲ α(L+1)/2 .

Combining (8) and (10), we obtain the decomposition which is the
cornerstone of our analysis:

θ̃
(fl)
n =

∑L
ℓ=0 J

(ℓ)
n + H

(L)
n . (12)
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p-th moment bound for the LSA error ∥θn − θ⋆∥

Theorem

Assume IND and A1. Then, for any p, q ∈ N, 2 ≤ p ≤ q, α ∈ (0, αq,∞],
n ∈ N, and θ0 ∈ Rd it holds

E1/p [∥θn − θ⋆∥p] ≤ d1/qκ
1/2
Q (1− αa/4)n ∥θ0 − θ⋆∥ + d1/qD2

√
αap∥ε∥∞ ,

where D2 has closed-form expression.

23 / 52



Polyak-Ruppert averaging

θ̄n0,n = (n − n0)
−1

n−1∑
k=n0

θk , n ≥ n0 + 1

Key decomposition

For any n, n0 ∈ N, n0 ≤ n,

Ā
(
θ̄n0,n − θ⋆

)
=

θn0 − θn
α(n − n0)

− 1

n − n0

n−1∑
t=n0

e (θt ,Zt+1) ,

e(θ, z) = Ã(z)θ − b̃(z) = ε(z) + Ã(z)(θ − θ⋆) .

Using (12), we may further decompose∑n−1
t=n0

e (θt ,Zt+1) = E tr
n0,n + E fl

n0,n ,

where we have set

E tr
n0,n =

∑n−1
t=n0

Ã(Zt+1)Γ
(α)
1:t {θ0 − θ⋆} ,

E fl
n0,n =

∑n−1
t=n0

ε(Zt+1) +
∑L

ℓ=0

∑n−1
t=n0

Ã(Zt+1)J
(ℓ)
t +

∑n−1
t=n0

Ã(Zt+1)H
(L)
t .
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Polyak-Ruppert averaging

Theorem

Assume IND and A1. Then, for any p ≥ 2, n ≥ 2, burn-in period
n0 = n/2, step size

α(n, d , p) ≍ 1

(1 + log d)pn1/2
, (13)

and an initial parameter θ0 ∈ Rd , it holds that

E1/p
[
∥Ā
(
θ̄n0,n − θ⋆

)
∥p
]
≲d

{TrΣε}1/2p1/2

n1/2
+ ∥ε∥∞

(
p

n3/4
+

p2

n

)
+ p∥θ0 − θ⋆∥ exp

{
− (α∞ ∧ cA)

√
n

8p(1 + log d)

}
, (14)

where Σε =
∫
Z
ε(z)ε(z)⊤dπ(z).

The leading term is the p-moment of the Gaussian appearing in the CLT !
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Markovian Setting
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Markovian setting

For any A ∈ Z, Pξ(Zk ∈ A|Zk−1) = Q(Zk−1,A), Pξ-a.s.

Assumption UGE

The Markov kernel Q is Uniformly Geometrically Ergodic, i.e., there
exists tmix ∈ N∗ such that for all k ∈ N∗,

∆(Qk) = sup
z,z′∈Z

(1/2)∥Qk(z , ·)− Qk(z ′, ·)∥TV ≤ (1/4)⌊k/tmix⌋ . (15)

Here, tmix is the mixing time of Q.

▶ UGE implies that π is the unique invariant distribution of Q;

▶ UGE is equivalent to the uniform minorization condition, i.e., there
exists a probability measure ν such that for all z ∈ Z, A ∈ Z,

Qtmix(z ,A) ≥ (1/4)ν(A) .
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Exponential stability: Markovian case

Define the quantities
α(M)
q,∞ = α(M)

∞ ∧ cA /q , (16)

where α
(M)
∞ depends upon constants from A1 and κQ. Then:

Theorem

Assume UGE and A1. Then, for any 2 ≤ p ≤ q, α ∈ (0, α
(M)
∞ t−1

mix], n ∈ N,
and probability distribution ξ on (Z,Z), it holds

E1/p
ξ

[
∥Γ(α)1:n ∥

p
]
≤ √

κQe
2d1/q exp{−nαa/6 + n(q − 1)α2 CΓ} , (17)

where α
(M)
∞ is some constant. Moreover, for α ∈ (0, α

(M)
q,∞t−1

mix], it holds

E1/p
ξ

[
∥Γ(α)1:n ∥

p
]
≤ √

κQe
2d1/qe−aαn/12 . (18)
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Covariance matrix

Noise covariance matrix

Under A1 and UGE, we define the matrix Σ
(M)
ε as

Σ(M)
ε = Eπ[ε(Z0)ε(Z0)

⊤] + 2
∞∑
ℓ=0

Eπ[ε(Z0)ε(Zℓ)
⊤] . (19)

▶ For any initial probability measure ξ on (Z,Z), n−1/2
∑n−1

t=0 ε(Zt)

converges in distribution to N (0,Σ
(M)
ε );

▶ We expect that this is also the leading term in the bound for

E1/p
ξ

[
∥Ā
(
θ̄n − θ⋆

)
∥p
]
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p-th moment bound for the LSA error ∥θn − θ⋆∥

Theorem

Assume A1 and UGE. Let 2 ≤ p ≤ q/2 and α
(M)
q,∞ be defined in (16).

Then, for any α ∈ (0, α
(M)
q,∞t−1

mix], θ0 ∈ Rd , initial probability measure ξ on
(Z,Z), and n ∈ N, it holds

E1/p
ξ [∥θn − θ⋆∥p] ≤ √

κQe
2d1/qe−αan/12∥θ0−θ⋆∥+D

(M)
2 d1/q√αaptmix∥ε∥∞ ,

where D
(M)
2 is some constant.
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Polyak-Ruppert averaging

Theorem
Assume UGE and A1. Then, for any p ≥ 2, n ≥ 4 ∨ tmix, step size

α(M)(n, d , p, tmix) ≍
1

(1 + log d)pn2/3t
1/3
mix

,

initial parameter θ0 ∈ Rd , and initial probability measure ξ on (Z,Z), it
holds that

E1/p
ξ

[
∥Ā
(
θ̄n − θ⋆

)
∥p
]
≲d,n

{TrΣ(M)
ε }1/2p1/2

n1/2
+∥ε∥∞

(
t
2/3
mix p

n2/3
+

tmixp
2

n

)

+ pn1/2∥θ0 − θ⋆∥ exp

{
−

(α
(M)
∞ ∧ c

(M)
A )n1/3

24pt
1/3
mix (1 + log d)

}
.

Remark: unlike the i.i.d. noise scenario,

Eπ[θ̄n] ̸= θ⋆ , moreover ,Eπ[θ̄n] = O(α) .
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Rosenthal-type inequality for Markov chains

Key technical innovation - novel Rosenthal-type inequalities of Durmus
et al. [2023].

Rosenthal type inequality

Let {Zk}k≥1 be a Markov chain on (Z,Z) with Markov kernel Q,
satisfying UGE. Then, for any bounded f : Z → R, and p ≥ 2 it holds

E1/p
π [|

n∑
ℓ=1

(f (Zℓ)− π(f ))|p] ≲ p1/2n1/2σ∞(f )+

n1/4t
3/4
mix p log2(2p)∥f ∥∞ + tmixp log2(2p)∥f ∥∞ . (20)
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Applications to TD learning
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TD learning

Optimal parameter

Define θ⋆ as a solution of the minimization problem

θ⋆ = arg min
θ∈Rd

Eµ

[
(V π

θ (s)− V π(s))2
]
.

Error norm
Consider the following distance between the parameters:

∥θ − θ⋆∥Σφ = E1/2
µ

[
(V π

θ (s)− V π
θ⋆(s))2

]
.
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Previous results: discussion

▶ Bhandari et al. [2018]: RSA (”robust stochastic approximation”)
framework following Nemirovski et al. [2009]. Here

E1/2[∥θ̄n − θ⋆∥2Σφ
] = O(1/

√
n) .

Advantages: step size α and bounds independent of conditioning;

▶ Li et al. [2023b]: Lower bounds on the MSE for policy evaluation
problems and optimal MSE for the variance-reduced TD-learning
algorithm (based on control variates);

▶ Li et al. [2023a]: HPB and sample complexity for TD(0) and off-policy
counterpart (TDC). Step size α scales with the minimal eigenvalue of
the feature matrix and covers i.i.d. setting only;

▶ Patil et al. [2023]: second moment for TD(0) and high-probability
bounds for projected TD (0) iterates. HPBs require a projection on a
ball - radius depends on ∥θ⋆∥.
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Matrix stability in TD

Checking matrix stability for TD learning

Let {θk}k∈N be a sequence of TD(0) updates under TD1 and TD2. Then
this update scheme satisfies the stability assumption A2(p) with

a =
(1− γ)λmin

2
, κp = 1 , αp,∞ =

1− γ

128p
. (21)

Discussion: Previous results – Huang et al. [2021] and Durmus et al.
[2021] – yield an instance-dependent stability threshold

αp,∞ =
(1− γ)λmin

c0p
(22)

for some absolute constant c0 > 0. The same order of magnitude of the
step size is predicted in [Li et al., 2023a, Theorem 1].
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Stability of matrix product

Theorem: Matrix stability for TD learning

Let {θk}k∈N be a sequence of TD(0) updates under TD1 and TD2.

Then, for any n ∈ N, 1 ≤ j ≤ n, p ≥ 2, step size α ∈
(
0; 1−γ

128p

]
, it holds

P-a.s. that

E1/p[∥Γ(α)1:n (θ0 − θ⋆)∥p] ≤ (1− α(1− γ)λmin/2)
n−j∥θ0 − θ⋆∥ .
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TD learning: Proof of matrix stability

Result from Patil et al. [2023]

Let A = φ(s){φ(s)− γφ(s ′)}⊤ be a random TD update matrix defined
in (4), where s ′ ∼ Pπ(·|s), and s ∼ µ. Then, for any p ∈ N and
α ∈

(
0; 1−γ

4

]
, it holds that

E
[
(I−αA)⊤(I−αA)

]
⪯ I−(1/2)α(1− γ)Σφ .

Proof: With the definition of A, we get that

A+ A⊤ = φ(s){φ(s)− γφ(s ′)}⊤ + {φ(s)− γφ(s ′)}φ(s)⊤

= 2φ(s)φ(s)⊤ − γ{φ(s)φ(s ′)⊤ + φ(s ′)φ(s)⊤}
⪰ (2− γ)φ(s)φ(s)⊤ − γφ(s ′)φ(s ′)⊤ .

Hence, E[A+ A⊤] ⪰ 2(1− γ)Σφ. Similarly, one can show by direct
computations that

E[A⊤A] ⪯ (1 + γ)2Σφ .
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TD learning: Proof of matrix stability

Lemma

Let B = B⊤ ≥ 0, B ∈ Rd×d be a symmetric positive definite matrix and
u ∈ Rd be some vector. Then, for any s ∈ N and p = 2s , it holds that(

u⊤Bu
)p ≤ ∥u∥2p−2u⊤Bpu .

Lemma

For random matrix A defined in (4) and B = A+ A⊤ − αA⊤A, for
p ∈ N and step size α ∈ (0; 1−γ

(1+γ)2 ] it holds that

E[B] ⪰ (1− γ)Σφ , E[Bp] ⪯ 4pΣφ .
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TD learning: Proof of matrix stability

Lemma: key lemma for p-th moment stability

Let A = φ(s){φ(s)− γφ(s ′)}⊤ be a random TD update matrix defined
in (4), where s ′ ∼ Pπ(·|s), and s ∼ µ. Then, for any p ∈ N and step size

α ∈ (0;
1− γ

64p
] ,

it holds that

E
[
{(I−αA)⊤(I−αA)}p

]
⪯ I−(1/2)αp(1− γ)Σφ .
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TD learning: 2nd moment bound

Theorem 2: second moment error for tail-averaging

Let {θk}k∈N be a sequence of TD(0) updates generated by (3) under
TD1 and TD2. Then for any n ≥ 2, α ∈ (0; (1− γ)/256], and θ0 ∈ Rd ,
it holds that

E1/2[∥θ̄n − θ⋆∥2Σφ
] ≲

∥θ⋆∥Σφ
+ 1

√
λminn(1− γ)

(
1 +

√
α√

(1− γ)λmin

)
+

∥θ⋆∥Σφ + 1
√
α(1− γ)3/2λminn

+ f1(α, λmin, n)
(
1− α(1− γ)λmin

2

)n/2∥θ0 − θ⋆∥ ,

where f1(α, λmin, n) is a polynomial function in 1/α, 1/λmin, n.
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TD sample complexity: 2-nd moment

Sample complexity

Under assumptions of Theorem 2, E[∥θ̄n − θ⋆∥2Σφ
] ≤ ε2 requires where

R1(1/ε) =
∥θ⋆∥Σφ+1

√
α(1−γ)3/2λminε

.

▶ Set α ≃ 1− γ, sample complexity (agrees with Patil et al. [2023]):

Õ
(

1
(1−γ)2λmin

· log ∥θ0−θ⋆∥
ε +

1+∥θ⋆∥2
Σφ

(1−γ)2λ2
minε

2︸ ︷︷ ︸
suboptimal by a factor λ−1

min

)
.

▶ Set α ≃ (1− γ)λmin, sample complexity (agrees with Li et al. [2023a]):

Õ
(

1

(1− γ)2λ2
min

· log ∥θ0 − θ⋆∥
ε︸ ︷︷ ︸

suboptimal by a factor λ−1
min

+
1+∥θ⋆∥2

Σφ

(1−γ)2λminε2

)
.
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TD learning: HPB

Theorem 3: high-probability error bounds for tail-averaging

Fix ε > 0, δ > 0, assume TD1 and TD2. Let {θk}k∈N be a sequence of
TD(0) updates generated by (3). Then for any n ≥ 2, and step size

α ∈
(
0;

1− γ

128 log (n/δ)

]
to achieve error ∥(θ̄n − θ⋆)∥Σφ ≤ ε with probability at least 1− δ it takes

Õ
(

(∥θ⋆∥2
Σφ

+1) log (1/δ)

(1−γ)2λminε2

(
1 + α log (1/δ)

(1−γ)λmin

)
+ R2(1/ε, δ) +

1
αλmin(1−γ) log

∥θ0−θ⋆∥
ε

)
.

TD(0) updates.

Optimizing the bound w.r.t. α yields the same dilemma as for the 2-nd
moment.
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Asymptotic covariance matrix

▶ Introduce the TD(0) covariance matrix

Σ(TD)
ε = E[

(
(ϕ(sk)− γϕ(s ′k))

⊤θ⋆ − rk
)2
ϕ(sk)ϕ(sk)

⊤] ;

▶ Covariance Σ
(TD)
ε aligns with the CLT for Polyak-Ruppert averaged

iterates Fort [2015];

▶ Define the transformed covariance matrix

Σ(opt)
ε = Σ1/2

φ Ā−1Σ(TD)
ε Ā−TΣ1/2

φ ,

corresponding to Σ
1/2
φ Ā−1ε.

Upper bounding the optimal covariance matrix

Under our assumptions,

Tr Σ(opt)
ε ≤

∥θ⋆∥2Σφ
+ 1

(1− γ)2λmin
.
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Tighter 2-nd moment bound

Refined Theorem 2

Let {θk}k∈N be a sequence of TD(0) updates generated by (3) under
TD1 and TD2. Then for any n ≥ 2, α ∈ (0; (1− γ)/256], and θ0 ∈ Rd ,
it holds that

E1/2[∥θ̄n − θ⋆∥2Σφ
] ≲

√
TrΣ

(opt)
ε

n1/2
+

1 + ∥θ⋆∥Σφ

(1− γ)3/2λminn1/2

(
1√
αn

+
√
α

)
+ f2(α, λmin, n)

(
1− α(1− γ)λmin

)n/2∥θ0 − θ⋆∥ ,
(23)

where f2(α, λmin, n) is a polynomial in 1/α, 1/λmin, n.
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Markovian sampling: assumptions

Trajectory-wise evaluation (instead of TD1):

Assumption TD3

Agent’s learning is based on tuples (sk , ak , sk+1) which are generated
sequentially following the generative model ak ∼ π(·|sk),
sk+1 ∼ P(·|sk , ak).

The assumption TD3 yields that the sequence {sk}k∈N is a Markov chain
with the Markov kernel Pπ(·|s).

Assumption TD4

The Markov kernel Pπ admits a unique invariant distribution µ and is
uniformly geometrically ergodic, that is, there exist tmix ∈ N, such that
for any s ∈ S and k ∈ N it holds that∥∥Pk

π(·|s)− µ
∥∥
TV

≤ (1/4)⌈k/tmix⌉ . (24)

One can consider the generalisations of TD4 coming at a price of more
technical work.
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TD with Markovian sampling

Parameters : features φ(·) : S → Rd , step size α, number of iterations
n, behavioral policy π, time window q ∈ N∗

Compute number of blocks m = ⌊n/q⌋
for k = 0, . . . , n: do

Receive tuple (sk , ak , s
′
k) following TD4

if k = qj , j ∈ N then
Compute update

θ̃j = θ̃j−1 − α(Ak θ̃j−1 − bk)

based on Ak , bk from (4)
else

skip current learning tuple
end

end

Return: tail-averaged estimate θ̄n = (2/m)
∑m

k=m/2+1 θ̃k

value function estimate V π
θ̄n
(s) = φ⊤(s) θ̄n Idea goes back to Nagaraj

et al. [2020], Patil et al. [2023].
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Markovian sampling schemes

Refined Theorem 2

Let {θk}k∈N be a sequence of TD(0) updates generated by (3) under
TD2, TD3, and TD4, and θ̄n be a tail-averaged estimate generated by
Algorithm ?? with q = tmix. Then, for the step size and sample size
satisfy

α =
1− γ

128 log (n/δ)
, n ≥ log (1/δ)

(1− γ)2
∨ 2tmix log(4/δ)

log 4

in order to achieve ∥θ̄n − θ⋆∥Σφ ≤ ε with probability at least 1− 3δ, it
requires

Õ
(

tmix(∥θ⋆∥2
Σφ

+1) log (1/δ)

(1−γ)2λ2
minε

2 + tmix log
2 (1/δ)

λmin(1−γ)2 log ∥θ0−θ⋆∥
ε

)
observations.
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Markovian sampling schemes

▶ Proof is based on Berbee’s coupling lemma Berbee [1979];

▶ Bounds scale by a factor tmix compared to the i.i.d. setting;

▶ Extra
√
log 1/δ factor in the leading term as an artefact of applying

Berbee’s construction;

▶ Using Berbee’s construction potentially can be avoided, but requires to
adjust the step size α ≈ t−1

mix. Hence, the knowledge of tmix is still
required.
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Conclusion and open questions

Adaptive version

Is it possible to come up with a version of Algorithm 1, which does not
require to know tmix in advance?

Optimal bounds for instance-independent step size

Is it possible to remove the extra λ−1
min in the analysis of Theorem 2 for

the step size α independent of λmin? Or construct a lower bound showing
that this suboptimality is not an artefact of the proof.
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Thank you!
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